JPS6016810A - Formation of surface coating film - Google Patents
Formation of surface coating filmInfo
- Publication number
- JPS6016810A JPS6016810A JP58124163A JP12416383A JPS6016810A JP S6016810 A JPS6016810 A JP S6016810A JP 58124163 A JP58124163 A JP 58124163A JP 12416383 A JP12416383 A JP 12416383A JP S6016810 A JPS6016810 A JP S6016810A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- silicon carbide
- coating film
- film
- surface coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 12
- 238000000576 coating method Methods 0.000 title claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 21
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 16
- 229920000548 poly(silane) polymer Polymers 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims abstract description 5
- 239000000919 ceramic Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 230000001186 cumulative effect Effects 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 21
- 238000005260 corrosion Methods 0.000 abstract description 10
- 230000007797 corrosion Effects 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 238000005299 abrasion Methods 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 5
- -1 methyl hydrogen Chemical compound 0.000 abstract description 5
- 239000012159 carrier gas Substances 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract description 4
- 239000004033 plastic Substances 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KQHIGRPLCKIXNJ-UHFFFAOYSA-N chloro-methyl-silylsilane Chemical compound C[SiH]([SiH3])Cl KQHIGRPLCKIXNJ-UHFFFAOYSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000555 poly(dimethylsilanediyl) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Surface Treatment Of Glass (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明(工表面被憶膜、特には耐久性、耐摩耗性−耐熱
性、耐蝕性、接着性、ガス不透過性のすぐれた炭化けい
素被榎膜の製造方法【二関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention (method for producing a silicon carbide coated film having excellent durability, abrasion resistance, heat resistance, corrosion resistance, adhesion, and gas impermeability) [This is related to two things.
近年、各種電気機器のハヮジングや表示機−各種機能フ
ィルム、建材、化粧液、玩具、装飾品などには多くのグ
ラスチック材が使用されているが。In recent years, many glass materials have been used in housings and displays for various electrical devices, various functional films, building materials, cosmetics, toys, decorative items, etc.
このプラスチック材はその表面がいわゆる有機結合をし
た高分子量体とされていることから、耐久性、耐摩耗性
、耐熱性、耐蝕性、接着性、ガス不透過性に劣るという
本質的な欠点があった。また。Since the surface of this plastic material is made of a high molecular weight material with so-called organic bonds, it has the essential disadvantage of being inferior in durability, abrasion resistance, heat resistance, corrosion resistance, adhesiveness, and gas impermeability. there were. Also.
窓ガラス、各種ウインドク、メガネ、各種電気機器の保
護材として使用されているガラス質材料には耐摩耗性(
硬度)が劣り1弦、度にも限界があるという不利があり
、鉄、アルミニウムー銅など各種方面に広く使用されて
いる金属材料(二は耐摩耗性、接着性、耐蝕性、耐薬品
性に劣るという欠点がある。Glass materials used as protective materials for window glasses, various windows, glasses, and various electrical equipment have wear resistance (
Metal materials widely used in various fields such as iron, aluminum and copper have the disadvantages of poor hardness and limited strength. It has the disadvantage of being inferior to
したがって、これらの素材C二ついては各種の保護方法
が採られており、グラスチックについてはその累膜に各
種の添加剤を添加して成形するが。Therefore, various methods of protection are used for these two materials, and for plastics, various additives are added to the film to form them.
そ)成形品に塗料を塗布したり、異種のフィルムを接着
あるいはサンドイッチする方法が、またガラス質物、セ
ラミックス系についてはグラスチックフィルムを接着ま
たはサンドイッチするか、塗料の塗布という方法が行な
われており、金属の保護については塗料の塗布、その表
面を化学的にまたは物理的C二処理するか、その表面に
保護材を溶射するという方法が採られているが、これら
は必ずしも充分満足すべき結果を与えるものではなかっ
た。The methods used include applying paint to molded products, gluing or sandwiching different types of films, and for glassy materials and ceramics, gluing or sandwiching glass films or applying paint. For the protection of metal, the methods of applying paint, chemically or physically treating the surface, or thermally spraying a protective material on the surface have been adopted, but these methods do not always give satisfactory results. It was not intended to give.
そのため、これら基材の表面保護は耐酸化性、耐蝕性、
耐熱性、耐熱衝撃性、低熱膨張性で、それ自体が高硬度
(高密度)である炭化けい素で被覆するという方法が提
案されており1例えば■シリコン結晶をターゲットとし
て炭素源C二次化水素カスヲ用いたスパッタリング方法
(特公昭56−26.640号公報、特開昭56−40
,284号公報参照)、■シリコン蒸気をイオン化し、
炭素基体の表面に膜を形成させるイオングレーティング
法C特公昭55−18,678号公報参照)−■シラン
またはハロゲン化i/ランガスと炭化水素ガスとの混合
ガスを熱分解させる方法(特開昭57−116.200
号公報、特開昭57−118,082号公報参照)、■
炭素表面上で前記シランガスを熱分解させる方法(特公
昭47−48,120号公報参照)、■シリコン基板上
で炭化水素ガスを分解反応させる方法(特公昭56−2
6,640号公報参照)、さらには■水素化シラン、ア
ルキルシランまたはハロゲン化シランと炭化水素ガスと
をプラズマ気相沈積法(以下CVD法という)で処理す
る方法(特開昭57−27,914号公報、特開昭57
−22,112号公報2%開昭57−200.215号
公報参照)などが知られている。Therefore, the surface protection of these base materials is oxidation resistance, corrosion resistance,
A method has been proposed in which silicon carbide is coated with silicon carbide, which has heat resistance, thermal shock resistance, low thermal expansion, and is itself highly hard (high density). Sputtering method using hydrogen gas (Japanese Patent Publication No. 56-26.640, Japanese Unexamined Patent Publication No. 56-40
, No. 284), ■Ionize silicon vapor,
Ion grating method for forming a film on the surface of a carbon substrate C (see Japanese Patent Publication No. 55-18,678) - ■ Method for thermally decomposing a mixed gas of silane or halogenated i/ran gas and hydrocarbon gas 57-116.200
(Refer to Japanese Patent Application Laid-Open No. 118-082-1982), ■
A method of thermally decomposing the silane gas on a carbon surface (see Japanese Patent Publication No. 47-48-120), ■ A method of decomposing a hydrocarbon gas on a silicon substrate (Japanese Patent Publication No. 56-2
6,640), and furthermore, ■ a method of treating hydrogenated silane, alkylsilane, or halogenated silane with hydrocarbon gas by plasma vapor deposition method (hereinafter referred to as CVD method) (Japanese Patent Laid-Open No. 57-27, Publication No. 914, JP-A-57
22,112 (see Japanese Patent Publication No. 1983-200.215), and the like are known.
しかし、この■〜■の方法は高温が必要とされ、各元素
のグラスターができやすいし、均質な膜が得られに〈〈
−成膜速度も遅いという不利があるほか、熱膨張の相違
によって室温に戻したときl二皮膜(=ブラッグが発生
し易く、接着強度も劣るという欠点があり、この■のプ
ラズマO’V D法にはその始発原料としてモノシラン
(5iH4)を使用するとそれが非常に発火性の高いも
のであるため取扱いに厳重な注意が必要とされるはか−
コストが高くなるという不利があるし、ハロゲン化シラ
ンを使用するとプラズマによって塩酸や塩素給井が発生
するためその処理に難点が生じるばか反応速度が遅いと
いう欠点があり、またシリコン源と炭素源が異なるため
にこの堆積速度を早めるとこれらの反応速度の相違から
81およびOのグラスターが発生し、均質な膜が得られ
ないという不都合があった。However, these methods (■ to ■) require high temperatures, tend to form glasters of each element, and are difficult to obtain a homogeneous film.
- In addition to the disadvantage that the film formation rate is slow, due to the difference in thermal expansion, there is a disadvantage that two films (= Bragg) are likely to occur when returned to room temperature, and the adhesive strength is poor. The law stipulates that if monosilane (5iH4) is used as the starting material, it is highly flammable and must be handled with great care.
It has the disadvantage of high cost, and the disadvantage of using halogenated silane is that the plasma generates hydrochloric acid and chlorine supply wells, which makes processing difficult, and the reaction rate is slow. If the deposition rate is accelerated due to the difference in reaction rate, glasters of 81 and O will occur, making it impossible to obtain a homogeneous film.
本発明はこのような不利を解決した基体表面l二次化け
い素皮膜の形成させる方法に関するものであり、これは
一般式(OH3)aSibHoに\に1(b(4,2b
+1≧a≧1−2b+1≧C≧1、a+o=2b+2)
で示されるメチルハイドロジエンポリシラン類の少なく
とも1種の分解により発生する炭化げい累を基体上に堆
積させることを特徴とするものである。The present invention relates to a method for forming a secondary silicon film on a substrate surface which solves such disadvantages.
+1≧a≧1-2b+1≧C≧1, a+o=2b+2)
This method is characterized by depositing on a substrate a carbonized residue generated by the decomposition of at least one of the methylhydrodiene polysilanes shown in the following.
これを説明すると一本発明者らはさきにメチルハイドロ
ジエンシラン化合物を始発材料とじ一プラズマOVD法
で処理すれば高純度で均一な炭化げい素膜を得ることが
できるということを見出すと共(二、特にメチルハイド
aジエンジシラン−または−トリシランを使用すれば非
常鑑二大きい生長速度で均質な炭化げい系膜を得ること
ができるということを確認した(特願昭58−4,69
5号参照)。本発明はこの知見g二もとづいて、メチル
ハイドロジエンポリシランを始発材料とし、これをプラ
ズマOVD法で処理し2こ\に発生した炭化げい累を基
体上に堆積させると一耐久性、耐摩耗性、耐熱性、耐蝕
性、接着性、ガス不透過性のすぐれた表面被覆膜が得ら
れるという本発明者らの確認によりなされたものである
。To explain this, the present inventors have previously discovered that a highly pure and uniform silicon carbide film can be obtained by treating a methylhydrogensilane compound as a starting material using a plasma OVD method. (2) It was confirmed that it is possible to obtain a homogeneous silicon carbide film at an extremely high growth rate by using methyl hydride-a-diene disilane or -trisilane (Patent Application No. 58-4, 69
(See No. 5). Based on this knowledge, the present invention uses methylhydrodiene polysilane as a starting material, processes it by plasma OVD method, and deposits the generated carbide on the substrate to improve durability and wear resistance. This was made based on the inventors' confirmation that a surface coating film with excellent properties, heat resistance, corrosion resistance, adhesiveness, and gas impermeability can be obtained.
本発明(二使用されるメチルハイドロジエンポリシラン
は前記した一般式(OH3)aSlbHoで示されるも
のであり−これには
H−S i−81−81−R
Il+
OH3HOH3
などが例示されるが、これはその単独または2棟以上の
混合物であってもよい。このメチルハイドロジエンポリ
シランは1分子中にけい素原子と炭素原子とを同時に含
有するものであるため、この分解により発生する炭化け
い素を堆積させた皮膜は均質であり、その膜の成長速度
がモノシランを使用した場合l二くらべて数倍以上早い
という有利性が与えられる。なお、このメチルハイドロ
ジエンポリシランの製造法は公知であり、これはポリジ
メチルシランを350℃以上で熱分解するか、またはメ
チルグロライドと金属けい素との反応によるメチルグσ
ロシランの直接合成時に副生ずるメチルグロロジシラン
の還元によって得ることができる。The methylhydrodiene polysilane used in the present invention (2) is represented by the general formula (OH3)aSlbHo described above, and examples thereof include H-S i-81-81-R Il+ OH3HOH3. may be used alone or as a mixture of two or more.Since this methylhydrodiene polysilane contains silicon atoms and carbon atoms at the same time in one molecule, silicon carbide generated by this decomposition is The deposited film is homogeneous, giving the advantage that the growth rate of the film is several times faster than when monosilane is used.The method for producing this methylhydrodiene polysilane is known, This is achieved by thermally decomposing polydimethylsilane at 350°C or higher, or by reacting methyl glolide with metal silicon.
It can be obtained by reducing methyl chlorodisilane, which is a by-product during the direct synthesis of rosilane.
本発明方法の実施にはこのメチルハイドロジエンポリシ
ランをグラズマOVD法で処理すればよいが、これには
まず処理すべき基体を反応室内に載置したのち−この反
応室内を0.01〜5トルに二減圧し、こ\にキャリヤ
ーガスとしての水素、ヘリウム、アルゴンガスと共にメ
チルハイドロジエンポリシランを導入してから、この系
内に高周波電力を印加してグラズマを発生させればよい
。この反応温度は基体、の耐熱温度によって調節する必
要があるが、これは100℃以上、好ましくは150℃
以上とすることがよい。しかし、これを150℃以下と
すると得られる炭化けい累被膜中にSiH結合−二起因
する2 090tyn の吸収が生じ、耐久性、耐熱性
の点で問題となるおそれかあるので、この場合l二はキ
ャリヤーガスと原料としてのメチルハイドロジエンポリ
シランの供給を停止して、炭素源、窒素源−酸素源とな
るガス体だけを供給し、この温度で20分以上エージン
グすることがよく、これによればか\る不利を除去する
ことかできる。なお、この反応温度の上限は700℃以
下とすることがよいが、経済的見地とこれが高すぎると
基体と被覆膜との熱膨張係数の差で均一で稠密な膜が得
られなくなるおそれがあるので、基材の種類にもよるが
500℃以下とすることが好ましい。To carry out the method of the present invention, this methylhydrodiene polysilane may be treated by the Glazma OVD method. First, the substrate to be treated is placed in a reaction chamber, and then the reaction chamber is heated to a temperature of 0.01 to After reducing the pressure to the system, methylhydrodiene polysilane is introduced together with hydrogen, helium, and argon gases as carrier gases, and then high-frequency power is applied to the system to generate a glazma. This reaction temperature needs to be adjusted depending on the heat resistance temperature of the substrate, but it should be at least 100°C, preferably 150°C.
It is better to set it to the above. However, if the temperature is lower than 150°C, absorption of 2090tyn due to SiH bonds will occur in the obtained silicon carbide coating, which may cause problems in terms of durability and heat resistance. It is best to stop the supply of the carrier gas and the methylhydrodienepolysilane as a raw material, and supply only the gases serving as the carbon source, nitrogen source and oxygen source, and age at this temperature for 20 minutes or more. You can remove stupid disadvantages. Note that the upper limit of this reaction temperature is preferably 700°C or less, but from an economic standpoint, if this is too high, there is a risk that a uniform and dense film may not be obtained due to the difference in thermal expansion coefficient between the substrate and the coating film. Therefore, the temperature is preferably 500°C or less, although it depends on the type of base material.
本発明の方法では、前記したようにこのメチル八1′ド
ロジエンポリシランが炭素原子とけい素原子を同時に保
有しており、その比率も変化させることができるので、
この反応系に他の炭素源、けい素源となるガス体を添加
する必要はないが、上記したエージング用などに使用す
る炭素源としてはメタン、エタンなど一窒素源としては
蟹累ガス。In the method of the present invention, as described above, this methyl 81'drodiene polysilane simultaneously contains carbon atoms and silicon atoms, and the ratio thereof can be changed.
There is no need to add other carbon sources or gases as silicon sources to this reaction system, but methane and ethane can be used as carbon sources for the above-mentioned aging purposes, and carbon dioxide can be used as a nitrogen source.
アンモニアガス−N2H4などが、また酸素源としては
酸素ガス、水蒸気などを、さらζ二これらの混合ガスと
しては00.CO2,N2O−0H30Hなどを使用す
ればよい。Ammonia gas - N2H4 etc., oxygen gas, water vapor etc. as an oxygen source, and ζ2 as a mixed gas of 00. CO2, N2O-0H30H, etc. may be used.
本発明の方法による炭化けい素板覆膜の膜厚は目的によ
って異なるけれども一被覆膜に強度が必要とされるとき
(二はこれを数ミクロンから数十ミクロンとじ一強度を
必要とせず耐久性1表面硬度、ガス不透過性、接着性な
どの改良が目的とされる場合には数ミクロン以下として
もよい。また、この炭化けい素被覆の炭素とけい素の原
子比は始発材料として使用するメチルハイドロジエンポ
リシランの構造、すなわちそのけい素原子と炭素原子の
総合比により変化するが、これは本発明の目的からは任
意とされ、どのような比であってもよい。Although the film thickness of the silicon carbide plate coating film obtained by the method of the present invention varies depending on the purpose, when strength is required for the coating film (second is that it is made from several microns to several tens of microns and has durability without requiring strength). If the purpose is to improve surface hardness, gas impermeability, adhesion, etc., it may be several microns or less.Also, the atomic ratio of carbon to silicon in this silicon carbide coating is determined by the starting material. Although it varies depending on the structure of the methylhydrodiene polysilane, that is, its overall ratio of silicon atoms to carbon atoms, this is arbitrary for the purpose of the present invention, and any ratio may be used.
本発明の方法で形成される炭化けい累被覆膜は各種素材
の改質に有用とされるものであり、これは例えば窒化げ
い素、サイアロン、ムライトなどのセラミックの潤滑性
改良1表面保護用として。The silicon carbide overcoat film formed by the method of the present invention is said to be useful for modifying various materials, such as improving the lubricity of ceramics such as silicon nitride, sialon, and mullite. For use.
鉄鉱、非鉄金属類1合金製品などの防錆1表面強化のた
めの表面処理用として−また太陽熱ロレグター、太陽光
発電用表管、板、各種工0などのような電機、電子部品
の表面保護用として利用することができるほか、各種グ
ラスチック、ガラス類の強化−接着性改良、ガス透過性
改良などを目的とする表面処理にも広く使用することが
できる。For surface treatment to strengthen the rust prevention surface of iron ore, non-ferrous metal alloy products, etc. Also for surface protection of electrical and electronic components such as solar power regulators, solar power generation surface pipes, plates, and various types of workpieces. In addition to being used for various purposes, it can also be widely used for surface treatments aimed at strengthening various types of glass, improving adhesion, improving gas permeability, etc.
つぎに本発明方法の実施例をあげる。Next, examples of the method of the present invention will be given.
実施例1゜
反応ii内l二100waX50w+lX1mの第i3
に掲記した基体を載置してから系内な5 X 10””
←ルにまで減圧し、ついでヒーターを使用して基体を第
1表に示した温度l二まで加熱した。Example 1゜Reaction ii, 12th 100 wa x 50 w + 1 x 1 m, i3
5 x 10" in the system after placing the substrate listed on
The pressure was then reduced to 12°C, and the substrate was then heated using a heater to the temperature shown in Table 1.
つぎに、この反応室内C二所定の温度に予熱した第1表
に掲記した各種のメチルハイドロジエンポリシランをキ
ャリヤーガスとしてのアルゴンと水素との3:1の混合
ガスと共C二導入し、こ\CC103,56MHz の
高周波電力(50W)を印加してプラズマを発生させて
このポリシランの分解により生成した炭化けい素を基体
上に堆積させたのち、こ\に得られた基体について耐蝕
性−耐摩耗性、耐熱性を下記の方法で測足したところ一
第1表C二併記したとおりの結果が得られた。Next, various methylhydrodiene polysilanes listed in Table 1, which had been preheated to a predetermined temperature, were introduced into the reaction chamber together with a 3:1 mixed gas of argon and hydrogen as a carrier gas. After applying a high frequency power (50W) of \CC103, 56MHz to generate plasma and depositing silicon carbide produced by decomposition of this polysilane on the substrate, the corrosion resistance and corrosion resistance of the obtained substrate were evaluated. When the abrasion resistance and heat resistance were measured using the following methods, the results shown in Table 1, C, and II were obtained.
なお、この第1表に&X比較のため、始発材料としてモ
ノシランとメタンの混合ガスを使用して同様に処理した
もの、また未処理の各基材についての試験結果を併記し
た。For the purpose of &X comparison, Table 1 also lists test results for base materials treated in the same manner using a mixed gas of monosilane and methane as the starting material, and for each untreated base material.
(耐蝕性)
濃フッ酸と濃硝酸のl:1の混合液に室温で2時間浸漬
後−七の状態をしらべた。(Corrosion Resistance) After being immersed in a 1:1 mixture of concentrated hydrofluoric acid and concentrated nitric acid for 2 hours at room temperature, the condition of -7 was examined.
(耐摩耗性)
表面状態がビッカース硬度で1500h/mj以上であ
るかどうかをしらべた。(Abrasion resistance) It was determined whether the surface condition had a Vickers hardness of 1500 h/mj or more.
(耐熱性)
400℃で8時間加熱したのちの膜の状態を電子顕微鏡
で観察した。(Heat resistance) After heating at 400° C. for 8 hours, the state of the film was observed using an electron microscope.
実施例2
実施例1と同じ方法で第2表に掲記した基体を処理し一
基体呈へμmの二厚の炭化けい素板覆膜を作ってから−
これら(二ついての耐蝕性、耐摩耗性、接着性−ガス不
透過性を下記の方法でしらべたところ一第2y+二示す
とおりの結果が得られた。Example 2 The substrates listed in Table 2 were treated in the same manner as in Example 1 to form a silicon carbide plate coating of two μm thickness on one substrate.
When the corrosion resistance, abrasion resistance, adhesion and gas impermeability of these two materials were examined using the following method, the results shown in 1, 2, and 2 were obtained.
なお、この第2表にはこのような処理を施していない基
体についての物性を併記した。Note that Table 2 also lists the physical properties of the substrates that were not subjected to such treatment.
(耐蝕性)・・・・・・実施例1と同じ(耐摩耗性)
表面状態をビッカース硬度が1000 Ky/an”以
上であるかどうかをしらべた。(Corrosion resistance) Same as Example 1 (Abrasion resistance) The surface condition was examined to see if the Vickers hardness was 1000 Ky/an'' or higher.
(接着性)
エポキシ樹脂を使用して一接着強度が60〜/d以上で
あるかどプかをしらべた。(Adhesion) An epoxy resin was used to determine if the adhesive strength was 60~/d or more.
(ガス不透過性ン
酸素の透過率を測定し一ガス透過度が100.0./−
・24時間・気圧以下であるかどうかなしらべた。(Measure the gas impermeability and oxygen permeability, and the gas permeability is 100.0./-
・Checked whether the pressure was below the atmospheric pressure for 24 hours.
Claims (1)
2b+1≧a≧1.2b+1≧C≧l−a+ a =
2 b + 2 )で示されるメチルハイドロジエンポ
リシラン類の少なくとも1種の分解により発生する炭化
けい素を基体上に堆積させることを特徴とする表面被覆
膜の製造方法。 2、炭化げい累の被膜がプラズマ気相沈積法で堆積され
る特許請求の範囲第1項記載の表面被覆膜の製造方法。 3、 ガラス、金属−セラミッグ、グラスチック。 木材などの基材上ζニプラズマ気相沈積法で炭化けい累
被膜が堆積される特許請求の範囲第1項[Claims] 1. General formula (0H3)aSibH8\to1 b<4-
2b+1≧a≧1.2b+1≧C≧l−a+ a=
A method for producing a surface coating film, comprising depositing silicon carbide generated by decomposing at least one type of methylhydrodiene polysilane represented by 2 b + 2 ) on a substrate. 2. The method for producing a surface coating film according to claim 1, wherein the carbide film is deposited by plasma vapor deposition. 3. Glass, metal - ceramic, glasstic. Claim 1, wherein a silicon carbide cumulative coating is deposited on a substrate such as wood by ζ plasma vapor deposition method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58124163A JPS6016810A (en) | 1983-07-08 | 1983-07-08 | Formation of surface coating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58124163A JPS6016810A (en) | 1983-07-08 | 1983-07-08 | Formation of surface coating film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6016810A true JPS6016810A (en) | 1985-01-28 |
JPS64323B2 JPS64323B2 (en) | 1989-01-06 |
Family
ID=14878499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58124163A Granted JPS6016810A (en) | 1983-07-08 | 1983-07-08 | Formation of surface coating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6016810A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5041303A (en) * | 1988-03-07 | 1991-08-20 | Polyplasma Incorporated | Process for modifying large polymeric surfaces |
JPH0472067A (en) * | 1990-05-15 | 1992-03-06 | Toagosei Chem Ind Co Ltd | Production of article having silicon carbide film |
JP2008540771A (en) * | 2005-05-12 | 2008-11-20 | ダウ・コーニング・アイルランド・リミテッド | Try to bond the adhesive to the substrate via a primer |
-
1983
- 1983-07-08 JP JP58124163A patent/JPS6016810A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5041303A (en) * | 1988-03-07 | 1991-08-20 | Polyplasma Incorporated | Process for modifying large polymeric surfaces |
JPH0472067A (en) * | 1990-05-15 | 1992-03-06 | Toagosei Chem Ind Co Ltd | Production of article having silicon carbide film |
JP2008540771A (en) * | 2005-05-12 | 2008-11-20 | ダウ・コーニング・アイルランド・リミテッド | Try to bond the adhesive to the substrate via a primer |
Also Published As
Publication number | Publication date |
---|---|
JPS64323B2 (en) | 1989-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0417170B1 (en) | Process for plasma depositing silicon nitride and silicon dioxide films onto a substrate | |
US5279661A (en) | Vaporized hydrogen silsesquioxane for depositing a coating | |
JP4280412B2 (en) | Silicon / nitrogen base film and method for producing the same | |
JPH09186153A (en) | Method of vapor depositing amorphous sinc film | |
US3846162A (en) | Metal carbonitride coatings | |
EP0774533A1 (en) | Method for depositing Si-O containing coatings | |
JPS63144525A (en) | Multilayer ceramic low temperature forming method | |
JPH05502695A (en) | Chemical vapor deposition method for transition metal nitrides | |
JP4881153B2 (en) | Method for producing a hydrogenated silicon oxycarbide film. | |
ATE227358T1 (en) | MEDIUM TEMPERATURE CVD PROCESS | |
JP4705572B2 (en) | Method for depositing a silica coating on a substrate | |
WO1992001084A1 (en) | Chemical vapor deposition (cvd) process for plasma depositing silicon carbide films onto a substrate | |
JPS6016810A (en) | Formation of surface coating film | |
US5053255A (en) | Chemical vapor deposition (CVD) process for the thermally depositing silicon carbide films onto a substrate | |
JP2969291B2 (en) | Abrasion resistant member and method of manufacturing the same | |
US4273828A (en) | Bulk glass having improved properties | |
GB955700A (en) | Process for the production of coatings of very pure silicon carbide free from bindingagents | |
JPS6054911A (en) | Ultraviolet light cutting membrane | |
Wróbel et al. | Structure–Property Relationships of Amorphous Hydrogenated Silicon–Carbon Films Produced by Atomic Hydrogen–Induced CVD from a Single‐Source Precursor | |
JPH05125660A (en) | Thermally decomposed carbon composite material and heat insulating material for high-temperature furnace | |
JPH02228475A (en) | Production of silicon carbide film | |
JPS6324068B2 (en) | ||
Zhou et al. | Deposition Temperature Effect on the Structure and Optical Property of RF‐PACVD‐Derived Hydrogenated SiCNO Film | |
JPS60155675A (en) | Production of surface hardened film having lubricity | |
PL149575B1 (en) | Method of producing on silica glass a silicium nitride film resistant to stress corrosion |