[go: up one dir, main page]

JPS6015608A - Manufacturing method of optical star coupler - Google Patents

Manufacturing method of optical star coupler

Info

Publication number
JPS6015608A
JPS6015608A JP12325383A JP12325383A JPS6015608A JP S6015608 A JPS6015608 A JP S6015608A JP 12325383 A JP12325383 A JP 12325383A JP 12325383 A JP12325383 A JP 12325383A JP S6015608 A JPS6015608 A JP S6015608A
Authority
JP
Japan
Prior art keywords
tension
rod
stretching
headstocks
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12325383A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Yasushi Ikuta
生田 靖
Minoru Maeda
稔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12325383A priority Critical patent/JPS6015608A/en
Publication of JPS6015608A publication Critical patent/JPS6015608A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • C03B23/0473Re-forming tubes or rods by drawing for forming constrictions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2856Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers formed or shaped by thermal heating means, e.g. splitting, branching and/or combining elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To improve the accuracy and reproducibility of the shape in a tapered part by twisting a hollow glass tube contg. an optical fiber bundle to form a glass rod during heating and heating and stretching the glass rod. CONSTITUTION:Headstocks 3, 3' are rotated in arrow 11, 11' directions by motors 17, 17' to apply preliminarily a tension Pm on a twisted glass rod in the stage of stretching said rod and forming a tapered part 12. The Pm is the sum of the tension Pa for moving the headstocks and the tension Pl when the rod 9 is softened by heating and is stretched. The Pe is as large as >=several 100g and the headstocks 3, 3' do not move while the rod 9 is not heated. When the rod is rotated in the direction of an arrow 10 and is heated by a burner 5, the headstocks 3, 3' move by L and are stopped by switches 20, 20'. The motors 17, 17' are stopped by switches 19, 19' as well. The tension during stretching is measured with a tension analyzer 14 and the value thereof is compared with a reference tension value. A signal is generated in the output from a circuit 16 according to the result thereof and when the measured value is lower than the reference value, switches 22, 23 are turned off to stop supplying gaseous H2 and O2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光ファイバを伝搬する光ビームを複数本の光フ
ァイバに分配する光スターカプラの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing an optical star coupler that distributes a light beam propagating through an optical fiber to a plurality of optical fibers.

〔発明の背景〕[Background of the invention]

光フアイバ伝送技術の急速な進歩にともない、コンピュ
ーターコンピュータ間ヤコンピュータ一端末間のデータ
伝送に光ファイバを使用する光データリンクの研究開発
が盛んに行われている。この光データリンクを構成する
上で、複数本の入力用光ファイバからの光信号をミキシ
ングして複数本の出力用光ファイバに低損失で、かつ均
等に分配し得る光スターカプラは必須のデバイスである
BACKGROUND OF THE INVENTION With the rapid advancement of optical fiber transmission technology, research and development of optical data links that use optical fibers for data transmission between computers and between computers and one terminal are being actively conducted. In configuring this optical data link, an optical star coupler is an essential device that can mix optical signals from multiple input optical fibers and distribute them evenly and with low loss to multiple output optical fibers. It is.

本発明者は、先に挿入損失、分配バラツキが小さく、製
造が容易で量産性に適した光スターカプラの構造および
製造方法として、中空ガラス管内に光ファイバ束を挿入
し、中空ガラス管を加熱しながらひねシを加えて中空ガ
ラス管と光ファイバ束を融着して中実のガラスロッドと
し、そのひねりを加えられたガラスロッドを延伸してテ
ーパ部を構成するか、上記ひねりを加えつつ延伸してテ
ーパ部を構成したまったく新規構造の光スターカプラを
見いだして提案した。その光スターカプラの製造方法の
一例を第1図(a)= (b)+ (’)に示す。まず
(a)において、中空ガラス管2内に光ファイバ束1を
挿入し、ガラス旋盤6の主軸台3.3′のチャック部4
.4′にチャックする。加熱源5を8点に配置して中空
ガラス管を加熱させ、軟化しだしたら主軸台3′のチャ
ック部4′を中空ガラス管の径方向、つまり矢印7方向
に回転させつつ加熱源5を中空ガラス管の軸方向に沿っ
て矢印8方向に移動させ、E点に達したらチャック部4
′の回転と、加熱源5をオフにして(b)の構造を得る
The present inventor first proposed a structure and manufacturing method for an optical star coupler that has low insertion loss and distribution variation, is easy to manufacture, and is suitable for mass production, by inserting an optical fiber bundle into a hollow glass tube and heating the hollow glass tube. While adding a twist, the hollow glass tube and the optical fiber bundle are fused together to form a solid glass rod, and the twisted glass rod is stretched to form a tapered part, or while adding the above twist, We have discovered and proposed an optical star coupler with a completely new structure in which it is stretched to form a tapered part. An example of a method for manufacturing the optical star coupler is shown in FIG. 1(a)=(b)+('). First, in (a), the optical fiber bundle 1 is inserted into the hollow glass tube 2, and the chuck part 4 of the headstock 3.3' of the glass lathe 6 is
.. Chuck to 4'. Heat sources 5 are placed at eight points to heat the hollow glass tube, and when it begins to soften, the heat sources 5 are turned on while rotating the chuck portion 4' of the headstock 3' in the radial direction of the hollow glass tube, that is, in the direction of arrow 7. Move the hollow glass tube in the direction of arrow 8 along the axial direction, and when it reaches point E, chuck part 4
' and the heating source 5 is turned off to obtain the structure shown in (b).

9の部分は光ファイバと中空ガラス管が融着された中実
のひねりを加えられたガラスロンドになる。
The part 9 is a solid twisted glass rond in which an optical fiber and a hollow glass tube are fused together.

次に(C)に示すように、主軸台3,3/のチャック部
4,4′を矢印10方向に回転させ、加熱源5を9の部
分のほぼ中央部に配置して9の部分を加熱させ、軟化し
始めたら、主軸台3,3′を矢印11.11’方向に、
あるいは3のみを矢印11方向に、または3′のみを矢
印11’方向に移動させて9部分を延伸させ、テーパ部
12を得ることにより光スターカプラを製造する方法で
ある。
Next, as shown in (C), the chuck parts 4, 4' of the headstocks 3, 3/ are rotated in the direction of arrow 10, the heat source 5 is placed approximately in the center of the part 9, and the part 9 is After heating and starting to soften, move the headstocks 3 and 3' in the direction of arrows 11 and 11'.
Alternatively, the optical star coupler may be manufactured by moving only 3 in the direction of arrow 11 or only moving 3' in the direction of arrow 11' and stretching 9 parts to obtain tapered part 12.

ところがこの(C)のプロセスにおいて、加熱源5に酸
水素バーナ(あるいは都市ガス、プロパンガスなどのバ
ーナでもよい。)を用いて延伸する場合、延伸のタイミ
ング、バーナのガスの停止タイミング、などの微妙な調
節、制御がむずかしいという問題点があった。
However, in the process (C), when stretching is performed using an oxyhydrogen burner (or a burner of city gas, propane gas, etc.) as the heat source 5, there are certain issues such as the timing of stretching, the timing of stopping the burner gas, etc. The problem was that delicate adjustments and control were difficult.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光スターカプラを制御性良く製造する
方法、すなわち第1図CC)のプロセスにおいてテーパ
部12の形状(外径、長さ)を精度良く、かつ再現性良
く製造する方法を提供することにある。
An object of the present invention is to provide a method for manufacturing an optical star coupler with good controllability, that is, a method for manufacturing the shape (outer diameter, length) of the tapered portion 12 with high precision and high reproducibility in the process shown in FIG. 1 (CC). It is about providing.

〔発明の概要〕[Summary of the invention]

本発明は、光ファイバ束の挿入された中空ガラス管を加
熱しながらひねりを加えて中空ガラス管と光ファイバ束
を融着して中実のガラスロンドとし、そのひねシを加え
たガラスロッド部分をさらに加熱、延伸してテーパ状に
する際に、上記ガラス管の両端を所望張力でひっばって
おき、上記ガラスロッド部分が加熱軟化してくると、自
動的に上記ガラスロッド部分を所望長さに延伸し、かつ
延伸状態に応じて上記加熱源を制御するようにした光ス
ターカプラの製造方法である。この方法を用いると、延
伸長さ、延伸時の加熱源を制御できるので、テーパ部の
形状を精度良く、かつ再現性良く製造することができる
The present invention involves heating and twisting a hollow glass tube into which an optical fiber bundle is inserted, fusing the hollow glass tube and the optical fiber bundle to form a solid glass rod, and creating a twisted glass rod portion. When further heating and stretching the glass tube to make it into a tapered shape, both ends of the glass tube are stretched to the desired tension, and when the glass rod portion is heated and softened, the glass rod portion is automatically stretched to the desired length. This is a method for manufacturing an optical star coupler, in which the heating source is controlled according to the stretching state. By using this method, the stretching length and the heating source during stretching can be controlled, so that the shape of the tapered portion can be manufactured with high precision and high reproducibility.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の光スターカプラの製造方法の概略図を
示したものである。これは第1図(C)のプロセスに相
当するものである。すなわち、ひねりを加えたガラスロ
ッド部分9を延伸して所望のテーパ部12(第1図(C
)参照。)を形成させる製造法に、関するものである。
FIG. 2 shows a schematic diagram of the method for manufacturing the optical star coupler of the present invention. This corresponds to the process shown in FIG. 1(C). That is, the twisted glass rod portion 9 is stretched to form a desired tapered portion 12 (Fig. 1(C)
)reference. ).

第2図において、第1図と同じ番号のものは同じ作用、
機能を有するものである。13は張力検出部でガイドロ
ーラA、 Cと張力検出用ローラBからなり、ローラB
の変位蓄はテンシミンアナライザ14にょシ張力に比例
した電圧値VIに変換され、制御回路16の一方の入力
端子に印加されている。15は基準の張力値P、に相当
する基準電圧(VW)発生器であシ、制御回路16のも
う一方の入力端子に印加されている。17および17′
は矢印11および11′方向へ所望の張力P、、、所望
の速度V、で引張る機能をもつモータであり、18.1
8’はそれらモータの駆動回路である。20.20’は
りセットスイッチであり、主軸台3,3′が矢印11゜
11′方向に長さLだけ移動したら主軸台3.3′の移
動を停止させるように動作するものである。
In Figure 2, the same numbers as in Figure 1 have the same effect.
It has a function. Reference numeral 13 denotes a tension detection unit, which consists of guide rollers A and C and a tension detection roller B.
The accumulated displacement is converted into a voltage value VI proportional to the tension in the tension analyzer 14, and is applied to one input terminal of the control circuit 16. Reference numeral 15 denotes a reference voltage (VW) generator corresponding to a reference tension value P, which is applied to the other input terminal of the control circuit 16. 17 and 17'
is a motor that has the function of pulling in the directions of arrows 11 and 11' with a desired tension P, ..., and a desired speed V, 18.1
8' is a drive circuit for these motors. 20.20' is a beam set switch which operates to stop the movement of the headstock 3.3' when the headstock 3,3' moves by a length L in the direction of arrow 11°11'.

21.21’は上記リセットスイッチ20.20’が動
作したときに、19.19’のスイッチをオフにさせる
だめの信号発生回路である。22゜23はH2ガス、0
2ガスをバーナ5へ供給(オン状態)、あるいは供給停
止(オフ状態)させるためのスイッチであり、制御回路
16の出力信号によってオン、オフ制御される。すなわ
ち、22゜23は通常オン状態にあり、制御回路16の
出力に信号が生じた場合に22.23はオフ状態に切換
えられる。24.25はH2ガス流量、02ガス流量調
節用パルプ調整装置であシ、電圧によってそのガス流量
が制御される。次に第2図の動作について説明する。主
軸台3,3′の矢印11゜11′方向への移動機構には
エアー軸受は移動機構を用い、これらの移動によるまさ
つ係数を極めて小さくした。まずモータ17,17’に
よシ主軸台3,3′を矢印11.11’方向へ張力P。
21.21' is a signal generating circuit for turning off the switch 19.19' when the reset switch 20.20' is operated. 22゜23 is H2 gas, 0
This is a switch for supplying (on state) or stopping the supply (off state) of the two gases to the burner 5, and is controlled on and off by the output signal of the control circuit 16. That is, 22 and 23 are normally in an on state, and when a signal occurs at the output of the control circuit 16, 22 and 23 are switched to an off state. Reference numerals 24 and 25 are pulp adjusting devices for adjusting the H2 gas flow rate and the 02 gas flow rate, and the gas flow rates are controlled by voltage. Next, the operation shown in FIG. 2 will be explained. An air bearing moving mechanism is used to move the headstocks 3 and 3' in the directions of arrows 11° and 11', and the coefficient of distortion caused by these movements is made extremely small. First, the motors 17, 17' apply tension P to the headstocks 3, 3' in the direction of arrows 11 and 11'.

を加えておく。このP、は主軸台(3あるいは3′)を
移動させるのに必要な張力P、と、ガラスロッド部9が
加熱により軟化して延伸されるときの張力PJとの和で
ある。第3図はガラスロッド部9を加熱(温度T)して
軟化させて延伸した場合の延伸時の引張り張力piと、
延伸時の引張り速度v、、との関係を実験的にめた一例
である。
Add. This P is the sum of the tension P required to move the headstock (3 or 3') and the tension PJ when the glass rod portion 9 is softened and stretched by heating. FIG. 3 shows the tensile tension pi at the time of stretching when the glass rod part 9 is heated (temperature T) to soften and stretch;
This is an example of an experimentally determined relationship between the tensile speed v during stretching.

ただし、ガラスロッド部9の外径は約2.5111J延
伸部12のガラスロッドの外径は約0.3 ttrmの
場合の結果である。このように、ガラスロッド部9が軟
化している状態ではその引張り張力pzは数10gであ
る。したがって、Paも数10gの値に設定される。ガ
ラスロッド部9が加熱されていないときはPJは数10
0g以上の極めて大きい値であるのでこの状態では主軸
台3,3′は矢印11.11’方向へ移動しない。つぎ
にガラスロッド部9を矢印10方向へ回転させておいて
酸水素バーナ5を点火し、ガラスロッド部9を加熱する
。時間の経過と共にガラスロッド部9は徐々に軟化し始
め、Pg +PaがP、よりも小さくなると主軸83m
 3′は矢印11.11’方向へ距離りだけ移動してリ
セットスイッチ20.20’により停止させられる。そ
してモータ17,17’の駆動もスイッチ19.19’
のオフにより停止させられ、所望のテーパ部12が得ら
れる。ここで重装な事は酸水素バーナ5をモータ17,
17’の停止後も点火しておくと、延伸したテーパ部1
2が熱により変形したり、破断したりする。また極端に
低い張力値になるまで加熱していても同様な事が起る。
However, the outer diameter of the glass rod portion 9 is approximately 2.5111J, and the outer diameter of the glass rod of the extended portion 12 is approximately 0.3 ttrm. In this way, when the glass rod portion 9 is softened, its tensile tension pz is several tens of grams. Therefore, Pa is also set to a value of several tens of grams. When the glass rod part 9 is not heated, PJ is several 10.
Since this is an extremely large value of 0 g or more, the headstocks 3, 3' do not move in the direction of arrows 11 and 11' in this state. Next, the glass rod portion 9 is rotated in the direction of the arrow 10, and the oxyhydrogen burner 5 is ignited to heat the glass rod portion 9. As time passes, the glass rod portion 9 begins to gradually soften, and when Pg +Pa becomes smaller than P, the main axis 83m
3' moves a distance in the direction of arrow 11.11' and is stopped by reset switch 20.20'. The motors 17 and 17' are also driven by switches 19 and 19'.
is stopped by turning off, and the desired taper portion 12 is obtained. The heavy equipment here is the oxyhydrogen burner 5, the motor 17,
If the ignition is continued after 17' is stopped, the extended taper part 1
2 is deformed or broken by heat. The same thing happens even if the material is heated to an extremely low tension value.

そこで、延伸時の張力をテンションアナライザ14で測
定するようにし、その測定値を基準の張力値P、と比較
して制御回路16の出力に信号を発生させ、測定値がP
2よりも低くなった場合には上記信号でスイッチ22.
23をオフにさせH2,02ガスの供給を停止させるよ
うにしである。あるいはガス流量調節用パルプ調整装置
24.25にフィードバックさせてもよい(26,26
’の点線で示す経路)。あるいは信号発生回路21の信
号を用いてスイッチ22゜23をオフにしてもよい(2
8の点線で示す経路)。
Therefore, the tension during stretching is measured by the tension analyzer 14, and the measured value is compared with the reference tension value P, and a signal is generated at the output of the control circuit 16, and the measured value is P.
If it becomes lower than 2, the above signal causes switch 22.
23 to stop the supply of H2,02 gas. Alternatively, it may be fed back to the pulp adjusting device 24, 25 for gas flow rate adjustment (26, 26
route shown by the dotted line). Alternatively, the switches 22 and 23 may be turned off using the signal from the signal generation circuit 21 (2
8).

また延伸の移動距離りが大きくなる程、すなわち延伸径
が小さくなる程、張力が低下する傾向を実験的に確認し
ているが、その場合にできる限り一定張力で延伸する一
方法として、モータの回転速度、つまり主軸台3.3′
の矢印11.11’方向への移動速度v、、を制御回路
16の出力信号で制御してもよい。これは経路27.2
7’で示したように、制御回路16の出力信号をモータ
の駆動回路18.18’にフィードバックする。延伸開
始と共にvmを徐々に大きくするようにさせる制御であ
る。
Additionally, we have experimentally confirmed that the tension tends to decrease as the distance traveled during stretching increases, that is, as the stretching diameter decreases. Rotational speed, i.e. headstock 3.3'
may be controlled by the output signal of the control circuit 16. This is route 27.2
As indicated at 7', the output signal of the control circuit 16 is fed back to the motor drive circuit 18, 18'. This is control to gradually increase vm with the start of stretching.

以上の実施例は延伸時の張力を検出して加熱源を制御す
る場合であったが、張力の代わりに、ガラスロッド部の
加熱温度を検出して加熱源を制御するようにしてもよい
。その場合には張力検出器が温度検出器に代わるだけで
ある。また上記実施例では主軸台3.3′の移動を2つ
のモータ17゜17′で行ったが、一つのモータを用い
機械的な移動伝達が行えるような機構でもよい。また酸
水素バーナの代わシに、炭酸ガスレーザ、高周波誘導加
熱炉などでもよい。さらに光ファイバが石英系ガラスで
なく多成分系ガラスの場合には都市ガスバーナ、プロパ
ンガスバーナでもよい。バーナは一本あるいは複数本、
さらにはリング状のものでもよい。またLは任意に設定
することができる。
In the above embodiment, the heating source is controlled by detecting the tension during stretching, but instead of the tension, the heating temperature of the glass rod portion may be detected to control the heating source. In that case, the tension sensor simply replaces the temperature sensor. Further, in the above embodiment, the headstock 3.3' is moved by two motors 17.degree. 17', but a mechanism capable of mechanically transmitting the movement using one motor may also be used. Further, instead of the oxyhydrogen burner, a carbon dioxide laser, a high frequency induction heating furnace, etc. may be used. Furthermore, if the optical fiber is not quartz-based glass but multi-component glass, a city gas burner or a propane gas burner may be used. One or more burners,
Furthermore, it may be ring-shaped. Further, L can be set arbitrarily.

さらに、スイッチ22.23をオフにする代わシに、バ
ーナ5の上に火炎じゃへい用のシャッターを用い、シャ
ッターを制御回路16の出力信号で開、閉制御してもよ
い。
Furthermore, instead of turning off the switches 22 and 23, a shutter for preventing flames may be used above the burner 5, and the shutter may be opened and closed by the output signal of the control circuit 16.

〔発明の効果〕〔Effect of the invention〕

本発明は次のような効果がある。 The present invention has the following effects.

+11 本発明の光スターカプラの心臓部であるテーパ
部の形状(外径、長さ)を精度良く、かつ再現性良く製
造することができるので、低損失、低分配バラツキの光
スターカプラが実現できる。
+11 The shape (outer diameter, length) of the tapered part, which is the heart of the optical star coupler of the present invention, can be manufactured with high precision and reproducibility, resulting in an optical star coupler with low loss and low distribution variation. can.

(2)延伸状態に応じて加熱源を自動的に制御すること
ができるので生産性を上げることができる。
(2) Since the heating source can be automatically controlled according to the stretching state, productivity can be increased.

また延伸時の張力をほぼ一定に保っているので残留応力
が小さく機械的強度にすぐれ、かつ光損失も小さくでき
る。
Furthermore, since the tension during stretching is kept almost constant, residual stress is small and mechanical strength is excellent, and optical loss can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明者が先に提案した光スターカプラの製造
方法の一例、第2図は本発明の光スターカブラの製造方
法の実施例、第3図は本発明の製造方法を用いて得たガ
ラスロンドの温度と延伸時の引張シ張力との関係の実験
結果の一例である。
FIG. 1 shows an example of the method of manufacturing an optical star coupler previously proposed by the present inventor, FIG. 2 shows an example of the method of manufacturing an optical star coupler of the present invention, and FIG. 3 shows an example of the method of manufacturing an optical star coupler of the present invention. This is an example of experimental results regarding the relationship between the temperature of the obtained glass rond and the tensile force during stretching.

Claims (1)

【特許請求の範囲】[Claims] 1、光ファイバ束の挿入された中空ガラス管を加熱しな
がらひねりを加えて中空ガラス管と光ファイバ束を融着
して中実のガラスロッドとし、そのひねりを加えたガラ
スロッド部分をさらに加熱、延伸してテーパ状にする際
に、上記ガラス管の両端を所望張力でひっばっておき、
その延伸状態に応じて上記加熱源を制御することを特徴
とする光スターカプラの製造方法。
1. While heating the hollow glass tube with the optical fiber bundle inserted, add a twist to fuse the hollow glass tube and the optical fiber bundle to form a solid glass rod, and further heat the twisted glass rod part. , when stretching the glass tube to form a tapered shape, both ends of the glass tube are stretched with a desired tension,
A method for manufacturing an optical star coupler, characterized in that the heating source is controlled depending on the stretching state of the optical star coupler.
JP12325383A 1983-07-08 1983-07-08 Manufacturing method of optical star coupler Pending JPS6015608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12325383A JPS6015608A (en) 1983-07-08 1983-07-08 Manufacturing method of optical star coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12325383A JPS6015608A (en) 1983-07-08 1983-07-08 Manufacturing method of optical star coupler

Publications (1)

Publication Number Publication Date
JPS6015608A true JPS6015608A (en) 1985-01-26

Family

ID=14855991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12325383A Pending JPS6015608A (en) 1983-07-08 1983-07-08 Manufacturing method of optical star coupler

Country Status (1)

Country Link
JP (1) JPS6015608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559409U (en) * 1992-10-26 1993-08-06 日本航空電子工業株式会社 Optical fiber coupler manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559409U (en) * 1992-10-26 1993-08-06 日本航空電子工業株式会社 Optical fiber coupler manufacturing equipment

Similar Documents

Publication Publication Date Title
US5935288A (en) Method for producing fused fiber bundles
CA2028525C (en) Achromatic fiber optic coupler
AU704668B2 (en) Tunable optical coupler using photosensitive glass
US5868815A (en) Method of making an optical fiber by blowing on a preform tube to enhance collapse
JP2007230862A (en) Manufacture of depressed index optical fiber
US20130283863A1 (en) Method of fusing and stretching a large diameter optical waveguide
JPH055815A (en) Production of optical fiber coupler
US20050188728A1 (en) Apparatus and method for manufacturing optical fiber including rotating optical fiber preforms during draw
JP2005170714A (en) Method and apparatus for drawing optical fiber preform
JPS6015608A (en) Manufacturing method of optical star coupler
JPS63100033A (en) Manufacturing method of optical fiber base material
US4230473A (en) Method of fabricating optical fibers
JP5207571B2 (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
JP3777627B2 (en) Glass fiber manufacturing method and manufacturing apparatus
AU5707500A (en) Optical fiber drawing method and drawing device
US5320660A (en) Method of manufacturing an optical fibre
JPS59164522A (en) Manufacture of optical distributing circuit
EP0530917B1 (en) Method of manufacturing an optical fibre
GB2120774A (en) Oxyhydrogen torch
JPS6051804A (en) Manufacturing method of optical star coupler
JPH0337129A (en) Production of optical glass fiber
JP2005187285A (en) Drawing method of optical fiber and its drawing apparatus
JPH02136807A (en) Manufacture of optical fiber coupler
JPS6016828A (en) Manufacture of optical fiber
Jenkins et al. Cascaded control for regulating soot geometry in vapor-phase axial deposition