JPS60161673A - Nonvolatile semiconductor memory - Google Patents
Nonvolatile semiconductor memoryInfo
- Publication number
- JPS60161673A JPS60161673A JP59016027A JP1602784A JPS60161673A JP S60161673 A JPS60161673 A JP S60161673A JP 59016027 A JP59016027 A JP 59016027A JP 1602784 A JP1602784 A JP 1602784A JP S60161673 A JPS60161673 A JP S60161673A
- Authority
- JP
- Japan
- Prior art keywords
- floating gate
- electrodes
- electrode
- insulating film
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は浮遊ゲートを有する不揮発性半導体メモリに係
り、特に電気的に選択的に消去可食ヒな不揮発性メモリ
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a nonvolatile semiconductor memory having a floating gate, and more particularly to an electrically selectively erasable nonvolatile memory.
従来、浮遊ゲートを有する半導体不揮発性言己憶素子は
、電気的に外部と絶縁された浮遊ゲートとその上部に制
御ゲートを有するMO8型電界効果トランジスタにより
形成されていた。Conventionally, a semiconductor nonvolatile memory element having a floating gate has been formed by an MO8 field effect transistor having a floating gate electrically insulated from the outside and a control gate above the floating gate.
第1図は従来用いられている浮遊ゲートを有する不揮発
性記憶素子の構造を示している。FIG. 1 shows the structure of a conventionally used nonvolatile memory element having a floating gate.
第1図(a)は素子の平面図%(b)は前記第1図(a
)のセルをマトリクス状に配置した場合の平面図、(C
)はA −AIの断面図を示している。基本的には、絶
縁された浮遊ゲート(1)及び、制御ゲート(21、(
9)及び書き換え電極(4)(ソース)をもつMOS
型電界効果型トランジスタである。その書込み(消去)
は制御ゲート(2) 、 (9)高(低)電位、書き換
え電極(4)を低(高)電位に印加し、高(低)電位と
なった浮遊ゲート(1)に電子を注入する(抜き去る)
事により行なわれる。FIG. 1(a) is a plan view of the element.(b) is a plan view of the device.
) is a plan view when the cells of (C) are arranged in a matrix.
) shows a cross-sectional view of A-AI. Basically, an insulated floating gate (1) and a control gate (21, (
9) and MOS with rewriting electrode (4) (source)
It is a type field effect transistor. Writing (erasing)
applies a high (low) potential to the control gates (2) and (9) and a low (high) potential to the rewrite electrode (4), and injects electrons into the floating gate (1), which has become at a high (low) potential ( remove)
It is done depending on the situation.
首だ読み出しは、制御ゲート(2)とドレイン(3)に
適当な電位を印加し、浮遊ゲートへの電子の注入の有無
によってチャンネルに電流が流れるか否かによって行な
う。しかし、素子の書き込み/消去特性は、トンネル電
流が流れる薄い絶縁膜領域Hの大きさのバラツキにより
大きく変化し、メモリセルの特性にバラツキが生じ、誤
1き込み/誤消去の原因となってbた。第1図(a)の
様なセル構造を得るためには、例えば第2図(a)で示
すように少々くとも薄い絶縁膜を形成する領域QυのS
i基板を通常の写真食刻法によシ露出させ、ことに薄い
絶縁膜(ここでは熱酸化膜)を形成する方法がある。The edge readout is performed by applying an appropriate potential to the control gate (2) and drain (3) and determining whether or not a current flows through the channel depending on whether or not electrons are injected into the floating gate. However, the write/erase characteristics of the device change greatly due to variations in the size of the thin insulating film region H through which the tunnel current flows, causing variations in the characteristics of the memory cell and causing erroneous writes/erases. b. In order to obtain the cell structure as shown in Fig. 1(a), for example, as shown in Fig. 2(a), the S
There is a method in which the i-substrate is exposed by ordinary photolithography and a particularly thin insulating film (here, a thermal oxide film) is formed.
ところが、メモリセルマトリックスを構成した場合を考
えると、第2図(a)でX、Y方向に例えば0.5μm
程度レジストマスクがずれると、薄い酸化膜が形成され
る領域は、斜線部領域(2湯となり。However, if we consider the case of configuring a memory cell matrix, for example, 0.5 μm in the X and Y directions in FIG. 2(a).
If the resist mask is shifted to some extent, the area where a thin oxide film is formed will be the shaded area (2 points).
セルマトリックスのY方向においては薄い酸化膜領域の
面積は2種類存在する事になり各セルの素子特性のバラ
ツキが大きくなっていた。In the Y direction of the cell matrix, there are two types of areas of the thin oxide film regions, resulting in large variations in the device characteristics of each cell.
さらにまた、従来の薄い絶縁膜領域の大きさがバラツク
ことによる素子特性のバラツキを抑えるために第2図(
b)の様な構造も提案されている。すなわち、薄い絶縁
膜領域が、素子間分離用の厚い絶縁膜(フィールド酸化
膜)に隔てられて形成され、前記薄い絶縁膜領域と素子
分離用の厚い絶縁膜を隔てる領域は前記薄い絶縁膜より
も膜厚の大であることを特徴とする構造である。(特願
昭57−29914和田)
しかし、この場合もまた、第2図(a)と同じくレジス
トマスクの合わせズレによる薄い絶縁膜領域の面積のバ
ラツキが起こる。このバラツキを小さくする為にフィー
ルド酸化膜と薄い絶縁膜の間隔(マージン)を広げると
素子の集積度が劣化しするという問題が発生する。Furthermore, in order to suppress the variation in device characteristics due to the variation in the size of the conventional thin insulating film region, the
A structure like b) has also been proposed. That is, a thin insulating film region is formed separated by a thick insulating film (field oxide film) for element isolation, and a region separating the thin insulating film region and the thick insulating film for element isolation is larger than the thin insulating film. This structure is characterized by a large film thickness. (Japanese Patent Application No. 57-29914 Wada) However, in this case as well, variations in the area of the thin insulating film region occur due to misalignment of the resist mask, as in FIG. 2(a). If the distance (margin) between the field oxide film and the thin insulating film is increased in order to reduce this variation, a problem arises in that the degree of integration of the device deteriorates.
さらにまた、素子の書き替えは薄い酸化膜の領域が小さ
いほど早く行なうことが可能であるが、薄い酸化膜の形
成される領域は、リソグラフィーの限界によって決まり
、リソグラフィーの限界より小さくできないという問題
があった。Furthermore, the smaller the region of the thin oxide film, the faster the element can be rewritten, but the region where the thin oxide film is formed is determined by the limits of lithography, and there is a problem that it cannot be made smaller than the limit of lithography. there were.
本発明は上記の点に鑑みてなされたもので、電気的かつ
選択的に書き替え可能で、かつ素子特性のバラツキの少
なく、かつ素子特性が著しく向上する不揮発性半導体メ
モリを提供する事を目的としている。The present invention has been made in view of the above points, and an object of the present invention is to provide a nonvolatile semiconductor memory that can be electrically and selectively rewritten, has less variation in element characteristics, and has significantly improved element characteristics. It is said that
本発明は浮遊ゲートと容量結合する第1乃至第3の電極
を具備し、うち1つの電極は全メモリセルで同電位であ
シ第1乃至第3の電極のうち制御電極である2つの電極
に高(低)電位、書き換え電極である他の電極に低(高
)電位が与えられたセルのみその浮遊ゲートが高(低)
電位となり前記他の電極との間で電荷の授受が為れる事
で、電気的かつ選択的に記憶内容の書き換えが行なわれ
るようにした不揮発性半導体メモリにおいて電荷の授受
を行なう書き換え電極と浮遊ゲートとの間の薄い絶縁膜
領域が素子分離用の厚い絶縁膜と少なくとも2つの異な
る領域で境界を接している如く形成されかつ少なくとも
1つの領域で前記浮遊ゲートと境界が一致する如く形成
された事を特徴としている。The present invention comprises first to third electrodes that are capacitively coupled to the floating gate, one of which has the same potential in all memory cells, and two of the first to third electrodes that are control electrodes. Only cells with high (low) potential and low (high) potential applied to other electrodes, which are rewriting electrodes, have their floating gates high (low).
A rewrite electrode and a floating gate that exchange charges in a non-volatile semiconductor memory in which memory contents are electrically and selectively rewritten by becoming a potential and exchanging electric charges with the other electrode. The thin insulating film region between the thin insulating film and the thin insulating film for element isolation is formed so as to be in contact with the thick insulating film for element isolation in at least two different regions, and the boundary is formed to coincide with the floating gate in at least one region. It is characterized by
本発明では、電荷の授受を行なうトンネル電流の流れる
薄い絶縁膜領域の大きさを素子間のバラツキを小さくし
て形成できると共にこの領域の大きさをリソグラフィー
の限界より著しく小さく出来るため、特性のすぐれた不
揮発性半導体記憶装置を提供できる。In the present invention, the size of the thin insulating film region through which the tunnel current that transfers charge flows can be formed with less variation between devices, and the size of this region can be made significantly smaller than the limit of lithography, resulting in excellent characteristics. A nonvolatile semiconductor memory device can be provided.
第3図は本発明による不揮発性メモリの一実施例につい
てそのメモリセル構造を示すもので、第3図(a)は素
子の平面図、(b)はA −A’断面図、 (C) 。FIG. 3 shows the memory cell structure of an embodiment of the nonvolatile memory according to the present invention, in which FIG. 3(a) is a plan view of the device, FIG. .
(d)は本発明によシミ荷の授受を行なうトンネル電流
の流れる薄い酸化膜領域の大きさのバラツキを小さくし
、素子間のバラツキを小さくできることと、薄い酸化膜
領域の中で、電荷の授受の行なわれる領域が薄い酸化膜
領域全体ではなく、さらに小さい領域であることを説明
するための図である。(d) The present invention can reduce variations in the size of the thin oxide film region through which the tunnel current that transfers stain charges flows, thereby reducing the variation between devices. FIG. 7 is a diagram for explaining that the region where transfer is performed is not the entire thin oxide film region but a smaller region.
メモリセルは、絶縁された浮遊ゲートc11)と第1の
電極即ち第1の制御ゲート(至)、第2の電極即ち第2
の制御ゲート(至)を有することを特徴としている。(
至)は♂型ドレイン、0荀は♂型ソース(第3の電極)
で、(4GはP型8i基板、(至)はフィールド酸化膜
、(7)、 (378)〜(37C)は酸化膜である。The memory cell has an insulated floating gate c11), a first electrode or first control gate, and a second electrode or second control gate.
It is characterized by having a control gate (to). (
) is a male type drain, 0 is a male type source (third electrode)
(4G is a P-type 8i substrate, (to) is a field oxide film, (7), (378) to (37C) are oxide films.
浮遊ゲート0υ、第1.第2の制御ゲート(至)、(ト
)はそれぞれ炉型多結晶シリコンで膜厚は例えばそれぞ
れ4000Aである。熱酸化膜の膜厚は例えばC3ni
o。Floating gate 0υ, 1st. The second control gates (to) and (g) are each made of furnace-type polycrystalline silicon and have a film thickness of, for example, 4000 Å. The thickness of the thermal oxide film is, for example, C3ni.
o.
A 、(37a) 、 (37b) 、 (37c)が
それぞれ1000^である。トンネル電流によって電荷
の授受を行なう領域C3Iは、第3図(C) 、 (d
)に示すように2つの異なる領域でフィールド酸化膜(
至)と境界を接し、かつ他の少なくとも一部は浮遊ゲー
トC’ll)と境界を接し、他の領域は、薄い酸化膜(
至)と境界を接し、その境界は計不純物層(財)と境界
を接している。A, (37a), (37b), and (37c) are each 1000^. The region C3I where charge is exchanged by tunnel current is shown in Fig. 3(C) and (d).
) in two different areas as shown in field oxide (
(to C'll), and at least part of the other part is bounded by the floating gate C'll), and the other region is surrounded by a thin oxide film (C'll).
The boundary borders the total impurity layer (goods).
第3図(alの様なトンネル領域OIを得るには、例え
ば第3図(C1に示すように素子形成領域にゲート酸化
膜を例えば1oooX形成したのち、通常の写真食刻法
により薄い酸化膜を形成する領域(至)を露出させる。To obtain a tunnel region OI like that shown in FIG. 3 (al), for example, after forming a gate oxide film of 100X in the element formation region as shown in FIG. Expose the area (to) that forms the area.
次に前記薄い酸化膜を形成する領域(至)に例えば絶縁
膜(ここでは熱酸化膜であるが1例えば酸化膜とシリコ
ン窒化膜などの多層膜あるいはシリコン窒化膜あるいは
他の絶縁膜でも良い)を100A形成する。このとき薄
い酸化膜を形成する領域(至)は、浮遊ゲートを形成す
る領域c3+)より少なくとも一部が露出するような大
きさにする。Next, in the area where the thin oxide film is to be formed, for example, an insulating film (here, a thermal oxide film is used, but it may also be a multilayer film of an oxide film and a silicon nitride film, a silicon nitride film, or another insulating film). Form 100A. At this time, the region (to) where the thin oxide film is to be formed is set to a size such that at least a part thereof is exposed than the region (c3+) where the floating gate is to be formed.
この後、全面に例えばリンをドープした多結晶シリコン
膜を堆積し、浮遊ゲートのパターニングを行なう。この
後、通常の写真食刻法によシ所望の領域(301)の熱
酸化膜を除去しn型不純物例えばAs をI X 10
cm 100 KeVでイオン注入し形成する。(財
)このとき浮遊ゲート01)下の薄い酸化膜領域(至)
には、浮遊ゲートGυがマスクとなりイオン注入は行な
われない。その後2回目のゲート酸化膜を例えば100
0A形成する。第3図(d)かられかる様に書き替え電
極となるのは、薄い酸化膜領域(至)全面ではなく、n
型不純物層の横方向への拡散によって得られた領域(至
)である。この領域0偵が、薄い酸化膜を介【7て浮遊
ゲートと容量結合している。Thereafter, a polycrystalline silicon film doped with phosphorus, for example, is deposited over the entire surface, and a floating gate is patterned. Thereafter, the thermal oxide film in the desired region (301) is removed by ordinary photolithography, and an n-type impurity such as As is removed by I.times.10
It is formed by ion implantation at cm 100 KeV. At this time, the thin oxide film region (to) under the floating gate 01)
In this case, the floating gate Gυ serves as a mask and no ion implantation is performed. After that, the second gate oxide film is applied to
0A is formed. As shown in FIG. 3(d), the rewriting electrode is not the entire thin oxide film region (up to), but the n
This is a region obtained by lateral diffusion of the type impurity layer. This region 0 is capacitively coupled to the floating gate through a thin oxide film.
従って第3図(C)かられかる様に例えば薄い酸化膜を
形成する領域(至)のマスク合せかX、Y方向に±05
μm程度下地合せパターンとズしても書き替え電極領域
C11IJはn型不純物層の拡散だけによって決まりい
わゆる合せ誤差が入らない。またこの領域(至)はリン
グラフイーの限界で決まらずそれ以下の小さな領域を実
現できた。また第4図のように薄い酸化膜を形成する領
域(50)を通常の写真食刻法を用いてフィールド端よ
り離して形成した後上記と同じ方法で書き換え電極領域
(49)を形成しても同様の効果が得られることは言う
までもない。Therefore, as shown in Fig. 3(C), for example, the mask alignment of the region (to) where a thin oxide film is to be formed is ±05 in the X and Y directions.
Even if the underlying alignment pattern is changed by about μm, the rewriting electrode region C11IJ is determined only by the diffusion of the n-type impurity layer and does not suffer from so-called alignment errors. Also, this area (to) is not determined by the limit of ring graphie, and we were able to realize a smaller area. Further, as shown in Fig. 4, after forming a region (50) in which a thin oxide film is to be formed at a distance from the field edge using a normal photolithography method, a rewriting electrode region (49) is formed in the same manner as above. Needless to say, similar effects can be obtained.
本メモリセルの動作は次の様に説明できる。本メモリセ
ルには外部からドレイン電圧VD 、ソース電圧Vs、
基板電圧Vsub 、第1の制御ゲート電圧VCG、、
第2の制御ゲート電圧VCG2が印加される。The operation of this memory cell can be explained as follows. This memory cell is externally supplied with drain voltage VD, source voltage Vs,
Substrate voltage Vsub, first control gate voltage VCG,
A second control gate voltage VCG2 is applied.
又電気的等価回路は第5図のように示されるから浮遊ゲ
ートの電位VFGは次式で表わされる。Also, since the electrical equivalent circuit is shown in FIG. 5, the potential VFG of the floating gate is expressed by the following equation.
ここでC,、C2はそれぞれ制御ゲートα0.(ト)と
浮遊ゲーH31)との間の結合容量、C5、C5ub
はそれぞれソース(財)、基板(4Gとの結合容量であ
る。(1)式から基板電圧Vs ubとソース電圧Vs
を固定すると、第1の制御ゲート(至)と第2の制御ゲ
ート(至)を用いて、浮遊ゲートの電位レベルに対して
3つの状態をとりうる。すなわち(1)第1の制御ゲー
ト(ト)と第2の制御ゲート(ト)が共に高電位の場合
、 (II)第1の制御ゲート(至)と第2の制御ゲー
ト(ハ)のどちらかが高電位で他が低電位の場合、(1
11)第1の制御ゲート(至)と第2の制御ゲート(ハ
)が共に低電位の場合である。従って、第3図(a)に
示す様に浮遊ゲー)Cll)の下の酸化膜OIのトンネ
ル電流が(1)の場合(Vsが低電位)、あるいは(1
1+1の場合(Vsが高電位)Kのみ流れ、他の状態で
は流れないような膜厚で形成する事によりセルに選択的
に書き込み、消去を行なう事が可能となる。Here, C, , C2 are control gates α0, . Coupling capacitance between (g) and floating game H31), C5, C5ub
are the coupling capacitances with the source (goods) and substrate (4G), respectively. From equation (1), the substrate voltage Vs ub and the source voltage Vs
When fixed, the potential level of the floating gate can take on three states using the first control gate (to) and the second control gate (to). In other words, (1) When the first control gate (G) and the second control gate (G) are both at high potential, (II) Which of the first control gate (To) and the second control gate (C) is selected? If one is at high potential and the other is at low potential, (1
11) The first control gate (to) and the second control gate (c) are both at low potential. Therefore, as shown in FIG. 3(a), when the tunnel current of the oxide film OI under the floating gate (Cll) is (1) (Vs is a low potential), or (1)
In the case of 1+1 (Vs is a high potential), by forming the film with a thickness such that only K flows and does not flow in other states, it becomes possible to selectively write and erase cells.
実際には、第3図のメモリセルが基板上にマトリクス状
に配置されている。例えば第6図に示すように上記のメ
モリセルMがM、からM4まで配置されたメモリセルマ
トリックスを考える。M、と隔のソース(財)は共通で
、為とM4のソース(財)も共通である。同様に第1の
制御ゲート(至)、 @’、第2の制御ゲー1つ、0つ
1もそれぞれMI、ぬ9M3.に及びMl。In reality, the memory cells shown in FIG. 3 are arranged in a matrix on the substrate. For example, consider a memory cell matrix in which the above-mentioned memory cells M are arranged from M to M4 as shown in FIG. The source (goods) of M and distance are common, and the sources (goods) of Tame and M4 are also common. Similarly, the first control gate (to), @', the second control gate 1, 0 and 1 are also MI, nu9M3. and Ml.
Ms 、Ms 9M4に関して共通である。初期状態で
は各、メモリセルの浮遊ゲートに電荷の蓄積がないとす
ると1例えばメモリセルM1にデータを書き込む場合に
は、第3の電極である全メモリセルで同電位が与えられ
るソース(2)、 04)’をOVとする。This is common to Ms, Ms 9M4. Assuming that there is no charge accumulated in the floating gate of each memory cell in the initial state, 1. For example, when writing data to memory cell M1, the source (2), which is the third electrode, is given the same potential to all memory cells. , 04)' is OV.
又、第1.第2の電極である制御ゲート(至)、G9に
+20Vを印加するそして制御ゲート(至)1.(ト)
1をOVとする。Also, 1st. Apply +20V to the second electrode, control gate (to), G9, and control gate (to)1. (to)
Let 1 be OV.
このようにするとM、の浮遊ゲートclDは高電位とな
り熱酸化膜OIを通して、トンネル電流によってエレク
トロンが浮遊ゲート0υに注入され書き込み状態゛0”
となる。メモリセル縞も同時に書込む場合には%鴇の制
御ゲー) fi51’にも+20Vを印加すればよい。In this way, the floating gate clD of M becomes a high potential, and electrons are injected into the floating gate 0υ by a tunnel current through the thermal oxide film OI, and the write state is ``0''.
becomes. If the memory cell stripes are to be written at the same time, +20V may also be applied to the control gate fi51'.
次にM、の内容を消去する場合にはソース(ロ)(34
)1に+20V、第1.第2の制御ゲート(ト)、(ト
)に0■を印加し、m’、es’を+20Vに保つとM
、のみ浮遊ゲート61)は低位となり、トンネル電流に
よりソース041にエレクトロンが放出され、消去状態
゛1#になる。Next, when deleting the contents of M, source (B) (34
) 1 to +20V, 1st. If 0■ is applied to the second control gates (G) and (G) and m' and es' are kept at +20V, M
, the floating gate 61) is at a low level, electrons are emitted to the source 041 by a tunnel current, and the erased state becomes "1#".
同書き込みについては、従来と同様にドレイン共通信号
線とそれに垂直な制御ゲート信号線を用いてトランジス
タ領域からホットエレクトロンによる注入によって行な
う事も可能である。The writing can also be performed by injection of hot electrons from the transistor region using a common drain signal line and a control gate signal line perpendicular to the common drain signal line, as in the conventional case.
以上の実施例ではP型基板を用いたが、N凰基板を用い
る場合には、ソース・ドレインの導電型は逆になる。In the above embodiments, a P-type substrate was used, but when an N-type substrate is used, the conductivity types of the source and drain are reversed.
以上述べたごとく本発明によれば、電気的かつ選択的に
記憶内容の書き替えが可能でかつ素子特性のバラツキが
少なく浮遊ゲートと書き替え電極間の結合容量を少さく
できるため書き替えの素子特性が著しく向上した不揮発
性半導体メモリを実現することができる。As described above, according to the present invention, it is possible to electrically and selectively rewrite the memory contents, there is less variation in element characteristics, and the coupling capacitance between the floating gate and the rewriting electrode can be reduced, so the rewriting element A nonvolatile semiconductor memory with significantly improved characteristics can be realized.
第1図(a)〜(C)は従来例を説明する図、第2図(
a) 、 (b)は従来例の合せ誤差を説明する平面図
、
第3図ta) 、 (b) 、 (C) 、 (d)は
本発明による一実施例を説明する図。
第4図は本発明の他の実施例を説明する図。
第5図は本発明による一実施例の等節回路を説明する回
路図、
第6図は本発明による一実施例のメモリセルマトリクス
を説明するための図である。
図において
−1,31,41・・・浮遊ゲート。
2.36・・・第1の制御ゲート(第1の電極)。
9.35・・・第2の制御ゲート(第2の電極)、4.
34・・・ソース(第3の電極)、3.33・・・ドレ
イン、
10.39・・・トンネル酸化膜領域、8.38・・・
フィールド酸化膜。
5.40・・・P型基板。Figures 1 (a) to (C) are diagrams explaining the conventional example, and Figure 2 (
FIGS. 3A and 3B are plan views illustrating alignment errors in the conventional example, and FIGS. 3A and 3B are views illustrating an embodiment according to the present invention. FIG. 4 is a diagram illustrating another embodiment of the present invention. FIG. 5 is a circuit diagram for explaining an isochoric circuit according to an embodiment of the present invention, and FIG. 6 is a diagram for explaining a memory cell matrix according to an embodiment of the present invention. In the figure -1, 31, 41... floating gate. 2.36...first control gate (first electrode). 9.35... second control gate (second electrode), 4.
34... Source (third electrode), 3.33... Drain, 10.39... Tunnel oxide film region, 8.38...
field oxide. 5.40...P-type substrate.
Claims (2)
ルが同一基板上にマ) IJソックス状配置され。 各メモリセルは、前記浮遊ゲートと容量結合すると共に
倒れか1つの電極が、少なくとも2つ以上のメモリセル
で同電位が与えられる第1乃至第3の電極を備え、この
第1乃至第3の電極の内、制御電極である2つの電極に
高電位、書き替え電極である他の電極に低電位が与えら
れたメモリセルのみ浮遊ゲートが高電位となるかまたは
、制御電極である2つの電極に低電位、書き替え電極で
ある他の電極に高電位が与えられたメモリセルのみ浮遊
ゲートが低電位となシ、その浮遊ゲートと前記他の電極
との間で電荷の授受がなされて記憶内容の電気的な書き
替えが行なわれる不揮発性半導体メモリにおいて、電荷
の授受を行なう書き換え電極と浮遊ゲートの間の薄い絶
縁膜領域がほぼ四辺からなる多角形で形成され、対向す
る一組の2辺が前記薄い絶縁膜と素子分離用の厚い絶縁
膜との境界で形成され、かつ残りの2辺のうち1辺7)
i前記浮遊ゲートの周辺と一致し、かつ前記浮遊ゲート
下に位置していることを特徴とする不揮発性半導体メモ
リ。(1) Memory cells having electrically insulated floating gates are arranged in an IJ sock shape on the same substrate. Each memory cell has first to third electrodes that are capacitively coupled to the floating gate and have one electrode which is provided with the same potential in at least two or more memory cells. Among the electrodes, only a memory cell in which two electrodes that are control electrodes are given a high potential and the other electrodes that are rewriting electrodes are given a low potential has a floating gate at a high potential, or the two electrodes that are control electrodes are given a high potential. Only memory cells to which a low potential is applied and a high potential is applied to the other electrode, which is the rewriting electrode, have their floating gates at a low potential, and charge is exchanged between the floating gate and the other electrodes to store memory. In a nonvolatile semiconductor memory in which content is electrically rewritten, a thin insulating film region between a rewriting electrode and a floating gate that transfers charge is formed into a polygon with approximately four sides, and a pair of opposing two A side is formed at the boundary between the thin insulating film and the thick insulating film for element isolation, and one of the remaining two sides is 7)
i A non-volatile semiconductor memory, characterized in that the non-volatile semiconductor memory is located at the periphery of the floating gate and under the floating gate.
物濃度層であり、ソースとつながっており、前記浮遊ゲ
ートをマスクにして不純物の注入を行なりた後、拡散に
よって得られた領域において前記浮遊ゲートと前記薄い
絶縁膜を介して容量結合している前記特許請求の範囲第
1項記載の不揮発性半導体メモリ。(2) The rewriting electrode is a highly impurity concentration layer of the same conductivity type as the source, and is connected to the source, and is a region obtained by diffusion after implanting impurities using the floating gate as a mask. 2. The nonvolatile semiconductor memory according to claim 1, wherein the floating gate is capacitively coupled via the thin insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016027A JPS60161673A (en) | 1984-02-02 | 1984-02-02 | Nonvolatile semiconductor memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016027A JPS60161673A (en) | 1984-02-02 | 1984-02-02 | Nonvolatile semiconductor memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60161673A true JPS60161673A (en) | 1985-08-23 |
Family
ID=11905079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59016027A Pending JPS60161673A (en) | 1984-02-02 | 1984-02-02 | Nonvolatile semiconductor memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60161673A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5086325A (en) * | 1990-11-21 | 1992-02-04 | Atmel Corporation | Narrow width EEPROM with single diffusion electrode formation |
US5592002A (en) * | 1994-09-29 | 1997-01-07 | Nec Corporation | Non-volatile semiconductor memory device having reduced current consumption |
-
1984
- 1984-02-02 JP JP59016027A patent/JPS60161673A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5086325A (en) * | 1990-11-21 | 1992-02-04 | Atmel Corporation | Narrow width EEPROM with single diffusion electrode formation |
US5592002A (en) * | 1994-09-29 | 1997-01-07 | Nec Corporation | Non-volatile semiconductor memory device having reduced current consumption |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6318865B2 (en) | ||
JPS62291180A (en) | Electrically variable memory holding floating gate memory device | |
KR100346021B1 (en) | Nonvolatile semiconductor memory | |
KR100754541B1 (en) | Memory cell, memory, memory cell manufacturing method, memory manufacturing method, memory cell programming or deprogramming method and memory cell reading method | |
JP2864547B2 (en) | Large-scale EPROM memory and manufacturing method thereof | |
JP2926545B2 (en) | Method for manufacturing flash memory device | |
US6111287A (en) | Semiconductor device allowing electrical writing and erasing of information and method of manufacturing the same | |
JPH02308571A (en) | Semiconductor memory device | |
JPH11195718A (en) | Nonvolatile semiconductor memory and manufacture and drive method therefor | |
JPS60161673A (en) | Nonvolatile semiconductor memory | |
JP3069607B2 (en) | Operating method of semiconductor nonvolatile memory | |
JPH04208573A (en) | Manufacture of nonvolatile semiconductor memory | |
KR100267870B1 (en) | Nonvolatile Semiconductor Memory, Driving Method thereof, and Manufacturing Method | |
JPS5958868A (en) | Semiconductor non-volatile memory | |
JPS6158272A (en) | Manufacturing method of non-volatile semiconductor memory | |
JPS58209165A (en) | Nonvolatile semiconductor memory storage | |
JPS6045067A (en) | Nonvolatile semiconductor memory device | |
JP3143180B2 (en) | Semiconductor nonvolatile memory device and writing method thereof | |
JPH04253375A (en) | Nonvolatile semiconductor memory device and its manufacturing method | |
JPH02262376A (en) | Non-volatile semiconductor memory and manufacture thereof | |
JP2635638B2 (en) | Method of manufacturing nonvolatile semiconductor memory device | |
JPS61161769A (en) | Insulated gate type non-volatile semiconductor memory device | |
JPS59197175A (en) | non-volatile semiconductor memory | |
JP2908499B2 (en) | Nonvolatile semiconductor memory device | |
JPH05226665A (en) | Semiconductor storage device |