JPS60160181A - Amorphous solar cell - Google Patents
Amorphous solar cellInfo
- Publication number
- JPS60160181A JPS60160181A JP59016211A JP1621184A JPS60160181A JP S60160181 A JPS60160181 A JP S60160181A JP 59016211 A JP59016211 A JP 59016211A JP 1621184 A JP1621184 A JP 1621184A JP S60160181 A JPS60160181 A JP S60160181A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous
- solar cell
- cell
- type
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
- H10F10/172—Photovoltaic cells having only PIN junction potential barriers comprising multiple PIN junctions, e.g. tandem cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 〔発明の技術分野〕 この発明はアモルファス太陽電池に関するものである。[Detailed description of the invention] [Technical field of invention] This invention relates to amorphous solar cells.
一般に太陽電池は単体の11で使用さ5れることはなく
、複数のセルを直列または直並列に接続したモジュール
の形態で使用されるのが通常である。In general, solar cells are not used as a single unit 11, but are usually used in the form of a module in which a plurality of cells are connected in series or in series and parallel.
これは1つのセルの出力電圧が、セルの材質によっても
異なるが、0.4〜1.0V程度であって低く、単体の
ままでは使用しにくいからである。そしてこの直列接続
されたモジュールにおいて、これを構成するところの個
々のセルはダイオードであるから、次に述べるような問
題点を有する。This is because the output voltage of one cell is low, being about 0.4 to 1.0 V, although it varies depending on the material of the cell, and it is difficult to use it as a single cell. Since the individual cells constituting the series-connected modules are diodes, they have the following problems.
すなわち、モジュールが部分的に遮光されて、雪の部分
のセルが発電を停止したとき、他の遮光されずに発電し
ているセルの全電圧が単バイアスとなって、この発電を
停止したセルに掛かつてくる。具体的に述べると、10
個直列でIOVの出力電圧をもつモジュールの10個の
セルのうちの1個が遮光された場合、この遮光されたセ
ルに9Vの逆バイアスがかかるととに1kD、同セルの
逆方向耐圧が9v以下であれば破壊されてしまう。In other words, when the module is partially shaded and the cells in the snow area stop generating electricity, the total voltage of the other cells that are generating electricity without being shaded becomes a single bias, and the cell that stopped generating electricity becomes It comes down to To be specific, 10
If one of the 10 cells in a module with an output voltage of IOV is shielded from light in series, when a reverse bias of 9V is applied to this shielded cell, the reverse breakdown voltage of the same cell increases by 1kD. If it is less than 9V, it will be destroyed.
そとでこの問題点を解決するために、第1図に示すよう
に、直列接続される個々のセル(1)に対して、保護ダ
イオード(2)を逆並列に接続する手段があシ、シかも
との保護ダイオードを太陽電池セルに自薦させた構成が
提案されている。この従来構成は第2図に示すように、
同一基板(3)上に相互に逆方向のダイオードを形成さ
せて、面積の大きな一方を光ダイオード、つtb太陽電
池セル(1)とし、面積の小さな他方を保護ダイオード
(2)とし、これらをリード線(4)Kよシその保護ダ
イオード(2)の表面が覆われるようKして逆並列に接
続させ、前記#I1図に示す回路を実現させている。そ
してこの場合、光ダイオードは表面側から勧形層ale
s形層(tLp形層IO各アモルファス層の順に形成さ
せて、光を表面側から入射できるようにし、また保護ダ
イオードは表面側から反対Fcp形層aυ、l形層Da
ta形層0の各アモルファス層の順に形成させて、リー
ドl!(4)によ)表面側からの光の入射をさえぎるよ
うkしている。In order to solve this problem, as shown in Fig. 1, there is a means to connect protection diodes (2) in antiparallel to each cell (1) connected in series. A configuration has been proposed in which a solar cell is provided with a protection diode. This conventional configuration, as shown in Figure 2,
Diodes with opposite directions are formed on the same substrate (3), one with a larger area is used as a photodiode and the other with a smaller area is used as a tb solar cell (1), and the other with a smaller area is used as a protection diode (2). The lead wires (4) are connected in antiparallel to each other so that the surface of the protective diode (2) is covered, thereby realizing the circuit shown in Figure #I1. In this case, the photodiode is connected to the optical layer ale from the surface side.
The s-type layer (tLp-type layer IO, each amorphous layer is formed in order so that light can enter from the surface side, and the protection diode is formed from the surface side by forming the opposite Fcp-type layer aυ, l-type layer Da
Each amorphous layer of the ta-type layer 0 is formed in order to form the lead l! (4)) It is designed to block the incidence of light from the surface side.
従ってこの従来例による保護ダイオード内蔵型アモルフ
ァス太陽電池の構成においては、p−1−1形とn −
l −p形とのアモルファス層をそれぞれ個別に2回に
分けて形成しなければならず、その製造工程が複雑にな
るという欠点があった。Therefore, in the structure of this conventional amorphous solar cell with a built-in protection diode, p-1-1 type and n-
The l-p type amorphous layer and the amorphous layer must be formed separately in two steps, which has the disadvantage that the manufacturing process becomes complicated.
この発明は従来のこのような欠点に鑑み、多層構造太陽
電池の製造工程を利用することKよシ、光ダイオードと
保護ダイオードとの両者を同一基板上に同時に形成させ
るようkしたものである。In view of these conventional drawbacks, the present invention is designed to simultaneously form both a photodiode and a protection diode on the same substrate, instead of using the manufacturing process of a multilayer solar cell.
以下、この発明に係るアモルファス太陽電池の一実施例
につき、第3図を参照して詳細に説明する。Hereinafter, one embodiment of the amorphous solar cell according to the present invention will be described in detail with reference to FIG. 3.
この第3図実施例において、光ダイオードからなる太陽
電池セル(1)は、表面側から”+”sP形の各アモル
ファス層が3層、つまbai、oa、oυと、(ハ)、
(2)、CI!1)と、a1劃り、aυとが順次に積層
された構成からなっており、この多層構造セルはよく知
られているように、光を吸収する眉を波長によって分割
し、全体としての光電変換効率を向上させている。そし
て一方、保護ダイオード(2)については、これに対応
してp、i、n形の各アモルファス層0υ、(至)、a
3が順次に積層された構成とし、これらを同時に同一基
板(3)上に形成するのである。In the embodiment shown in FIG. 3, the solar cell (1) consisting of a photodiode has three amorphous layers of "+" sP type from the front side: bai, oa, oυ, (c),
(2), CI! 1), a1, and aυ are sequentially laminated, and as is well known, this multilayer structure cell divides the light-absorbing layer according to wavelength, and the photovoltaic cell as a whole is divided into two layers. Improves conversion efficiency. On the other hand, for the protection diode (2), correspondingly each p, i, n type amorphous layer 0υ, (to), a
3 are sequentially stacked, and these are simultaneously formed on the same substrate (3).
次にこのように同時に成形し得る製造工程を述べる。ま
ず同一の金属基板(3)上に、第1のマスクを用いてセ
ル(1)側のp形アモルファス層a1をプラズマCVD
法によ層成長させ、ついで同一マスクを用いて同様にセ
ル(1)側の1形アモルファス層aaを成長させる。続
いてマスクを第2のマスクに変更してセル(1)側とダ
イオード(2)側とのn形アモルファス層a3を同時に
成長させる。こζでこのマスク変更工程はそれなど困難
ではない。すなわち、例えば各層成長のための専用の反
応室を使う多室分離成長装置を利用すれに、各反応室毎
にマスクを固定しておき、ζこに移動してくる基板をセ
ットするようKすればよい。そして前記工程から、また
第1のマスクに戻してセル(1)のp形アモルファス層
シυ、ついで第2のマスクに戻してセル(1)とダイオ
ード(2)のl形アモルファス層(2)、さらに第1の
マスクに戻してセル(1)のn形アモルファス層(至)
、第2のマスクに戻してセル(1)とダイオード(2)
のp形アモルファス層0υ、第1のマスクに戻してセル
(1)の1形アモルファス層(至)、最後に同マスクで
セル(1)の動形アモルファス層(至)をそれぞれに成
長させれけよく、このように製造の途中でマスクを入れ
替えることによシ、同一基板上に同時に所望の太陽電池
セル(1)と保護ダイオード(2)とを逆並列に一一鍼
鴫−―■−■−
接続し得るのである。Next, a manufacturing process that enables simultaneous molding in this manner will be described. First, on the same metal substrate (3), a p-type amorphous layer a1 on the cell (1) side is formed by plasma CVD using a first mask.
Then, using the same mask, a type 1 amorphous layer aa on the cell (1) side is grown in the same manner. Subsequently, the mask is changed to a second mask, and n-type amorphous layers a3 on the cell (1) side and the diode (2) side are grown simultaneously. Therefore, this mask changing process is not difficult. In other words, for example, when using a multi-chamber separation growth apparatus that uses dedicated reaction chambers for each layer growth, a mask may be fixed in each reaction chamber, and the moving substrate may be set in this direction. Bye. From the above step, the first mask is again used to form the p-type amorphous layer υ of the cell (1), and then the second mask is used to form the l-type amorphous layer (2) of the cell (1) and the diode (2). , and then return to the first mask to form the n-type amorphous layer (to) of cell (1).
, put the cell (1) and diode (2) back into the second mask.
Grow the p-type amorphous layer 0υ of , the 1-type amorphous layer (end) of cell (1) by returning to the first mask, and finally the dynamic amorphous layer (end) of cell (1) using the same mask. By exchanging the masks in the middle of manufacturing in this way, it is possible to simultaneously place the desired solar cell (1) and protection diode (2) in antiparallel on the same substrate. ■- It is possible to connect.
なお前記実施例をあられした第、3図においては、両ダ
イオード(1) 、 (2)の厚さに大きな差のあるよ
うに見えるが、実際上セル(1)側にあってすらその厚
さはせいぜい1ミクロン程度に過ぎず、前記第2図従来
例と同様のリード!!接続に何ら問題はない。In addition, in FIGS. 3 and 3 showing the above embodiment, there appears to be a large difference in the thickness of both diodes (1) and (2), but in reality, even on the cell (1) side, the thickness is The lead is only about 1 micron at most, and is the same as the conventional example in Figure 2 above! ! There are no problems with the connection.
以上詳述しえようにこの発明によれに1表面側からn*
1sP形3層1組のアモルファス層を、さらに少なくと
も3組の多層に積層して太陽電池セルを構成するアモル
ファス太陽電池において、基板上への”AeP層各組の
多層積層によるセル形成時に、同一基板上に同時K n
、 j 、 p各層を選択して、Pe’s”形3層の
アモルファス層からなる保護ダイオードを逆並列に形成
させるようにして、太陽電池セル内に保護ダイオードを
内蔵させたから、従来のように別途工程によ〕保護ダイ
オードを形成させるものとJ!なハ極めて簡略化された
製造工程で所望のアモルファス太陽電池を得ることがで
き、太陽電池モジュールとしてのコスト低下に役立つ特
長がある。As described in detail above, according to the present invention, from the first surface side, n*
In an amorphous solar cell in which a solar cell is constructed by laminating one set of 1sP type three-layer amorphous layers into at least three sets of multilayers, when forming a cell by stacking each set of AeP layers on a substrate, the same Simultaneous K n on the substrate
, j, and p layers to form a protection diode consisting of three amorphous layers of Pe's'' type in antiparallel, and the protection diode is built into the solar cell, so it can be used as usual. A desired amorphous solar cell can be obtained through an extremely simplified manufacturing process, and it has the advantage of helping to reduce costs as a solar cell module.
第1図は一般的な太陽電池セルと保護ダイオードとの接
続態様を示す回路図、第2図は従来例による保護ダイオ
ードを内蔵したアモルファス太陽電池の構成を示す断面
模式図、第3図はこの発明の一実施例による保護ダイオ
ードを内蔵したアモルファス太陽電池の構成を示す断面
模式図である。
(1)・・・・太陽電池セル、(2)・・・・保護ダイ
オード、(3)・・・・基板、(4)・・・・リード線
、aυ、Qυ、C1υ・・・・p形アモルファスm、a
s、(社)、6邊・・・・l形アモルファス層、餞、@
、a3・・・・口形アモルファス層。
截゛理人 大岩 1晟
第1図
第2図
第3図
手続補正書(自発)
1、事件の表示 特願昭69−16ffil1号2、発
明の名称
アモルファス太II電だ
3、補正をする者
代表者片山仁へ部
4、代理人
ご
5、補正の対象
(1)明細書の特許請求の範囲の欄
(2)明細書の発明の詳細な説明の欄
6、補正の内容
(1)明細書の特許請求の範囲を別紙の通り補正する。
(2ン同書第6頁第9行の「問題はない。」の後に次の
文を加入する。「また、本実施例において太陽電池セル
(1)は表面側から” e ie p形の各アモルファ
ス層を積層するものとしたが、表面側からp、i 、n
形としても同一方法で保護ダイオード(2)を同一基板
上に同時に形成することができる。」
(3)同書同頁第12行の「p形」の後に「またはp、
i、n形」を加入する。
以上
特許請求の範囲
電形層が順次形成された8層1組のアモルファス面側か
ら第2導電形層、i層および第1導電形層が順次形成さ
れたアモルファス層を上記基板上に形成された保護ダイ
オードとを偏えたことを特徴とするアモルファス太陽電
池。Figure 1 is a circuit diagram showing the connection between a general solar cell and a protection diode, Figure 2 is a cross-sectional schematic diagram showing the configuration of a conventional amorphous solar cell with a built-in protection diode, and Figure 3 is a schematic cross-sectional diagram showing the configuration of a conventional amorphous solar cell with a built-in protection diode. FIG. 1 is a schematic cross-sectional view showing the structure of an amorphous solar cell incorporating a protection diode according to an embodiment of the invention. (1)...Solar cell, (2)...Protection diode, (3)...Substrate, (4)...Lead wire, aυ, Qυ, C1υ...p Shape amorphous m, a
s, (company), 6be...L-shaped amorphous layer, 餞, @
, a3... Mouth-shaped amorphous layer. Mr. Oiwa 1st year Figure 1 Figure 2 Figure 3 Procedural amendment (spontaneous) 1. Indication of the case Patent Application No. 16/1988 ffil 1 2. Name of the invention is Amorphous Tai II Den. 3. Person making the amendment Representative Hitoshi Katayama 4, Agent 5, Subject of amendment (1) Claims column of the specification (2) Detailed explanation of the invention column 6 of the specification, Contents of amendment (1) Specification The claims of the book are amended as shown in the attached sheet. (Add the following sentence after "There is no problem." on page 6, line 9 of the same book.) "In addition, in this example, the solar cell (1) is It was assumed that amorphous layers were laminated, but from the surface side p, i, n
The protection diode (2) can be simultaneously formed on the same substrate using the same method in terms of shape. ” (3) On the 12th line of the same page in the same book, after “p-type” there should be “or p,
Add "i, n type". As claimed above, an amorphous layer in which a second conductivity type layer, an i layer, and a first conductivity type layer are sequentially formed from the amorphous surface side of a set of eight layers in which conductivity type layers are sequentially formed is formed on the substrate. An amorphous solar cell characterized by polarized protection diodes.
Claims (1)
さらに少なくとも3組の多層に積層して太陽電池セルを
構成するアモルファス太陽電池において、基板上へのn
、1.p層各組の多層積層によるセル形成時に、同一基
板上に同時icn、1.pの各層を個々に選択して、p
、i、n形3層のアモルファス層からなる保護ダイオー
ドを逆並列に形成させたことを特徴とするアモルファス
太陽電池。A set of three amorphous layers of n, l, and p type from the surface side,
Furthermore, in an amorphous solar cell in which at least three sets of multilayers are stacked to form a solar cell, n
, 1. At the time of cell formation by multilayer stacking of each set of p layers, icn, 1. Individually select each layer of p to
An amorphous solar cell characterized in that protection diodes made of three amorphous layers of , i, and n type are formed in antiparallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016211A JPS60160181A (en) | 1984-01-30 | 1984-01-30 | Amorphous solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59016211A JPS60160181A (en) | 1984-01-30 | 1984-01-30 | Amorphous solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60160181A true JPS60160181A (en) | 1985-08-21 |
Family
ID=11910187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59016211A Pending JPS60160181A (en) | 1984-01-30 | 1984-01-30 | Amorphous solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60160181A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155565A (en) * | 1988-02-05 | 1992-10-13 | Minnesota Mining And Manufacturing Company | Method for manufacturing an amorphous silicon thin film solar cell and Schottky diode on a common substrate |
WO2000044052A1 (en) * | 1999-01-25 | 2000-07-27 | Marconi Applied Technologies Limited | Solar cell arrangements |
US6864414B2 (en) * | 2001-10-24 | 2005-03-08 | Emcore Corporation | Apparatus and method for integral bypass diode in solar cells |
US7071407B2 (en) | 2002-10-31 | 2006-07-04 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
US7115811B2 (en) * | 1998-05-28 | 2006-10-03 | Emcore Corporation | Semiconductor body forming a solar cell with a bypass diode |
WO2011011184A3 (en) * | 2009-07-21 | 2011-04-28 | Sears James B | System and method for making a photovoltaic unit |
US8513518B2 (en) | 2006-08-07 | 2013-08-20 | Emcore Solar Power, Inc. | Terrestrial solar power system using III-V semiconductor solar cells |
US8536445B2 (en) | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US9806215B2 (en) | 2009-09-03 | 2017-10-31 | Suncore Photovoltaics, Inc. | Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells |
US9923112B2 (en) | 2008-02-11 | 2018-03-20 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
-
1984
- 1984-01-30 JP JP59016211A patent/JPS60160181A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155565A (en) * | 1988-02-05 | 1992-10-13 | Minnesota Mining And Manufacturing Company | Method for manufacturing an amorphous silicon thin film solar cell and Schottky diode on a common substrate |
US7115811B2 (en) * | 1998-05-28 | 2006-10-03 | Emcore Corporation | Semiconductor body forming a solar cell with a bypass diode |
WO2000044052A1 (en) * | 1999-01-25 | 2000-07-27 | Marconi Applied Technologies Limited | Solar cell arrangements |
US6864414B2 (en) * | 2001-10-24 | 2005-03-08 | Emcore Corporation | Apparatus and method for integral bypass diode in solar cells |
US7759572B2 (en) * | 2001-10-24 | 2010-07-20 | Emcore Solar Power, Inc. | Multijunction solar cell with a bypass diode having an intrinsic layer |
US7071407B2 (en) | 2002-10-31 | 2006-07-04 | Emcore Corporation | Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell |
US8536445B2 (en) | 2006-06-02 | 2013-09-17 | Emcore Solar Power, Inc. | Inverted metamorphic multijunction solar cells |
US10553740B2 (en) | 2006-06-02 | 2020-02-04 | Solaero Technologies Corp. | Metamorphic layers in multijunction solar cells |
US10026860B2 (en) | 2006-06-02 | 2018-07-17 | Solaero Technologies Corp. | Metamorphic layers in multijunction solar cells |
US8513518B2 (en) | 2006-08-07 | 2013-08-20 | Emcore Solar Power, Inc. | Terrestrial solar power system using III-V semiconductor solar cells |
US8686282B2 (en) | 2006-08-07 | 2014-04-01 | Emcore Solar Power, Inc. | Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells |
US8895342B2 (en) | 2007-09-24 | 2014-11-25 | Emcore Solar Power, Inc. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US9231147B2 (en) | 2007-09-24 | 2016-01-05 | Solaero Technologies Corp. | Heterojunction subcells in inverted metamorphic multijunction solar cells |
US9923112B2 (en) | 2008-02-11 | 2018-03-20 | Suncore Photovoltaics, Inc. | Concentrated photovoltaic system modules using III-V semiconductor solar cells |
CN102473793A (en) * | 2009-07-21 | 2012-05-23 | 詹姆斯·B·西尔斯 | System and method for manufacturing photovoltaic elements |
WO2011011184A3 (en) * | 2009-07-21 | 2011-04-28 | Sears James B | System and method for making a photovoltaic unit |
US9806215B2 (en) | 2009-09-03 | 2017-10-31 | Suncore Photovoltaics, Inc. | Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells |
US10153388B1 (en) | 2013-03-15 | 2018-12-11 | Solaero Technologies Corp. | Emissivity coating for space solar cell arrays |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60160181A (en) | Amorphous solar cell | |
US11996487B2 (en) | Solar module having a plurality of strings configured from a five strip cell | |
US10043929B1 (en) | Spectrally adaptive multijunction photovoltaic thin film device and method of producing same | |
EP3123609B1 (en) | High voltage solar modules | |
JP2021132233A5 (en) | ||
US5505789A (en) | Line-focus photovoltaic module using solid optical secondaries for improved radiation resistance | |
CN108987509A (en) | Two-sided imbrication solar cell module and preparation method | |
EP1796177A1 (en) | Photovoltaic power generation module and photovoltaic power generation system employing it | |
JP2022537499A (en) | Back-contact solar cell module and manufacturing method | |
EP1998379B1 (en) | Solar cell module and method of manufacturing the solar cell module | |
CN103872160A (en) | Mixed stacked type solar component and manufacturing method thereof | |
CN109301020A (en) | Stacked photovoltaic module and method of making the same | |
EP4216284A1 (en) | Solar cell and solar cell system | |
JP2008218578A (en) | Solar cell unit and solar cell module | |
CN106784096B (en) | A kind of diode-built-in photovoltaic module | |
CN211670198U (en) | Packaging adhesive film with grid structure | |
EP4283686A3 (en) | Photovoltaic module | |
EP4354520A1 (en) | Photovoltaic assembly | |
CN216958054U (en) | A photovoltaic module combining crystalline silicon and perovskite cells | |
CN209592062U (en) | A kind of solar photovoltaic assembly of high generation efficiency | |
CN210866210U (en) | Photovoltaic module | |
CN216354239U (en) | Structure of photovoltaic double-sided assembly | |
CN209045586U (en) | Photovoltaic module | |
CN112567532B (en) | Bifacial solar cell, solar module and method for manufacturing bifacial solar cell | |
CN114429995A (en) | A solar cell module with a laminated structure |