[go: up one dir, main page]

JPS60163919A - Method for manufacturing branched polycarbonate - Google Patents

Method for manufacturing branched polycarbonate

Info

Publication number
JPS60163919A
JPS60163919A JP1694984A JP1694984A JPS60163919A JP S60163919 A JPS60163919 A JP S60163919A JP 1694984 A JP1694984 A JP 1694984A JP 1694984 A JP1694984 A JP 1694984A JP S60163919 A JPS60163919 A JP S60163919A
Authority
JP
Japan
Prior art keywords
phenol
mol
reaction
amount
polycarbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1694984A
Other languages
Japanese (ja)
Other versions
JPH0469178B2 (en
Inventor
Toshimasa Tokuda
俊正 徳田
Akiyoshi Manabe
昭良 真鍋
Osamu Ohara
大原 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP1694984A priority Critical patent/JPS60163919A/en
Publication of JPS60163919A publication Critical patent/JPS60163919A/en
Publication of JPH0469178B2 publication Critical patent/JPH0469178B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain in high yields a branched polycarbonate having no fear of insolubilization in a solvent and improved in hue, by reacting a low-MW linear polycarbonate with a specified polyphenol and a monophenol. CONSTITUTION:A low-MW linear polycarbonate obtained by reacting an aqueous alkaline solutionof a diphenol with phosgene in the presence of an organic solvent is reacted first with a polyphenol having, in its molecular, structure, benzene ring having at least three hydroxyl groups and a monophenol, and then completing the reaction by adding an aqueous alkali solution to the reaction system. The amount of said polyphenol added is 0.05-1.5mol% based on the total weight of the diphenol and the amount of unreacted diphenol present at the paint of the addition of the at least trihydric polyphenol should be 3mol or below per hydroxyl groups of the at leat trihydric polyphenol. Said aqueous alkali solution should be used in an amount of 10-100mol% based on the total weight of the diphenol used and has an alkali concentration of 1-50wt%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分岐ポリカーボネートの製造方法に関する。さ
らに詳しくは、2価フェノールとホスゲンとから合成さ
れた低分子量の線状ポリカーボネー1〜に、3個以上の
水酸基を有するベンゼン環をその分子構造内に有する3
価以上の多価フェノールと1価フェノールを添加して反
応せしめ、ついで、アルカリ水溶液を加えて重合反応を
完結せしめる分岐した芳香族ポリカーボネートの製造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing branched polycarbonate. More specifically, low molecular weight linear polycarbonate 1~ synthesized from dihydric phenol and phosgene has a benzene ring having three or more hydroxyl groups in its molecular structure.
The present invention relates to the production of a branched aromatic polycarbonate, in which a polyhydric phenol and a monohydric phenol having a higher valence are added and reacted, and then an alkaline aqueous solution is added to complete the polymerization reaction.

[従来技術] エンジニアリングプラスチックとして広く用いられてい
るポリカーボネート樹脂の多くは、2価フェノールとホ
スゲンを反応せしめて生成した、直鎖状重合体であるが
、この直鎖状重合体は溶融加工条件下ではニュートン流
動挙動を示し、吹込成形、押出成形を行う際には自重に
よるダレが生じ易く、大型の成形品を作ることが困難で
ある。
[Prior art] Most of the polycarbonate resins widely used as engineering plastics are linear polymers produced by reacting dihydric phenol and phosgene. It exhibits Newtonian flow behavior and tends to sag due to its own weight during blow molding and extrusion molding, making it difficult to make large molded products.

そのために、かかる成形用途には、溶融加工条件下で、
非ニユートン流動性を示し、溶融時にダレを生じ勤い分
岐ポリカーボネートが要求される。
Therefore, for such molding applications, under melt processing conditions,
Branched polycarbonates are required because they exhibit non-Newtonian flow and tend to sag during melting.

この非ニユートン流動性は、次式 %式% からめられる構造粘性指数Nの値で評価できる。This non-Newtonian fluidity is expressed as %formula% It can be evaluated by the value of the structural viscosity index N that can be entangled.

Nが1のときにはニュートン流動を示し、1より大きく
なる稈非ニュートン流動性が大きくなることを示す。
When N is 1, it indicates Newtonian flow, and when N is greater than 1, it indicates that non-Newtonian fluidity increases.

本発明者は、上記の構造粘性指数Nど吹込成形。The present inventor has developed blow molding with the above-mentioned structural viscosity index N.

押出成形時のダレとの関係を調べた結果、Nが1.2〜
1.3の線状性の強いポリカーボネートに比し、Nが1
.4〜3.5の分岐したポリカーボネート樹脂が、いず
れの成形時にもダレが生じ難り、大型成形品に容易に成
形しうろことが明らかとなった。
As a result of investigating the relationship with sagging during extrusion molding, N was 1.2~
Compared to polycarbonate with strong linearity of 1.3, N is 1
.. It has become clear that polycarbonate resins with 4 to 3.5 branches are less likely to sag during any molding process and can be easily molded into large molded products.

かかる分岐ポリカーボネートの製造方法どしては、従来
から分岐剤として3価以上の多価フェノールを用いる方
法が秤々知られているが、この分岐化が過ぎると網状化
し、有機溶媒に不溶となり、また、3価以上の多価フェ
ノールの反応性は2価フェノールのそれに比べて低いな
どの理由で、高収率でNの高い分岐ポリカーボネートを
得ることは容易でないという問題がある。
Many methods for producing such branched polycarbonates have been known, including using polyhydric phenols with a valence of 3 or more as a branching agent. Furthermore, there is a problem that it is not easy to obtain a branched polycarbonate with a high N content in a high yield because the reactivity of a polyhydric phenol having a valence of 3 or more is lower than that of a dihydric phenol.

例えば、特公昭44−17149号公報に、2価フェノ
ールに対してフロログルシン等の多官能化合物をホスゲ
ン吹込み前に加え、ホスゲンの吹込速麿。
For example, in Japanese Patent Publication No. 44-17149, a polyfunctional compound such as phloroglucin is added to dihydric phenol before phosgene is blown in, and the phosgene is blown quickly.

反応温度を制御して重合する方法が開示されているが、
この方法は、条件設定が複雑なので、工業的実施が難か
しく、且つ、溶液重合を対象としている。一方、界面重
合による方法としては、特開昭47−23918@公報
に3価以上の多価フェノールと1価フェノールとの同時
的存在下に、2価フェノールとホスゲン等の炭酸誘導体
を反応せしめる3一 方法、特公昭53−28193号公報に2価フェノール
と1価フェノールの同時存在下にホスゲンを加え、低分
子量ポリカーボネートを生成し、ついで触媒と4価以上
の多価フェノールを加える方法が開示されているが、こ
れらの方法では、特にビスフェノールに比べて、反応性
の低いフロログルシン等の多価フェノールを用いた際に
は、本発明の目的とするようなNの高いポリカーボネー
トは得られない。またこの反応終了後のポリマー溶液(
有機相)には反応に使用したアルカリ、2価フェノール
等や、反応の副生成物である食塩、炭酸ソーダ等を含ん
だ水溶液が小さな水滴となって安定に分散しており、水
洗等によって、それらを取除き精製する必要があるが、
その精製性が悪い欠点がある。
A method of polymerization by controlling the reaction temperature has been disclosed, but
This method requires complicated condition settings, making it difficult to implement industrially, and is aimed at solution polymerization. On the other hand, a method using interfacial polymerization is described in JP-A-47-23918@, in which a dihydric phenol and a carbonic acid derivative such as phosgene are reacted in the simultaneous presence of a trivalent or higher polyhydric phenol and a monohydric phenol. One method, Japanese Patent Publication No. 53-28193, discloses a method in which phosgene is added in the simultaneous presence of dihydric phenol and monohydric phenol to produce a low molecular weight polycarbonate, and then a catalyst and a polyhydric phenol of tetrahydric or higher hydric phenol are added. However, with these methods, it is not possible to obtain a polycarbonate with a high N content as the object of the present invention, especially when a polyhydric phenol such as phloroglucin, which has lower reactivity than bisphenol, is used. Also, the polymer solution after this reaction (
In the organic phase, an aqueous solution containing the alkali, dihydric phenol, etc. used in the reaction, and the by-products of the reaction, such as salt and soda carbonate, is stably dispersed in the form of small water droplets. It is necessary to remove them and purify them, but
It has the disadvantage of poor refining properties.

また、特開昭58−185619号公報に、ポリカーボ
ネートオリゴマーに多官能化合物を反応せしめ、次いで
2価フェノールを加えて重縮合する方法が開示されてい
るが、フロログルシン等の多価フェノールの使用に関し
ては、記載がない。
Furthermore, JP-A-58-185619 discloses a method in which polycarbonate oligomers are reacted with a polyfunctional compound and then dihydric phenol is added to perform polycondensation, but regarding the use of polyhydric phenols such as phloroglucin, , there is no description.

4− [発明の目的] 本発明の目的は、工業的に入手容易であるが、反応性の
劣るフロログルシン等の多価フェノールを分岐剤として
、高収率で、しかも溶剤不溶化の危険性がなく、且つ得
られたポリマーの有機溶媒溶液の水洗による精製性がよ
く、色相の改善された、吹込成形、押出成形等に優れた
成形性を示す構造粘性指数Nが1.4〜3.5の分岐し
たポリカーボネート樹脂の製造方法を提供することにあ
る。
4- [Objective of the Invention] The object of the present invention is to use a polyhydric phenol such as phloroglucin, which is industrially easily available but has poor reactivity, as a branching agent in a high yield and without the risk of solvent insolubilization. , and has a structural viscosity index N of 1.4 to 3.5, which shows good purification by washing the organic solvent solution of the obtained polymer, improved hue, and excellent moldability in blow molding, extrusion molding, etc. An object of the present invention is to provide a method for producing a branched polycarbonate resin.

「発明の構成」 本発明は、2価フェノールのアルカリ水溶液とホスゲン
とを有機溶媒の存在下に反応せしめて得られる低分子量
の線状ポリカーボネートに、まず3価以上の多価フェノ
ールと1価フェノールとを加えて反応せしめ、ついで、
アルカリ水溶液を加えて反応を完結せしめる分岐ポリカ
ーボネートの製造方法に於いて、該3価以上の多価フェ
ノールとして3個以上の水酸基を有するベンゼン環をそ
の分子構造内に有する多価フェノールを使用し、その量
が、2価フェノールの全量に基づいて、0.05〜1.
5モル%であり、1つ、該3価以上の多価フェノールの
添加時にお(プる未反応の2価フェノールが、該3価以
上の多価フェノールの水酸基1個当り、3モル以下であ
り、且つ反応混合液を構成する有機相と水相の体積比が
1 : 0.1〜1:1.2であり、またついで加える
アルカリ水溶液が、用いた2価フェノールの全量に対し
て10〜100モル%であり、該アルカリ濃度が1〜5
0重量%であることを特徴とする分岐ポリカーボネート
の製造方法である。
``Structure of the Invention'' The present invention first involves adding a polyhydric phenol of trihydric or higher hydric phenol and a monohydric phenol to a low molecular weight linear polycarbonate obtained by reacting an alkaline aqueous solution of dihydric phenol with phosgene in the presence of an organic solvent. Add and react, then,
In the method for producing branched polycarbonate in which the reaction is completed by adding an aqueous alkali solution, a polyhydric phenol having a benzene ring having three or more hydroxyl groups in its molecular structure is used as the trivalent or higher polyhydric phenol, The amount is 0.05 to 1.0% based on the total amount of dihydric phenol.
5 mol%, and when the polyhydric phenol with a valence of 3 or more is added, the unreacted dihydric phenol is 3 mol or less per hydroxyl group of the polyhydric phenol with a valence of 3 or more. and the volume ratio of the organic phase to the aqueous phase constituting the reaction mixture is 1:0.1 to 1:1.2, and the aqueous alkaline solution added subsequently is 10% of the total amount of dihydric phenol used. ~100 mol%, and the alkali concentration is 1 to 5
This is a method for producing branched polycarbonate, characterized in that the amount of branched polycarbonate is 0% by weight.

本発明に用いられる2価フェノールとしては、ビスフェ
ノール類が好ましく、とくに、2,2−ビス(4−ヒド
ロキシフェニル)プロパン[以下、ビスフェノールAと
云う]が好ましい。またビスフェノールAの一部または
全部を伯の2価フェノールで置換してもよい。ビスフェ
ノールA以外の2価フェノールとしては、例えば、ハイ
ドロキノン、4.4’−ジヒドロキシジフェニル、ビス
(4−ヒドロキシフェニル)アルカン、ビス(4−ヒド
ロキシフェニル)シクロアルカン、ビス(4−ヒドロキ
シフェニル)スルフィド、ビス(4−ヒドロキシフェニ
ル)スルホキシド、ビス(4−ヒドロキシフェニル)ス
ルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス
(4−ヒドロキシフェニル)エーテル、2,2−ビス(
3,5−ジメチル−4−ヒドロキシフェニル)プロパン
、及び2,2−ビス(3,5−ジブロモ−4−ヒドロキ
シフェニル)プロパンの如きハロゲン化ビスフェノール
類を挙げることができる。
As the dihydric phenol used in the present invention, bisphenols are preferable, and 2,2-bis(4-hydroxyphenyl)propane [hereinafter referred to as bisphenol A] is particularly preferable. Further, part or all of bisphenol A may be replaced with a dihydric phenol. Examples of dihydric phenols other than bisphenol A include hydroquinone, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)alkane, bis(4-hydroxyphenyl)cycloalkane, bis(4-hydroxyphenyl)sulfide, Bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl)ketone, bis(4-hydroxyphenyl)ether, 2,2-bis(
Mention may be made of halogenated bisphenols such as 3,5-dimethyl-4-hydroxyphenyl)propane and 2,2-bis(3,5-dibromo-4-hydroxyphenyl)propane.

これらの2価フェノールは、アルカリ水溶液に溶解分散
させて使用される。この場合、アルカリとしては苛性ソ
ーダ、苛性カリなどのアルカリ金属水酸化物が好ましく
用いられ、このアルカリ濃度は3〜13重量%が好まし
い。溶解分散される2価フェノールとアルカリのモル比
は1:1,8〜1:3.3が好ましく、更に好ましくは
、1 : 2.2〜1:3.1である。
These dihydric phenols are used after being dissolved and dispersed in an alkaline aqueous solution. In this case, as the alkali, an alkali metal hydroxide such as caustic soda or caustic potash is preferably used, and the alkali concentration is preferably 3 to 13% by weight. The molar ratio of dihydric phenol and alkali to be dissolved and dispersed is preferably 1:1.8 to 1:3.3, more preferably 1:2.2 to 1:3.1.

本発明に用いられる有機溶媒は、水に対して実質的に不
溶で、且つ反応に対して不活性であり、しかも反応によ
って生ずるポリカーボネートを溶7− 解する有機化合物である。その具体例として、塩化メチ
レン、テトラクロルエタン、1,2−ジクロルエチレン
、クロロホルl\、四塩化炭素、トリクロルエタン、ジ
クロルエタン等の塩素化脂肪族炭化水素;クロルベンゼ
ン、ジクロルベンゼン、クロルトルエン等の塩素化芳香
族炭化水素;アセトフェノン、シクロヘキザノン、アニ
ソール等をあげることができる。これらは単独または混
合物として用いることができる。これらのうち塩化メチ
レンが最も好ましい。
The organic solvent used in the present invention is an organic compound that is substantially insoluble in water and inert to the reaction, and further dissolves the polycarbonate produced by the reaction. Specific examples include chlorinated aliphatic hydrocarbons such as methylene chloride, tetrachloroethane, 1,2-dichloroethylene, chloroform\, carbon tetrachloride, trichloroethane, and dichloroethane; chlorobenzene, dichlorobenzene, and chlorotoluene. chlorinated aromatic hydrocarbons such as acetophenone, cyclohexanone, anisole, etc. These can be used alone or as a mixture. Among these, methylene chloride is most preferred.

本発明においては、先ず2価フェノールのアルカリ水溶
液とホスゲンとを有機溶媒の存在下で反応せしめて低分
子量の線状ポリカーボネートを生成する。その際、2価
フェノールとホスゲンのモル比は’l:1,1〜1:1
.5であり、反応は2価フェノールを溶解した前記のア
ルカリ水溶液に、有機溶媒の存在下25℃以下でホスゲ
ンを吹き込むことによって行なうことが好ましい。
In the present invention, first, an alkaline aqueous solution of dihydric phenol and phosgene are reacted in the presence of an organic solvent to produce a low molecular weight linear polycarbonate. At that time, the molar ratio of dihydric phenol and phosgene is 'l:1,1~1:1
.. 5, and the reaction is preferably carried out by blowing phosgene into the aqueous alkaline solution in which dihydric phenol is dissolved at 25° C. or lower in the presence of an organic solvent.

この反応によって得られる線状ポリカーボネートは、好
ましくは1,015〜1.200の相対粘度(塩8− 化メチレン溶媒を用いて、ポリマー濃度0.79/1o
ord1.、20℃で測定)を有するものである。低分
子吊線状ポリカーボネートの相対粘度が、1.015未
満では、構造粘性指数の高い分岐ポリカーボネートが得
難く、一方1.200を超える範囲では後の重縮合にお
いてゲル化し易い傾向になるので好ましくない。
The linear polycarbonate obtained by this reaction preferably has a relative viscosity of 1,015 to 1.200 (using a salt 8-methylene solvent and a polymer concentration of 0.79/10
ord1. , measured at 20°C). If the relative viscosity of the low-molecular suspended linear polycarbonate is less than 1.015, it is difficult to obtain a branched polycarbonate with a high structural viscosity index, whereas if it exceeds 1.200, it tends to gel easily in the subsequent polycondensation, which is not preferred.

かくし・て得られる低分子量の線状ポリカーボネートは
次いで多価フェノールと反応させるが、このものは上述
のように従来公知の方法で行なわれている1価フェノー
ルの共存下でホスゲンと反応させるのではなくて、1価
フェノールのみとホスゲンとの反応によって製造するの
で両末端に反応基を残すことができ、有利である。
The low-molecular-weight linear polycarbonate thus obtained is then reacted with polyhydric phenol, but this is different from reacting with phosgene in the coexistence of monohydric phenol using the previously known method as described above. Since it is produced by reacting only monohydric phenol with phosgene, it is possible to leave reactive groups at both ends, which is advantageous.

本発明においては、次いで上述の低分子量の線状ポリカ
ーボネートを含む反応混合液をそのまま或は水相の一部
を抜き取った残液に、3個以トの水酸基を有するベンゼ
ン環をその分子構造内5有する3価以上の多価フェノー
ルと1価フェノールをそのまま或は前記のアルカリ水溶
液または有機溶媒に溶解して添加し、反応させる。
In the present invention, a benzene ring having three or more hydroxyl groups is added to the reaction mixture containing the above-mentioned low molecular weight linear polycarbonate as it is or to the residual liquid after removing a part of the aqueous phase in its molecular structure. A polyhydric phenol having a valence of 5 or more and a monohydric phenol are added as they are or dissolved in the aqueous alkali solution or organic solvent and reacted.

本発明に用いられる3価以上の水酸基を有するベンゼン
環をその分子構造内に有する3価以上の多価フェノール
としては、例えばフロログルシン。
Examples of the trivalent or higher polyhydric phenol having a benzene ring having a trivalent or higher hydroxyl group in its molecular structure used in the present invention include phloroglucin.

フロログルシド、70プロピオン並びにそれらの誘導体
が挙げられる。これらは混合して用いても差支えない。
Examples include phlorogluside, 70 propion and derivatives thereof. These may be used in combination.

また、本発明に用いられる1価フェノールとしては、例
えばフェノール、C+〜C4のアルキル置換基を有する
アルキルフェノール類、特にp−クレゾール、p−[−
ブチルフェノールが挙げられる。これらはハロゲンで置
換されていてもよい。
Furthermore, examples of the monohydric phenol used in the present invention include phenol, alkylphenols having a C+ to C4 alkyl substituent, particularly p-cresol, p-[-
Butylphenol is mentioned. These may be substituted with halogen.

3個以上の水酸基を有するベンゼン環をその分子構造内
に有する3価以−ヒの多価フェノールの使用量は、2価
フェノールの使用量に基づいて、0.05〜1.5モル
%、好ましくは0.1〜1.0モル%である。また1価
フェノールの使用量は目的とする分岐ポリカーボネート
の平均分子量に対応して決められるが、通常2価フェノ
ールの使用量に基づいて0.5〜10モル%、更に好ま
しくは2〜7モル%である。該3価以上の多価フェノー
ル使用量が0.05モル%未満では分岐化反応が十分に
進まず、目的とする構造粘着指数Nの高い分岐ポリカー
ボネートは得られない。また、該3価以上の多価フェノ
ールの使用量が1.5モル%を超えると、ゲル化して溶
剤に不溶化する危険性が生ずる。ここで、該3価以上の
多価フェノールを反応上しめる際に共存する未反応の2
価フェノールの量は少ない方がよく、2価フェノールが
該3価以上の多価フェノールの水酸基1個当り、3モル
以下であり、2価フェノールが該3価以上の多価フェノ
ールの水酸基の1個当り3モルを超えて共存すると、該
3価以上の多価フェノールは低分子量ポリカーボネート
と反応し難くなり、従って目的とする構造粘性指数Nの
高い分岐ポリカーボネートは得られ難い。
The amount of trivalent or higher polyhydric phenol having a benzene ring having three or more hydroxyl groups in its molecular structure is 0.05 to 1.5 mol%, based on the amount of dihydric phenol used. Preferably it is 0.1 to 1.0 mol%. The amount of monohydric phenol used is determined depending on the average molecular weight of the target branched polycarbonate, but is usually 0.5 to 10 mol%, more preferably 2 to 7 mol%, based on the amount of dihydric phenol used. It is. If the amount of trihydric or higher polyhydric phenol used is less than 0.05 mol %, the branching reaction will not proceed sufficiently, and the desired branched polycarbonate with a high structural adhesion index N cannot be obtained. Furthermore, if the amount of the trivalent or higher polyhydric phenol used exceeds 1.5 mol %, there is a risk that it will gel and become insolubilized in the solvent. Here, when the polyhydric phenol having a valence of 3 or more is reacted, the coexisting unreacted 2
The smaller the amount of the hydric phenol, the less the dihydric phenol is 3 moles or less per hydroxyl group of the trivalent or higher polyhydric phenol; If more than 3 moles per individual coexist, the trihydric or higher polyhydric phenol will be difficult to react with the low molecular weight polycarbonate, and therefore it will be difficult to obtain the desired branched polycarbonate with a high structural viscosity index N.

この段階で、反応混合液中の有機溶媒相ど水相の体積比
は1 : 0,1〜1:1.2の範囲内にあることが好
ましい。その理由はあきらかでないが、この体積比が0
.1未満ではゲル化することが多く、−1+− また1、2を超えると該3価以上の多価フェノールが反
応しにくくなって、いずれも目的とするNの高い分岐ポ
リカーボネートを安定して製造することが難しい。
At this stage, the volume ratio of the organic solvent phase to the aqueous phase in the reaction mixture is preferably within the range of 1:0.1 to 1:1.2. The reason is not clear, but this volume ratio is 0
.. If it is less than 1, gelation will often occur, and if it exceeds -1+- or 1 or 2, the trihydric or higher polyhydric phenol will be difficult to react, and in either case, the desired branched polycarbonate with high N content cannot be stably produced. difficult to do.

次に、反応混合液に触媒を添加して、5〜20分間反応
を行なう。ここで使用される触媒は、第3級アミンまた
は第4級アンモニウム塩であって、具体的にはトリエチ
ルアミン、トリメチルドデシルベンジルアンモニウムク
ロリド、ジメチルベンジルフェニルアンモニウムクロリ
ド、トリメチルドデシルベンジルアンモニウムヒドロキ
シド等を例示することができる。その好ましい添加量は
前記の2価フェノールの全量に基づいて0.01〜1モ
ル%であり、更に好ましくは0.05〜0.5モル%で
ある。
Next, a catalyst is added to the reaction mixture and the reaction is carried out for 5 to 20 minutes. The catalyst used here is a tertiary amine or a quaternary ammonium salt, and specific examples include triethylamine, trimethyldodecylbenzylammonium chloride, dimethylbenzylphenylammonium chloride, trimethyldodecylbenzylammonium hydroxide, etc. be able to. The amount added is preferably 0.01 to 1 mol%, more preferably 0.05 to 0.5 mol%, based on the total amount of the dihydric phenol.

触媒を添加して5〜20分後に、反応混合液にアルカリ
水溶液を添加し、撹拌を継続して、重合を完結する。こ
こで使用するアルカリ水溶液は、用いた2価フェノール
全量に対して、10〜100モル%、好ましくは50〜
90モル%のカセイソーダを含12− み、そのアルカリ濃度は、1〜50重量%、好ましくは
10〜50重量%が適当である。アルカリの使用量が1
0モル%未満では重合反応が進み難い。またアルカリ濃
度が1重量%未満であると、乳化が不充分になって、重
合が進み難く、50重量%以上のアルカリ水溶液は取扱
い難いので、好ましくない。
5 to 20 minutes after adding the catalyst, an aqueous alkaline solution is added to the reaction mixture and stirring is continued to complete the polymerization. The alkaline aqueous solution used here is 10 to 100 mol%, preferably 50 to 100 mol%, based on the total amount of dihydric phenol used.
It contains 90 mol% of caustic soda, and its alkaline concentration is suitably 1 to 50% by weight, preferably 10 to 50% by weight. The amount of alkali used is 1
If it is less than 0 mol%, it is difficult for the polymerization reaction to proceed. Furthermore, if the alkali concentration is less than 1% by weight, emulsification will be insufficient and polymerization will be difficult to proceed, and an aqueous alkaline solution of 50% by weight or more will be difficult to handle, which is not preferred.

反応終了後の反応混合液の水相には、アルカリ金属の水
酸化物、炭酸塩、塩化物などの副生成物が多量に含まれ
ているので、これらを完全に除去することが好ましい。
Since the aqueous phase of the reaction mixture after completion of the reaction contains a large amount of by-products such as alkali metal hydroxides, carbonates, and chlorides, it is preferable to completely remove these by-products.

このために、反応混合液をそのまま、または有機溶剤で
希釈し、塩酸等の酸を加え酸性としたのち、必要に応じ
親水性の濾材で濾過を行ない、水相と有機相に分離し、
更に有機相は無機イオンが検出されなくなるまで充分に
水洗精製することが好ましい。水洗精製の終った有機相
から有機溶媒を除去すると固体の分岐ポリカーボネート
を得ることができる。
For this purpose, the reaction mixture is used as it is or diluted with an organic solvent, made acidic by adding an acid such as hydrochloric acid, and then filtered with a hydrophilic filter medium as necessary to separate it into an aqueous phase and an organic phase.
Further, it is preferable that the organic phase is thoroughly washed and purified with water until no inorganic ions are detected. A solid branched polycarbonate can be obtained by removing the organic solvent from the water-washed and purified organic phase.

[発明の効果] 本発明の製造方法によれば、従来の方法では反応し難か
った・、3個以上の水酸基を有するペンゼン環をその分
子構造内に有する3価以上の多価アルコールを分岐剤と
して用いても、高収率で、しかも溶媒不溶化の危険がな
く、Nが高く、かつ色相のよい分岐ポリカーボネ−1〜
を製造することができる。しかも、生成した分岐ポリカ
ーボネートの有機溶媒溶液の水洗にJ:る精製性がよい
ので、生産性に優れる利点がある。さらに、反応終了時
点での未反応のフェノール類が殆lυどないので、反応
収率がよく、排液処理工程への負荷が軽減される利点が
ある。
[Effects of the Invention] According to the production method of the present invention, a trihydric or higher polyhydric alcohol having a penzene ring having three or more hydroxyl groups in its molecular structure, which was difficult to react with in conventional methods, can be used as a branching agent. Even when used as a branched polycarbonate, it can be used in high yield without the risk of solvent insolubilization, has a high N content, and has a good color.
can be manufactured. Moreover, since the produced organic solvent solution of the branched polycarbonate can be washed with water, the purification property is good, so there is an advantage of excellent productivity. Furthermore, since there is almost no unreacted phenol at the end of the reaction, there is an advantage that the reaction yield is high and the load on the waste liquid treatment step is reduced.

更にまた本発明の1#遣方法で1qられた分岐ポリカー
ボネートは、高い非ニユートン流動性を示し、溶融加工
時にダレを生じ難いので、吹込成形、押出成形に好適に
用いられ、大型成形品に加工できる利点を有する。
Furthermore, the branched polycarbonate prepared by the 1# method of the present invention exhibits high non-Newtonian fluidity and does not easily sag during melt processing, so it can be suitably used for blow molding and extrusion molding, and can be processed into large molded products. It has the advantage of being able to

本発明の製造方法による製品のかかる特長は、両末端に
反応基を有する低分子量の線状ポリカーボネートへの該
3価以上の多価フェノールの付加反応と、高分子量化へ
の重縮合反応を分けて行い、目つ、高分子量化への重縮
合反応をアルカリ水溶液のみ添加することによって行う
ことによって初めて得られるものである。反応の詳細が
詳らかでない為に、これらの特長の発現理由の詳細は明
らかではないが、つぎのように推察しうる。すなわち、
低分子量の線状ポリカーボネートへの該3価以上の多価
フェノールの付加反応を特定の条件下で行うために、該
3価以上の多価フェノールの反応率が高くなり、また1
価フェノールと同時に反応せしめるために、分岐化する
が、網状化し封くなるので溶剤不溶化の危険性がなく、
Nの高い分岐ポリカーボネートが得られると推察される
。またその後でアルカリ水溶液を加えて、反応を完結せ
しめることによって、未反応のクロロホーメート末端基
と未反応OH基との反応を促し、クロロホーメート末端
がなくなり、且つ、未反応01−1基が殆lυどなくな
るので、分岐ポリカーボネート溶液の水洗精製性が優れ
、且つ未反応01−1基も少くなるので、得られたポリ
マーの色相がよくなるものと考えられる。
This feature of the product produced by the production method of the present invention is that the addition reaction of the trihydric or higher polyhydric phenol to the low molecular weight linear polycarbonate having reactive groups at both ends and the polycondensation reaction to increase the molecular weight are separated. First, it can only be obtained by carrying out the polycondensation reaction to increase the molecular weight by adding only an aqueous alkali solution. Since the details of the reaction are not clear, the details of the reason for the appearance of these features are not clear, but it can be inferred as follows. That is,
Since the addition reaction of the trihydric or higher polyhydric phenol to the low molecular weight linear polycarbonate is carried out under specific conditions, the reaction rate of the trivalent or higher polyhydric phenol increases, and
Because it is reacted at the same time as the phenol, it is branched, but it becomes reticulated and sealed, so there is no risk of solvent insolubilization.
It is presumed that a branched polycarbonate with a high N content can be obtained. Furthermore, by adding an aqueous alkali solution to complete the reaction, the reaction between the unreacted chloroformate end groups and the unreacted OH groups is promoted, and the chloroformate ends disappear and the unreacted 01-1 groups are removed. It is thought that since almost no lυ is eliminated, the branched polycarbonate solution has excellent water-washing purification properties, and the number of unreacted 01-1 groups is also reduced, resulting in a better hue of the obtained polymer.

[実施例] 15− 以下に、実施例によって本発明をさらに説明するが、本
発明はこれらに限定されるものでない。
[Example] 15- The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

なお、例中の特性は次の方法で測定した。In addition, the characteristics in the examples were measured by the following method.

[構造粘性指数Nの測定] 予備乾燥したポリカーボネートを、押出機(ゼネラル・
エレクトリック■製:モデルNo、 9T51Y106
)にて300℃で押出し、ペレット化した。
[Measurement of structural viscosity index N] The pre-dried polycarbonate was put into an extruder (General
Made by Electric ■: Model No. 9T51Y106
) and pelletized at 300°C.

該ペレットを乾燥後高化式フローテスター(島津製作所
■¥J)のシリンダーに入れ、280〜300℃の一定
温度での加えた圧力p(20〜1 eoig/ crl
 。
After drying, the pellets were placed in a cylinder of a Koka type flow tester (Shimadzu Corporation ■¥J), and the pressure p (20 to 1 eoig/crl) was applied at a constant temperature of 280 to 300°C.
.

5点)と夫々の溶融樹脂流動量Q (cffl/sec
 )を測定し、夫々の値を両対数グラフにプロットして
得られる回帰直線の勾配からNをめた。構造粘性指数N
は大きいはど非ニユートン流動性が大きく、吹込成形や
押出成形に適することを表わす。
5 points) and the respective molten resin flow rate Q (cffl/sec
), and N was calculated from the slope of the regression line obtained by plotting each value on a log-log graph. Structural viscosity index N
A large value indicates that the material has high non-Newtonian fluidity and is suitable for blow molding and extrusion molding.

[相対粘度の測定] 乾燥した試料o、yoogを塩化メチレン100m1!
に溶解し、オストワルド粘度計にて20℃で測定した。
[Measurement of relative viscosity] Dried samples o and yoog were mixed with 100ml of methylene chloride!
It was measured at 20°C using an Ostwald viscometer.

[未反応ビスフェノールAの定量] 反応混合液から水相1mlを分離し、希アルカリ16− 水溶液にて200〜1000倍に希釈後方光光度計(日
立製作所11製; 200−10型)を用い294nm
の吸光度Δを測定し、下記式(1)からビスフェノール
Aの量をめた。
[Quantification of unreacted bisphenol A] Separate 1 ml of the aqueous phase from the reaction mixture and dilute it 200 to 1000 times with a dilute alkali 16-aqueous solution at 294 nm using a backward photometer (manufactured by Hitachi, Ltd. 11; Model 200-10).
The absorbance Δ was measured, and the amount of bisphenol A was calculated from the following formula (1).

ビスフェノールA (g/旦) = 0.0455 A
・・・(1)[未反応フロログルシンの定量] 反応混合液から水相11dを分離し、希アルカリ水溶液
にて200倍に希釈後、分光光度計(」−記と同じ)を
用い348nmの吸光度Aを測定し、下記式(2)から
70口グルシンの母をめた。
Bisphenol A (g/day) = 0.0455 A
...(1) [Quantification of unreacted phloroglucin] Separate the aqueous phase 11d from the reaction mixture, dilute it 200 times with a dilute aqueous alkaline solution, and measure the absorbance at 348 nm using a spectrophotometer (same as in "-"). A was measured, and the mother of 70 glucins was calculated from the following formula (2).

70口グルシン(g/旦) = 0.0191 A・・
・・・・(2)[未反応フロログルシドの定量] 反応混合液から水相1dを分制し、希アルカリ水溶液に
て200倍に希釈後、分光光度計(上記と同じ)を用い
357nmの吸光度Aを測定し、下記式(3)から70
口グルシドの量をめた。
70 glucine (g/day) = 0.0191 A...
...(2) [Quantification of unreacted phloroglucide] Separate 1d of the aqueous phase from the reaction mixture, dilute it 200 times with a dilute alkali aqueous solution, and measure the absorbance at 357 nm using a spectrophotometer (same as above). Measure A and use the following formula (3) to calculate 70
I increased the amount of oral glucide.

フロログルシド(g/交) = 0.0303 A+ 0.000015・・・・・
・(3)[未反応ビス(2,4−ジヒドロキシフェニル
)ケトンの定量] 反応混合液から水相1 mQを分離し、希アルカリ水溶
液にて200倍に希釈後、分光光度計(上記)を用い3
23nmの吸光度Aを測定し、下記式(4)からビス(
2,4−ジヒドロキシフェニル)ケトンの量をめた。
Phlorogluside (g/cross) = 0.0303 A+ 0.000015...
・(3) [Quantification of unreacted bis(2,4-dihydroxyphenyl)ketone] Separate 1 mQ of the aqueous phase from the reaction mixture, dilute it 200 times with a dilute aqueous alkali solution, and measure it using a spectrophotometer (above). Use 3
The absorbance A at 23 nm was measured, and bis(
The amount of 2,4-dihydroxyphenyl)ketone was measured.

ビス(2,4−ジヒドロキシフェニル)ケ1〜ン(σ/
ρ) = 0.0148 A + 0.00007・・
・・・・・・・(4)[精製性の評価] 反応混合液に塩化メチレンを加えて、ポリカーボネート
の濃度が7重量%になるように希釈したのち、有機相と
水相に分1Ilt L、た。この有機相1.5塁に0.
01 Nの塩酸0.5すを加えて十分に混合したのち静
置分離した。つぎに水洗を行なった。すなわち、上記有
機相に1.F+JJの純水を加えて十分に混合したのち
、濾紙(東洋濾紙謹製、訂正濾紙N0.2)で濾過して
静置分離した。更に、水洗排水中の塩化イオンが硝酸銀
によって検出されなくなるまで、同様な操作で水洗をく
り返した。精製性は該水洗の回数が少ないほど良好であ
ることを表わす。
Bis(2,4-dihydroxyphenyl)keyne (σ/
ρ) = 0.0148 A + 0.00007...
・・・・・・・・・(4) [Evaluation of purification property] Add methylene chloride to the reaction mixture and dilute it so that the concentration of polycarbonate is 7% by weight, and then divide the mixture into an organic phase and an aqueous phase by 1 Ilt L. ,Ta. 0.0 to 1.5 bases of this organic phase.
After adding 0.5 liters of 0.1N hydrochloric acid and thoroughly mixing, the mixture was allowed to stand for separation. Next, I washed it with water. That is, 1. After adding pure water of F+JJ and thoroughly mixing, the mixture was filtered through a filter paper (manufactured by Toyo Roshi Co., Ltd., corrected filter paper N0.2) and separated by standing. Furthermore, water washing was repeated in the same manner until chloride ions in the washing wastewater were no longer detected by silver nitrate. The smaller the number of water washings, the better the purification performance.

19− [色相の評価] 得られたポリカーボネートパウダーを280°Cの温度
でベント式押出IM(30sφ)にて2〜3 mmφ×
2〜3 mm長さのペレット状にした後、日用アンカー
V−17El’l出成形機にて、320℃で5cm×7
cm X 2 mmの見本板に成形した。この見本板を
スガ試験機■製デジタル測色色差計にて、色相を測定し
た。色相は、L(明るさ)、a(赤味)、b(黄味)で
表わされ、b値が大きいもの程黄味が強いことを示す。
19- [Evaluation of Hue] The obtained polycarbonate powder was heated to a temperature of 280°C using vented extrusion IM (30sφ) to form 2 to 3 mmφ×
After making it into pellets with a length of 2 to 3 mm, it was made into 5 cm x 7 pieces at 320°C using a daily anchor V-17El'l extrusion molding machine.
It was molded into a sample plate measuring cm x 2 mm. The hue of this sample plate was measured using a digital colorimeter made by Suga Test Instruments ■. Hue is expressed by L (brightness), a (reddish), and b (yellowish), and the larger the b value, the stronger the yellowishness.

従ってb値の小さいもの程好ましい。色相の比較には、
このb値を用いた。
Therefore, the smaller the b value, the more preferable it is. To compare hues,
This b value was used.

実施例1 ホスゲン吹込管、温度計及びかきまぜ機をとりつりだ2
夏三ツロフラスコに、ビスフェノールA114g(0,
5モル)を溶解した12.3%Na0)−1水溶液39
4 meと塩化メチレン378 mQを入れ、かきまぜ
ながら20〜25℃でホスゲン69.37 (0,7モ
ル)を約40分を要して導入し、オリゴマーを生成せし
めた。反応混合液中の未反応ビスフェノールΔは4.1
09 (0,0180モル)であり、生成オリゴマーり
凸− 一の相対粘度は1,098であった。
Example 1 A phosgene blowing pipe, a thermometer and a stirrer were installed 2
In a summer Mitsuro flask, add 114 g of bisphenol A (0,
12.3% Na0)-1 aqueous solution 39
4 me and 378 mQ of methylene chloride were added, and while stirring, 69.37 (0.7 mol) of phosgene was introduced at 20 to 25°C over about 40 minutes to produce oligomers. Unreacted bisphenol Δ in the reaction mixture is 4.1
09 (0,0180 mol), and the relative viscosity of the oligomer produced was 1,098.

このオリゴマー反応混合液にp−t−ブチルフェノール
3.15 g(0,021モル)とフロログルシン0.
38 (J (0,003モル)を溶解した10%Na
OH水溶液5 mQを加え、5分間かきまぜたのち、ト
リエチルアミン0.239 (0,0023モル)を加
え、10分間かきまぜて、フロログルシンを反応せしめ
た。然ル41.12g(0,3モル)のNaOHを溶解
した水溶液16d (24,3g)を加え40分間かき
まぜを続けて、反応を完結せしめた。
To this oligomer reaction mixture, 3.15 g (0,021 mol) of pt-butylphenol and 0.0 g of phloroglucin were added.
38 (J (0,003 mol) dissolved in 10% Na
After adding 5 mQ of OH aqueous solution and stirring for 5 minutes, 0.239 (0,0023 mol) of triethylamine was added and stirring for 10 minutes to react with phloroglucin. An aqueous solution 16d (24.3 g) in which 41.12 g (0.3 mol) of NaOH was dissolved was added and stirring was continued for 40 minutes to complete the reaction.

反応終了後の未反応フロログルシン量は0.043であ
った。反応混合液から塩化メチレン相を分離し、精製性
の評価方法に従って、水洗精製したところ、水洗は4回
を要した。精製後、塩化メチレンを蒸発して、ポリマー
を回収した。生成ポリマーの相対粘度は1,450.構
造粘性指数は1.75 。
The amount of unreacted phloroglucin after the completion of the reaction was 0.043. When the methylene chloride phase was separated from the reaction mixture and purified by washing with water according to the purification evaluation method, four washings with water were required. After purification, the methylene chloride was evaporated and the polymer was recovered. The relative viscosity of the resulting polymer was 1,450. The structural viscosity index is 1.75.

b値は5.4であった。The b value was 5.4.

実施例2 ホスゲン吹込管、温度計及びかきまぜ機をとりつけた2
旦三ツロフラスコに、ビスフェノールA−2り一 114g(0,5−Eル)を溶解した12,3%NaO
H水溶液394dと塩化メチレン378威を入れ、かき
まぜながら20〜25℃でホスゲン69.3g(0,7
モル)を約40分を要して導入し、オリゴマーを生成せ
しめた。反応混合液中の未反応ビスフェノールAは4.
02 g(0,0176モル)であり、生成オリゴマー
の相対粘度は1.09であった。
Example 2 2 equipped with phosgene blowing pipe, thermometer and stirrer
12.3% NaO in which 114 g (0.5-El) of bisphenol A-2 was dissolved in a Danmitsuro flask.
Add 394 d of H aqueous solution and 378 ml of methylene chloride, and add 69.3 g of phosgene (0.7
mol) was introduced over a period of about 40 minutes to generate oligomers. Unreacted bisphenol A in the reaction mixture is 4.
02 g (0,0176 mol), and the relative viscosity of the produced oligomer was 1.09.

このオリゴマー反応混合液にフェノール1.979 (
0,021モル)とフロログルシン0.51 g(0,
004モル)を溶解した10%NaOH水溶液7mQを
加え、5分間かきまぜたのち、トリエチルアミン0.2
3 g(0,0023モル)を加え、10分間かきまぜ
て、フロログルシンを反応せしめた。然る後、16g(
0,4モル)のNa OHを溶解した水溶液45d (
62g)を加え40分間かきまぜを続けて、反応を完結
せしめた。
This oligomer reaction mixture contains phenol 1.979 (
0,021 mol) and phloroglucin 0.51 g (0,
After adding 7 mQ of a 10% NaOH aqueous solution containing 0.004 mol) of triethylamine and stirring for 5 minutes, 0.2 mol of triethylamine was added.
3 g (0,0023 mol) was added and stirred for 10 minutes to react with phloroglucin. After that, 16g (
0.4 mol) of NaOH dissolved in an aqueous solution 45d (
62 g) was added and stirring was continued for 40 minutes to complete the reaction.

反応終了後の未反応フロログルシンの量は0.03 g
であった。反応混合液から塩化メチレン相を分離し、精
製性の評価方法に従って、水洗精製したところ、水洗は
4回を要した。生成ポリマ−の相対粘度は1.485で
あり、この構造粘性指数は1.84であり、b値は5.
8であった。
The amount of unreacted phloroglucin after the reaction was completed was 0.03 g.
Met. When the methylene chloride phase was separated from the reaction mixture and purified by washing with water according to the purification evaluation method, four washings with water were required. The resulting polymer has a relative viscosity of 1.485, a structural viscosity index of 1.84, and a b value of 5.
It was 8.

実施例3 ホスゲン吹込管、温度計及びかきまぜ機をとりつけた2
川三ツロフラスコに、ビスフェノールA114!7(0
,5モル)を溶解した8、6%Na OH水溶液603
蛇と塩化メチレン378dを入れ、かきまぜながら20
〜25℃でホスゲン56.3g(0,57モル)を約4
0分を要して導入し、オリゴマーを生成せしめた。反応
混合液中の未反応ビスフェノールAは12.89 (0
,0561モル)であり、生成オリゴマーの相対粘度は
1,104であった。
Example 3 2 equipped with phosgene blowing pipe, thermometer and stirrer
Bisphenol A114!7 (0
, 5 mol) dissolved in 8.6% NaOH aqueous solution 603
Add the snake and 378d of methylene chloride, stirring for 20 minutes.
56.3 g (0.57 mol) of phosgene at ~25°C
The introduction took 0 minutes to generate oligomers. The amount of unreacted bisphenol A in the reaction mixture was 12.89 (0
,0561 mol), and the relative viscosity of the oligomer produced was 1,104.

このオリゴマー反応混合液から水相422 mQを分離
し、残りの反応混合液(ビスフェノールA3.83 g
 (0,0168モル)含有)にp−t−ブチルフェノ
ール3.38 g (0,0235モル)とフロログル
シド0.28 g(0,0012モル)を溶解した10
%Na0l−1水溶液4dを加え、5分間かきまぜたの
ち、トリエチルアミン0.15 ’;l (0,001
5モル)を加え、10分間かきまぜて、フロログルシド
を反応せしめた。然る後、12g(0,3モル)のNa
OHを溶解した水溶液50me (63g)を加え40
分間かきまぜを続けて、反応を完結せしめた。
422 mQ of aqueous phase was separated from this oligomer reaction mixture, and the remaining reaction mixture (3.83 g of bisphenol A
(0,0168 mol) containing 3.38 g (0,0235 mol) of pt-butylphenol and 0.28 g (0,0012 mol) of phlorogluside dissolved in 10
% Na0l-1 aqueous solution was added, and after stirring for 5 minutes, triethylamine 0.15';l (0,001
5 mol) was added and stirred for 10 minutes to react with phlorogluside. After that, 12 g (0.3 mol) of Na
Add 50me (63g) of an aqueous solution containing OH and mix for 40 minutes.
Stirring was continued for a minute to complete the reaction.

反応終了後の未反応フロログルシドの最はo、oi g
であった。反応混合液から塩化メチレン相を分離し、精
製性の評価方法に従って水洗精製したところ、水洗は4
回を要した。生成ポリマーの相対粘度は1.372であ
り、この構造粘性指数Nは1.64であり、b値は5.
3であった。
After the reaction is complete, the remaining unreacted phloroglucide is o, oi g.
Met. The methylene chloride phase was separated from the reaction mixture and purified by water washing according to the purification evaluation method.
It took several times. The relative viscosity of the produced polymer is 1.372, its structural viscosity index N is 1.64, and the b value is 5.
It was 3.

比較例1 ホスゲン吹込管、温度計及びかきまぜ機をとりつけた2
旦三ツロフラスコに、ビスフェノールA114f# (
0,5モル)とフロログルシン0.76 g(0,00
6モル)を溶解した8、6%Na OH水溶液6111
ft!どp−t−ブチルフェノール3.38 g(0,
0225モル)を溶解した塩化メチレン378 m(1
を入れ、かきまぜながら20〜25℃でホスゲン56.
3g(0,57モル)を約40分を要し導入したのち、
トリエチルアミン0.19 g(0,0019モル)を
加え、50分間かきまぜを続は反応せしめた。
Comparative example 1 2 equipped with phosgene blowing pipe, thermometer and stirrer
Bisphenol A114f# (
0.5 mol) and phloroglucin 0.76 g (0.00
8.6% NaOH aqueous solution 6111 containing 6 mol)
ft! 3.38 g (0,
0225 mol) of methylene chloride dissolved in 378 m (1
of phosgene at 20-25°C while stirring.
After introducing 3 g (0.57 mol) over a period of about 40 minutes,
0.19 g (0,0019 mol) of triethylamine was added, and the mixture was stirred for 50 minutes, followed by reaction.

23− 反応終了後の未反応フロログルシンの量は0.75 g
であり、フロログルシンはほとんど反応していなかった
。反応混合液から塩化メチレン相を分離し、精製性の評
価方法に従って水洗したところ、水洗は5回を要した。
23- The amount of unreacted phloroglucin after the reaction is 0.75 g.
There was almost no reaction with phloroglucin. When the methylene chloride phase was separated from the reaction mixture and washed with water according to the purification evaluation method, the water washing required 5 times.

生成ポリマーの相対粘度は1.419であり、この構造
粘性指数Nは1.30であった。
The relative viscosity of the produced polymer was 1.419, and its structural viscosity index N was 1.30.

比較例2 ホスゲン吹込管、温度計及びかきまぜ機を取りつけた2
夏三ツロフラスコに、ビスフェノールA114g(0,
5モル)を溶解した12.3%NaOト1水溶液394
dと塩化メチレン378dを入れ、かきまぜながら20
〜25℃でホスゲン69.5g(0,,7モル)を約4
0分を要して導入し、オリゴマーを生成せしめた。反応
混合液中のビスフェノールAは4.0g(0,0176
モル)であり、生成オリゴマーの相対粘度は1,099
であった。
Comparative Example 2 2 with a phosgene blowing pipe, thermometer and stirrer installed
In a summer Mitsuro flask, add 114 g of bisphenol A (0,
12.3% NaO 1 aqueous solution 394
Add 378 d of methylene chloride and 20 d of methylene chloride while stirring.
69.5 g (0.7 mol) of phosgene at ~25°C
The introduction took 0 minutes to generate oligomers. Bisphenol A in the reaction mixture was 4.0g (0,0176
mole), and the relative viscosity of the oligomer produced is 1,099
Met.

このオリゴマー反応混合液にp−t−ブチルフェノール
3.15 g(0,021モル)と70口グルシン0.
38 Ij(0,003モル)を溶解した10%NaO
24− ]」水溶液5#112を加え、5分間かきまぜた後、ト
リエチルアミン0.23 g(0,0023モル)を加
え、10分間かきまぜてフロログルシンを反応せしめた
To this oligomer reaction mixture were added 3.15 g (0,021 mol) of pt-butylphenol and 0.7 g of glucine.
10% NaO in which 38 Ij (0,003 mol) was dissolved
24-]'' aqueous solution 5#112 was added and stirred for 5 minutes, then 0.23 g (0,0023 mol) of triethylamine was added and stirred for 10 minutes to react with phloroglucin.

然る後、i、ag(0,045モル)のNa01」を溶
解した水溶液50d! <52.3g)を加え、40分
間かきまぜを続けて反応を終了した。
After that, 50 d of an aqueous solution containing ``i, ag (0,045 mol) of Na01'' was dissolved! <52.3 g) was added and stirring was continued for 40 minutes to complete the reaction.

反応終了後の未反応フロログルシン量は01OS9であ
った。反応混合液から塩化メチレン相を分離し、精製性
の評価方法に従って、水洗精製したところ、水洗は8回
を要した。精製後場化メチレンを蒸発して、ポリマーを
回収した。生成ポリマーの相対粘度は1.225と小さ
く、分子量があまり伸びかった。
The amount of unreacted phloroglucin after the completion of the reaction was 01OS9. The methylene chloride phase was separated from the reaction mixture and purified by washing with water according to the purification evaluation method, and the washing with water required 8 times. After purification, the in-situ methylene was evaporated to recover the polymer. The relative viscosity of the produced polymer was as low as 1.225, and the molecular weight was not very increased.

特許出願人 帝 人 化 成 株 式 会 社手 続 
補 正 書 昭和59年段月−炸 特許庁長官殿 1、事件の表示 特願昭 59− 16949 号 2、発明の名称 分岐ポリカーボネートの製造方法 3、補正をする者 事件との関係 特許出願人 代表者 山 崎 芳 樹 連絡先 (506)4481 5、補正の対象 (1)明細書の第15頁第1〜2行に「多価アルコール
」とあるな「多価フェノール」に訂正する。
Patent applicant Teijin Kasei Co., Ltd. Company procedures
Amendment Written by Dangetsu, 1980 - Mr. Han, Commissioner of the Japan Patent Office 1, Indication of the case, Patent Application No. 16949, No. 16949, 2, Name of the invention, Process for producing branched polycarbonate 3, Person making the amendment Relationship with the case Representative of the patent applicant Person Yoshiki Yamazaki Contact information (506) 4481 5. Subject of amendment (1) In the 15th page, lines 1-2 of the specification, "polyhydric alcohol" should be corrected to "polyhydric phenol."

(2) 同第18頁下から2行目乃至第19頁第7行に
[〔未反応ガス・・・・・・・・・・・・(4)」とあ
るを削除する。
(2) From the second line from the bottom of page 18 to the seventh line of page 19, delete the text ``[Unreacted gas......(4)]''.

(31同第22負第7行にr 1.09 Jとあるを「
1.099 Jに訂正する。
(31, 22nd negative line 7 says r 1.09 J.
Corrected to 1.099 J.

以 上 2−that's all 2-

Claims (1)

【特許請求の範囲】[Claims] 2価フェノールのアルカリ水溶液とホスゲンとを有機溶
媒の存在下に反応せしめて得られる低分子量の線状ポリ
カーボネートに、まず3価以上の多価フェノールと1価
フェノールとを加えて反応せしめ、ついで、アルカリ水
溶液を加えて反応を完結せしめる分岐ポリカーボネート
の製造一方法に於いて、該3価以上の多価フェノールと
して3個以上の水酸基を有するベンゼン環をその分子構
造内に有する多価フェノールを使用し、その量が、2価
フェノールの全量に基づいて、0.05〜1.5モル%
であり、且つ該3価以上の多価フェノールの添加時にお
ける未反応の2価フェノールが、該3価以上の多価フェ
ノールの水酸基1個当り、3モル以下であり、且つ反応
混合液を構成する有機相と水相の体積比が1:0.1〜
1:1.2であり、またついで加えるアルカリ水溶液が
、用いた2価フェノールの全量に対して10〜100モ
ル%であり、該アルカリ濃度が1〜50重量%であるこ
とを特徴とする分岐ポリカーボネートの製造方法。
A low molecular weight linear polycarbonate obtained by reacting an alkaline aqueous solution of dihydric phenol with phosgene in the presence of an organic solvent is first reacted with a trivalent or higher polyhydric phenol and a monohydric phenol, and then, In one method for producing branched polycarbonate in which the reaction is completed by adding an alkaline aqueous solution, a polyhydric phenol having a benzene ring having three or more hydroxyl groups in its molecular structure is used as the trivalent or higher polyhydric phenol. , the amount of which is 0.05 to 1.5 mol% based on the total amount of dihydric phenol.
and the amount of unreacted dihydric phenol at the time of addition of the trihydric or higher polyhydric phenol is 3 moles or less per hydroxyl group of the trivalent or higher polyhydric phenol, and constitutes the reaction mixture. The volume ratio of organic phase and aqueous phase is 1:0.1~
1:1.2, and the alkaline aqueous solution subsequently added is 10 to 100 mol% based on the total amount of dihydric phenol used, and the alkali concentration is 1 to 50% by weight. Method of manufacturing polycarbonate.
JP1694984A 1984-02-03 1984-02-03 Method for manufacturing branched polycarbonate Granted JPS60163919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1694984A JPS60163919A (en) 1984-02-03 1984-02-03 Method for manufacturing branched polycarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1694984A JPS60163919A (en) 1984-02-03 1984-02-03 Method for manufacturing branched polycarbonate

Publications (2)

Publication Number Publication Date
JPS60163919A true JPS60163919A (en) 1985-08-26
JPH0469178B2 JPH0469178B2 (en) 1992-11-05

Family

ID=11930375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1694984A Granted JPS60163919A (en) 1984-02-03 1984-02-03 Method for manufacturing branched polycarbonate

Country Status (1)

Country Link
JP (1) JPS60163919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103228A (en) * 1988-09-06 1990-04-16 Idemitsu Petrochem Co Ltd Branched polycarbonate and production thereof
EP0378858A2 (en) * 1989-01-17 1990-07-25 General Electric Company Process for the preparation of branched thermoplastic polycarbonates
EP0387714A2 (en) * 1989-03-14 1990-09-19 Idemitsu Petrochemical Co., Ltd. Process for production of branched polycarbonate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103228A (en) * 1988-09-06 1990-04-16 Idemitsu Petrochem Co Ltd Branched polycarbonate and production thereof
EP0378858A2 (en) * 1989-01-17 1990-07-25 General Electric Company Process for the preparation of branched thermoplastic polycarbonates
EP0387714A2 (en) * 1989-03-14 1990-09-19 Idemitsu Petrochemical Co., Ltd. Process for production of branched polycarbonate
EP0387714A3 (en) * 1989-03-14 1991-10-30 Idemitsu Petrochemical Co., Ltd. Process for production of branched polycarbonate

Also Published As

Publication number Publication date
JPH0469178B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
US4605731A (en) Method for preparing linear polycarbonate from cyclic oligomer with aryl carbanion generating catalyst
EP0162379A1 (en) Cyclic polycarbonate oligomers and methods for their preparation and use
EP0028353B2 (en) Process for producing an aromatic polyesterpolycarbonate
JPS6210541B2 (en)
WO1990002769A1 (en) Branched polycarbonate and process for its production
US4294953A (en) Process for preparing a branched polycarbonate
JPS60163919A (en) Method for manufacturing branched polycarbonate
CN108368254B (en) Aromatic polysulfone resin and method for producing the same
JP4571395B2 (en) Process for obtaining aromatic dihydroxy compounds from waste aromatic polycarbonates
JPS5947228A (en) Method for manufacturing branched polycarbonate
JP2002037872A (en) Method of producing raw material for polycarbonate resin and method of producing polycarbonate resin
KR100449063B1 (en) Process for producing polycarbonate resin with high flowability
JPH03182524A (en) Branched polycarbonate and its production
WO2001066616A1 (en) Processes for producing raw polycarbonate resin material and producing polycarbonate resin
US6288204B1 (en) Branched polycarbonate resin and process for producing the same
JP3544294B2 (en) Polycarbonate resin with low volatile chlorine and method for producing the same
JP2005162674A (en) Process for obtaining aromatic dihydroxy compounds from waste aromatic polycarbonates
JP2968402B2 (en) Manufacturing method of carbonate type flame retardant
CN1712450B (en) Thermally stable polycarbonate compositions
JPH0315658B2 (en)
JP4571414B2 (en) Method for storing alkaline aqueous solution of aromatic dihydroxy compound obtained by decomposition of waste aromatic polycarbonate resin
JP3962883B2 (en) Method for producing high fluidity polycarbonate resin
US4755586A (en) Method for preparing crosslinkable polycyclic polycarbonate oligomer compositions with suppression of aqueous emulsion formation
JP2005179505A (en) Method for obtaining alkaline aqueous solution of aromatic dihydroxy compound from waste aromatic polycarbonate resin
JPH05262871A (en) Production of aromatic polycarbonate