JPS60155802A - Economizer for exhaust gas - Google Patents
Economizer for exhaust gasInfo
- Publication number
- JPS60155802A JPS60155802A JP1172784A JP1172784A JPS60155802A JP S60155802 A JPS60155802 A JP S60155802A JP 1172784 A JP1172784 A JP 1172784A JP 1172784 A JP1172784 A JP 1172784A JP S60155802 A JPS60155802 A JP S60155802A
- Authority
- JP
- Japan
- Prior art keywords
- water
- preheating section
- exhaust gas
- temperature
- water supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は高温排ガスの熱回収を行う排ガスエコノマイザ
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas economizer that recovers heat from high-temperature exhaust gas.
例えば、船舶に主機として搭載されろティーセル機関(
以下「ティーセル主機」という。)の排ガスエコノマイ
ザ2は第1図に示すように、ティーセル主機1の排ガス
出口に接続され、排ガス高温側(上流側)より過熱部3
、高圧蒸発部4、低圧蒸発部5、予熱部6より構成され
る。For example, a tea cell engine (
Hereinafter referred to as the "Teesel main engine". ) exhaust gas economizer 2 is connected to the exhaust gas outlet of the tea cell main engine 1, as shown in Fig.
, a high pressure evaporation section 4, a low pressure evaporation section 5, and a preheating section 6.
給水は、低圧汽水分離器11にて汽水分離を行なった後
の低圧飽和水を大気圧ドレンクンク7に導き、約90℃
に加熱された後、給水ポンプ8により排ガスエコノマイ
ザの予熱部6へ導かれる。ここで給水は低圧蒸発部6の
飽和温度近くまで加熱された後、高圧蒸発部4の汽水分
離器としての役割を果たす補助ボイラ9及び低圧蒸発部
5へ導かれる。For water supply, low-pressure saturated water after brackish water separation in a low-pressure brackish water separator 11 is led to an atmospheric pressure drain tank 7 and heated to approximately 90°C.
After being heated to , the water is guided by the water supply pump 8 to the preheating section 6 of the exhaust gas economizer. Here, the feed water is heated to near the saturation temperature of the low-pressure evaporator 6, and then guided to the auxiliary boiler 9, which serves as a brackish water separator of the high-pressure evaporator 4, and the low-pressure evaporator 5.
低圧蒸発部5へ導かれた給水は、汽水混合体として取出
され、低圧汽水分離器11にて汽水分離が行われ、蒸気
は燃料油加熱等の船内サービス蒸気使用先15へ供給さ
れ、一方I・17ンは前述のように太気用トレンタンク
7へ導かれ給水加熱匡利用される。The feed water led to the low-pressure evaporator 5 is taken out as a brackish water mixture, and the brackish water is separated in a low-pressure brackish water separator 11, and the steam is supplied to an onboard service steam usage site 15 for heating fuel oil, etc. - As mentioned above, the 17 liters is led to the large air tank 7 and used for heating the water supply.
一方、高圧蒸発部4へは、補助ボイラ9内の飽和水がボ
イラ水循環ポンプ10により導か第1、汽水混合体とし
て取出され、再び補助ホイラの蒸気トラムへ戻してここ
で汽水分離が行われる。On the other hand, the saturated water in the auxiliary boiler 9 is guided to the high-pressure evaporator 4 by the boiler water circulation pump 10 and taken out as a first brackish water mixture, and is returned to the steam tram of the auxiliary boiler where the brackish water is separated.
汽水分離を行なった蒸気は過熱部3へ導かれ、所定温度
まで加熱された後発電機タービン12へ供給され、その
駆動用として使用された後復水器13及び復水ポンプ1
4を経由して大気圧ドレンタンク7へ戻ってくる。The steam from which the brackish water has been separated is led to the superheating section 3, heated to a predetermined temperature, and then supplied to the generator turbine 12, which is then used to drive the condenser 13 and condensate pump 1.
4 and returns to the atmospheric pressure drain tank 7.
上記システムでは給水は約90℃で排ガスエコノマイザ
の予熱部へ導かれるため同予熱部のガス側表面温度は低
温腐食領域に入っている。このため、予熱部チューブに
は低温耐食鋼を使用しているが、それでも給水温度90
〜120℃の領域では部分的な選択腐食が発生している
。この対策として選択腐食が発生している部分のみ、肉
盛補修を行ない寿命を延ばしているが、その補修費もか
なりのものになるし、肉盛補修そのものは完全な解決策
とはならないため、一度補修しても、3〜4年後には再
び腐食して再補修の必要がある。また低温腐食を低減す
るには、予熱部への給水温度を120℃以上に上昇させ
ればよいが、蒸気式給水ヒータを設置Nシた場合、給水
ヒータに蒸気を使用するため、その分発電機タービン駆
動用蒸気または船内→ノーービス蒸気が不足しロスとな
るとともに、給水量は変わらずに、給水温度だけが上昇
するため、予熱部での必要吸熱量が減少し、その結果予
熱部での伝熱面積を減少さすため既製作済のものについ
ては何本かのチューブにプラグをする必要がある。In the above system, the feed water is led to the preheating section of the exhaust gas economizer at about 90° C., so the gas side surface temperature of the preheating section is in the low-temperature corrosion region. For this reason, although low-temperature corrosion-resistant steel is used for the preheating section tube, it still
Partial selective corrosion occurs in the region of ~120°C. As a countermeasure to this problem, overlay repair is performed only on the areas where selective corrosion has occurred to extend the service life, but the repair costs are considerable, and overlay repair itself is not a complete solution. Even if it is repaired once, it will corrode again after 3 to 4 years and will need to be repaired again. In addition, to reduce low-temperature corrosion, it is sufficient to raise the water supply temperature to the preheating section to 120°C or higher, but if a steam-type water heater is installed, steam is used for the water heater, so the power generation will be reduced accordingly. There is a shortage of steam for driving the machine turbine or on-board → novice steam, resulting in losses.Also, the amount of water supplied remains the same, but only the temperature of the supplied water increases, so the required amount of heat absorption in the preheating section decreases, and as a result, the amount of heat absorbed in the preheating section decreases. It is necessary to plug some of the tubes in the prefabricated version to reduce the heat transfer area.
本発明は上記の点に鑑み、熱回収率をほとんど減少させ
ることなく予熱部への給水温度を上昇させ、低温腐食を
軽減させた排ガスエコノマイザを提供することを1」的
としてなされたもので、給水子熱部の出口と入口とを連
通ずる配管と、同配管に介装された再循環ポンプを具備
することを特徴とする。In view of the above points, the present invention has been made with the following objectives: 1) To provide an exhaust gas economizer that increases the temperature of water supplied to the preheating section without substantially reducing the heat recovery rate and reduces low-temperature corrosion. It is characterized by comprising piping that communicates the outlet and inlet of the water supply heating element, and a recirculation pump interposed in the piping.
そして本発明によれば、上記再循環ポンプを駆動するこ
とにより、」1記配管を介して給水子熱部の出口から入
口に高温の給水が供給されて給水予熱部人口の給水温度
が−上昇するので、給水子熱部の低温腐食が軽減される
とともに、給水子熱部の給水流量が循環によって増加す
るので入口温度」1昇にかかわらず熱回収量は低下しな
い。また他の機器へ影響を及ぼすことなく低温腐食防止
を図ることが可能である。According to the present invention, by driving the recirculation pump, high-temperature feed water is supplied from the outlet to the inlet of the water supply heating section through the piping described in 1. Therefore, low-temperature corrosion of the water supply heating element is reduced, and the water supply flow rate of the water supply heating element increases due to circulation, so the amount of heat recovery does not decrease even if the inlet temperature increases by 1. Furthermore, it is possible to prevent low-temperature corrosion without affecting other equipment.
以下本発明の一実施例を第2図に基づいて説明する。第
2図において第1図と同一符号を付したものは第1図の
ものと同様な機能を具えたものであり説明は省略する。An embodiment of the present invention will be described below with reference to FIG. Components in FIG. 2 denoted by the same reference numerals as those in FIG. 1 have the same functions as those in FIG. 1, and a description thereof will be omitted.
第2図のものは第1図のものに、予熱部出口の高湛水の
一部を予熱部入口に戻して給水と混合させるための再循
環ライン19.同再循環ライン19に介装された再循環
ポンプ16、流量調整用のオリフィス17及びニードル
弁18を付加したものである。図において大気圧ドレン
タンク7より給水ポンプ8にて排ガスエコノマイザ2の
予熱部6へ給水が供給されるが、予熱部出口と入口とを
連通ずる再循環ライン19に設けた予熱部再循環ポンプ
16、流量調整用ニードル弁18及びオリフィス17を
介して予熱された高温給水(140〜150℃)の一部
が再び予熱部入口給水ラインへ導かれて、大気圧ドレン
タンク7からの給水(約90℃)と混合されることによ
り予熱部入口の給水温度が120℃以上に上昇され予熱
部チ、−プの低温腐食が太目]に低減される。The one in FIG. 2 is the same as the one in FIG. 1, but includes a recirculation line 19 for returning a portion of the high water at the outlet of the preheating section to the inlet of the preheating section and mixing it with the supply water. A recirculation pump 16, an orifice 17 for flow rate adjustment, and a needle valve 18 are added to the recirculation line 19. In the figure, water is supplied from the atmospheric pressure drain tank 7 to the preheating section 6 of the exhaust gas economizer 2 by the water supply pump 8, but the preheating section recirculation pump 16 is installed in the recirculation line 19 that communicates the outlet and inlet of the preheating section. A part of the preheated high-temperature water supply (140 to 150°C) is guided through the flow rate adjustment needle valve 18 and the orifice 17 to the preheating section inlet water supply line, and the water supply from the atmospheric pressure drain tank 7 (approximately 90 °C ℃), the water supply temperature at the inlet of the preheating section is raised to 120.degree.
上記のような排ガスエコノマイザの奏する作用効果は次
のとおりである。The effects of the exhaust gas economizer as described above are as follows.
1)予熱部入ロ/′出ロ給水ラインを再循環ポンプにて
結ぶことにより簡単に予熱部入口給水温度が所定の温度
へ上昇でき他の影響を受けないためシステムがシンプル
である。1) By connecting the water supply lines entering and exiting the preheating section with a recirculation pump, the temperature of the water supply at the entrance of the preheating section can be easily raised to a predetermined temperature without being affected by other factors, so the system is simple.
11)再循環ポンプにて予熱部入口給水温度を上昇させ
ても予熱部給水量(循環量)が増加するため予熱部出口
給水温度は、再循環ポンプを使用しない状態より若干低
くなる程度であり、予熱部の伝熱面積をカットする必要
はなく従って排熱回収量もほとんど低1” Lない。11) Even if the preheating section inlet water supply temperature is increased with the recirculation pump, the preheating section water supply amount (circulation amount) will increase, so the preheating section outlet water temperature will only be slightly lower than when the recirculation pump is not used. There is no need to cut the heat transfer area of the preheating section, and therefore the amount of waste heat recovered is almost 1"L.
111) 上記によりシンプルでかつ効果的に予熱部入
目給水温度を120℃以上に上昇させることができ、予
熱部チューブの低温腐食を大巾に低減できる。111) With the above, the temperature of the water supply entering the preheating section can be raised to 120° C. or higher in a simple and effective manner, and low-temperature corrosion of the preheating section tube can be greatly reduced.
第1図は従来の排ガスエコノマイザの一例を示す系統図
、第2図は本発明の一実施例の系統図である。
■・・・ティーセル主機、2・・・排ガスエコノマイザ
、6・・・予熱部、16・・・再循環ポンプ、19・・
・再循環ライン。
簗1圀FIG. 1 is a system diagram showing an example of a conventional exhaust gas economizer, and FIG. 2 is a system diagram of an embodiment of the present invention. ■... Tea cell main engine, 2... Exhaust gas economizer, 6... Preheating section, 16... Recirculation pump, 19...
・Recirculation line. 1 area of bamboo
Claims (1)
介装された再循環ポンプとを具備することを特徴とする
排ガスエコノマイザ。An exhaust gas economizer characterized by comprising a pipe that communicates an outlet and an inlet of a water supply preheating section, and a recirculation pump installed in the pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172784A JPS60155802A (en) | 1984-01-25 | 1984-01-25 | Economizer for exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172784A JPS60155802A (en) | 1984-01-25 | 1984-01-25 | Economizer for exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60155802A true JPS60155802A (en) | 1985-08-15 |
Family
ID=11786061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1172784A Pending JPS60155802A (en) | 1984-01-25 | 1984-01-25 | Economizer for exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60155802A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5886301A (en) * | 1981-11-18 | 1983-05-23 | 三菱重工業株式会社 | Waste-heat recovery steam generator |
JPS58187705A (en) * | 1982-04-24 | 1983-11-02 | バブコツク日立株式会社 | Waste heat recovery boiler device |
-
1984
- 1984-01-25 JP JP1172784A patent/JPS60155802A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5886301A (en) * | 1981-11-18 | 1983-05-23 | 三菱重工業株式会社 | Waste-heat recovery steam generator |
JPS58187705A (en) * | 1982-04-24 | 1983-11-02 | バブコツク日立株式会社 | Waste heat recovery boiler device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0391082A2 (en) | Improved efficiency combined cycle power plant | |
US6089013A (en) | Configuration for deaerating a condensate | |
KR870001256B1 (en) | Exhaust gas heat recovery system in internal combustion engine | |
JPS60155802A (en) | Economizer for exhaust gas | |
CN215261251U (en) | Natural gas system of exhaust-heat boiler hot water pumping heating pressure regulating station | |
JPS6035104A (en) | Super high-temperatue, high-pressure steam turbine plant | |
JPS6131361B2 (en) | ||
CN115288961A (en) | Double-tank thermal storage solar-coal complementary steam turbine system and power generation system | |
CN218510934U (en) | Drainage waste heat recovery system of low-pressure cylinder cutting cylinder heat supply unit | |
JPS6136122B2 (en) | ||
JPS5913325Y2 (en) | Exhaust gas heat recovery device for marine engines | |
JP3753762B2 (en) | Waste heat recovery boiler | |
JPS6137923Y2 (en) | ||
CN219160400U (en) | Desulfurizing slurry heat recovery and water saving system | |
CN117605636B (en) | A temperature difference energy power generation system suitable for low-temperature heat sources on offshore platforms | |
CN222011869U (en) | Vertical superheated steam boiler system | |
CN220366723U (en) | Desulfurizing slurry heat recovery system | |
CN210831946U (en) | Hot air type boiler with closed condensation recovery system | |
JPH02157021A (en) | Ammonia gas producing apparatus from ammonia water | |
JPH08303213A (en) | Power generating system using pressure boiler | |
CN119641458A (en) | Dual-pressure flash evaporation waste heat power generation device | |
JPS6022185B2 (en) | Exhaust gas heat recovery device for marine engines | |
JPS62162803A (en) | Exhaust gas economizer | |
JPS5937521Y2 (en) | boiler equipment | |
JPS60108508A (en) | Device for recovering heat from exhaust gas of internal- combustion engine |