[go: up one dir, main page]

JPS60155267A - Infrared radiating coating composition - Google Patents

Infrared radiating coating composition

Info

Publication number
JPS60155267A
JPS60155267A JP59010405A JP1040584A JPS60155267A JP S60155267 A JPS60155267 A JP S60155267A JP 59010405 A JP59010405 A JP 59010405A JP 1040584 A JP1040584 A JP 1040584A JP S60155267 A JPS60155267 A JP S60155267A
Authority
JP
Japan
Prior art keywords
particle size
resin
oxide
infrared
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59010405A
Other languages
Japanese (ja)
Other versions
JPS6319542B2 (en
Inventor
Masao Maki
正雄 牧
Akio Fukuda
明雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59010405A priority Critical patent/JPS60155267A/en
Publication of JPS60155267A publication Critical patent/JPS60155267A/en
Publication of JPS6319542B2 publication Critical patent/JPS6319542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide the titled compsn. which can be shaped into a thin film and has high emissivity in the far-infrared region, by dispersing a resin having a specified particle size and zirconia or zirconium having a specified particle size or a mixture thereof with a rare earth element oxide in an acrylic resin binder. CONSTITUTION:An infrared radiating coating compsn. is obtd. by dispersing at least one resin having a particle size of 0.5-5mu selected from among PE, PP, chlorinated PE, chlorinated PP, a fluororesin and vinyl fluoride resin and zirconia or zirconium having a particle size of 0.1-0.5mu or a compound oxide thereof with a rare earth element oxide in an acrylic resin binder. The compsn. can be shaped into a thin film of 5-50mu and can form a high radiator having an emissivity of 0.8 or above in the far-infrared region of 4-15mu. A radiation surface can be inexpensively formed by a spray method with excellent productivity. A coat which is highly radiative and has a very high strength and high adhesion reliability can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房等の目的で輻射加熱を行う赤外線加熱分
野で高効率の赤外線輻射体を形成するため、160°C
以下の金属等の加熱体表面に適用する赤外線輻射被覆組
成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used in the field of infrared heating, which performs radiant heating for purposes such as space heating, to form a highly efficient infrared radiator at 160°C.
The present invention relates to an infrared radiation coating composition applied to the surface of a heating element such as the following metal.

従来例の構成とその問題点 従来、赤外線輻射によって対象物を加熱する手段が知ら
れているが、近年に到り、赤外線の波長の長い遠赤外線
が、被加熱体の吸収特性と良く一致し、加熱効率が良い
ことが分り、注目されるようになった。
Conventional configurations and their problems Conventionally, methods of heating objects using infrared radiation have been known, but in recent years, far-infrared rays with long wavelengths have been found to match well with the absorption characteristics of the heated object. It has been found to have good heating efficiency and has attracted attention.

従来の遠赤外線輻射被覆としては、ジルコン(ZrO5
in2)を主成分とし、これに、酸化鉄(Fe 20 
s )、酸化コバルト(Coo)、酸化二ソケル(N 
i O)、酸化りo ム(C’r203)、酸化マンガ
ン(M n O2)などの酸化物および粘土を加え成形
し、焼結したものなどが知られているが、被覆を形成す
るための工程が複雑で高価となる上に、これが一種の磁
器であるために機械的強度(とくに耐衝撃性)が悪く、
膜厚が通常200μmと厚いために、速熱性に劣るとい
う欠点があった。寸だ、その輻射特性に関して、4〜1
6μmの遠赤外線域の輻射率も低かった。
As a conventional far-infrared radiation coating, zircon (ZrO5
The main component is iron oxide (Fe 20
s ), cobalt oxide (Coo), disokel oxide (N
Products made by adding oxides and clay such as iO), rim oxide (C'r203), and manganese oxide (MnO2) and molding and sintering are known. The process is complicated and expensive, and since it is a type of porcelain, it has poor mechanical strength (especially impact resistance).
Since the film thickness is usually as thick as 200 μm, there is a drawback that the heating rate is poor. Regarding its radiation characteristics, it is 4 to 1
The emissivity in the far infrared region of 6 μm was also low.

発明の目的 本発明は、この様な従来の欠点を解消するもので、5〜
60μmの薄膜の形成によシ、4μm〜16μmの赤外
線波長域の輻射率が0.8以上の高輻射体を形成するも
のである。
OBJECTS OF THE INVENTION The present invention solves these conventional drawbacks, and provides five to five points.
By forming a thin film of 60 μm, a high emissivity body having an emissivity of 0.8 or more in the infrared wavelength region of 4 μm to 16 μm is formed.

また通常の塗装法でスプレー法などの生産性に優れた方
法で安価な輻射面を提供するものである。
It also provides an inexpensive radiant surface using a highly productive method such as a spraying method using a conventional coating method.

波器は高輻射であると同時に非常に高強度の密着信頼性
の高い被覆を形成することも本発明の目的である。
It is also an object of the present invention that the corrugator not only has high radiation but also forms a coating with very high strength and high adhesion reliability.

発明の構成 この目的を達成するために、本発明は、アクリル樹脂を
バインダーとして用いる。蟲アクリル樹脂バインダー中
に、ポリエチレン樹脂、ポリプロピレン樹脂、塩素化ポ
リエチレン樹脂、塩素化プロピレン樹脂、フッ素樹脂、
フッ化ビニル樹脂の群から選定した1種以上の樹脂でと
ぐに、粒径が0.5〜6μmの範囲の樹脂、および、ジ
ルコニア、もしくは、ジルコンを単独か、捷たは、希土
類元素酸化物との複合酸化物で、とくに粒径か0.1〜
0.6μmの酸化物を分散させ、塗料化したものを用い
て、基材上に塗布させた後の硬化体として、赤外線輻射
被覆を得る。
Structure of the Invention To achieve this objective, the present invention uses acrylic resin as a binder. In the insect acrylic resin binder, polyethylene resin, polypropylene resin, chlorinated polyethylene resin, chlorinated propylene resin, fluororesin,
One or more resins selected from the group of vinyl fluoride resins, resins with a particle size in the range of 0.5 to 6 μm, zirconia or zircon alone or crushed, or rare earth element oxides. A composite oxide with a particle size of 0.1~
An infrared radiation coating is obtained as a cured product after being coated on a substrate using a coating material in which 0.6 μm oxide is dispersed.

ポリエチレン樹脂、ポリプロピレン樹脂、塩素化ポリエ
チレン樹脂、塩素化ポリプロピレン樹脂、フッ素樹脂、
フッ化ビニル樹脂は、通常、溶剤には溶解せず、粉末と
して分散させて用いる。アクリル樹脂は、熱可塑性、熱
硬化性いずれの場合とも、そノ屈折率が1.05〜1.
30の範囲のものであれば適用可能である。また、ポリ
エチレン樹脂、・・・・・・、フッ化ビニル樹脂に関し
ては1.3〜1.5の屈折率の範囲であれば、適用可能
である。アクリル樹脂中に分散した、ポリエチレン樹脂
等は、両者の屈折率の差゛により、遠赤外線の散乱吸収
体として作用する。ジルコニアまたはジルコンとそれ等
と希土類元素酸化物との複合酸化物で、とくに粒径が0
.1〜0.5μmの酸化物も、同様に遠赤外線の吸収散
乱体として作用する。前者が遠赤外域でも短波長側で寄
与するのに対して、後者は、7μm以上の長波長域で寄
与する。
Polyethylene resin, polypropylene resin, chlorinated polyethylene resin, chlorinated polypropylene resin, fluororesin,
Vinyl fluoride resin usually does not dissolve in a solvent, but is used after being dispersed as a powder. Acrylic resin, whether thermoplastic or thermosetting, has a refractive index of 1.05 to 1.
It is applicable as long as it is in the range of 30. Further, polyethylene resin, . . . , vinyl fluoride resin can be applied as long as the refractive index is within the range of 1.3 to 1.5. Polyethylene resin or the like dispersed in acrylic resin acts as a far-infrared scattering absorber due to the difference in refractive index between the two. A composite oxide of zirconia or zircon and oxides of rare earth elements, especially those with a particle size of 0.
.. Oxides with a diameter of 1 to 0.5 μm also act as far-infrared absorbing and scattering bodies. While the former contributes in the short wavelength region even in the far infrared region, the latter contributes in the long wavelength region of 7 μm or more.

実施例の説明 第1図に本発明の概念図を示す。第1図において、1は
基材で、金属、ガラスなど適用が可能である。2はアク
リル樹脂である。熱可塑性、あるいは、熱硬化性など、
その屈折率が1.05〜1.30の範囲のものであれば
、適用可能である。3は、ジルコニア(即ちZr02)
か、ジル:+7 (Zr5iO4)単独か、もしくは、
それ等と希止類元素との複合酸化物で、屈折率が、1.
8〜2.5であって、とくに、その粒径が0.1〜0.
5μmの酸化物である・4は、ポリエチレン樹脂、ポリ
プロピレン樹脂、塩素化ポリエチレン樹脂、塩素化ポリ
プロピレン樹脂、フッ素樹脂、フッ化ビニル樹脂の群か
ら選定した1種以上の樹脂で、とくに屈折率が1.3〜
1.5で粒径が0.5〜5μmの範囲の樹脂である。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a conceptual diagram of the present invention. In FIG. 1, numeral 1 indicates a base material, which can be made of metal, glass, or the like. 2 is an acrylic resin. Thermoplastic or thermosetting, etc.
Any material having a refractive index in the range of 1.05 to 1.30 is applicable. 3 is zirconia (i.e. Zr02)
Or Zir: +7 (Zr5iO4) alone, or
It is a composite oxide of these and rare elements, and has a refractive index of 1.
8 to 2.5, in particular, the particle size is 0.1 to 0.
The 5 μm oxide ・4 is one or more resins selected from the group of polyethylene resin, polypropylene resin, chlorinated polyethylene resin, chlorinated polypropylene resin, fluororesin, and vinyl fluoride resin, especially with a refractive index of 1. .3~
1.5 and the particle size is in the range of 0.5 to 5 μm.

当被覆での、赤外光の吸収挙動として、4の樹脂は、赤
外線領域においては、比較的透明であるが、アクリル樹
脂のバインダーと組合せた場合、4〜6μmの遠赤外線
を良く散乱吸収する。また、3の金属酸化物は、同様に
、6〜15μmの遠赤外線を良く散乱吸収する。キルヒ
キッフの法則から輻射率は吸収率に等しいので、以上の
効果にょに輻射する。
Regarding the infrared light absorption behavior of this coating, the resin No. 4 is relatively transparent in the infrared region, but when combined with an acrylic resin binder, it scatters and absorbs far infrared rays of 4 to 6 μm well. . Further, metal oxide No. 3 similarly scatters and absorbs far infrared rays of 6 to 15 μm well. According to Kirchkiff's law, emissivity is equal to absorption, so the above effect radiates.

ジルコニア、もしくはジルコンの屈折率は、2゜0〜2
.2位であるが、これと希土類元素酸化物、即ち、L’
a、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb
The refractive index of zirconia or zircon is 2°0~2
.. Although it is in second place, this and rare earth element oxide, that is, L'
a, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb
.

Dy、Ho、Er、Tm、Yb、Lu などの元素の酸
化物を固溶化させたり、複合酸化物化すると、屈折率が
0.2程度高くなシ、長波長側の散乱吸収に有利となる
。3の酸化物の配合比としては、アクリル樹脂に対して
、5/100−100/100の範囲が望ましい。これ
は、散乱吸収の点からであり、6Q/1oO以上では、
吸収特性はほとんど変わらなくなる。また、4の樹脂の
配合比は、アクリル樹脂に対して、s/100〜15/
100の範囲が望ましい・ これ等のビニル系樹脂は、いずれも、疎水性であるため
、とくに耐食性に好影響をもたらす。
When oxides of elements such as Dy, Ho, Er, Tm, Yb, and Lu are made into a solid solution or made into a composite oxide, the refractive index is about 0.2 higher, which is advantageous for scattering and absorption on the long wavelength side. The blending ratio of the oxide No. 3 to the acrylic resin is preferably in the range of 5/100 to 100/100. This is from the point of scattering and absorption, and above 6Q/1oO,
Absorption characteristics remain almost unchanged. In addition, the blending ratio of the resin in No. 4 is s/100 to 15/
A range of 100 is desirable. Since these vinyl resins are all hydrophobic, they have a particularly favorable effect on corrosion resistance.

しかし、15/100を越えると、散乱効果よシも、こ
れ等のビニル系樹脂自体の赤外線吸収特性の影響が顕著
となシ、ビニル系樹脂自体は、非常に赤外線に透明であ
るため、赤外、ili!輻射性は、tPしろ悪くなる。
However, if it exceeds 15/100, the influence of the infrared absorption characteristics of these vinyl resins themselves becomes noticeable, as well as the scattering effect, and since vinyl resins themselves are very transparent to infrared rays, Outside, ili! The radiation becomes worse with tP.

以下、実施例を記載する。Examples will be described below.

第1表の配合にて、各塗料を調合した。塗料の調合は、
「アトライタ」(商品名)を用いて、各原料を約10時
間分散混合して行った。
Each paint was prepared according to the formulation shown in Table 1. The mixture of paint is
Each raw material was dispersed and mixed for about 10 hours using "Attritor" (trade name).

各塗料は、乾燥後の膜厚が10μmとなるように、基材
のアルミニウム板上に塗布して、熱可塑性アクリル樹脂
の場合には、24時間室温放置、熱硬化性アクリル樹脂
の場合には、180°Cで20分焼付けた。このテスト
ピースに関して、表面湯度を100°Cに設定して、日
本分光(株)製分光輻射装置を用いて、各被覆の分光輻
射特性を評価した。
Each paint is applied onto an aluminum plate as a base material so that the film thickness after drying is 10 μm, and in the case of thermoplastic acrylic resin, it is left at room temperature for 24 hours, and in the case of thermosetting acrylic resin, it is left at room temperature. , baked at 180°C for 20 minutes. Regarding this test piece, the surface hot water temperature was set at 100° C., and the spectral radiation characteristics of each coating were evaluated using a spectral radiation device manufactured by JASCO Corporation.

以下余白 第1表に示した輻射率は、波長4μm〜16μmの平均
輻射率を示す。
The emissivity shown in Table 1 below indicates the average emissivity at wavelengths of 4 μm to 16 μm.

第2図に、代表的な分光輻射特性のデータを示す。第2
図において、Aは、アルミニウムの基材のみの場合であ
り、Bは、熱硬化性アクリル樹脂の場で、10重量部の
炭酸カルシウムと、50重量部の金属酸化物(Fe20
3・MnO2・Cu0)顔料を含む場合である。P−1
3は本発明の系でとくに、高輻射の場合であるが、P−
2〜P−13の場合とも、はぼ類似の輻射パターンを示
した。P−14とP−13の違いから明らかなように、
ビニール系樹脂の添加によって輻射の立上り波長が、7
μmから4μmへと短波長側シフトすることが分る。
FIG. 2 shows data on typical spectral radiation characteristics. Second
In the figure, A is the case where only the aluminum base material is used, and B is the case where the thermosetting acrylic resin is used, and 10 parts by weight of calcium carbonate and 50 parts by weight of metal oxide (Fe20
3.MnO2.Cu0) pigment is included. P-1
3 is the system of the present invention, especially in the case of high radiation, but P-
2 to P-13 also showed radiation patterns similar to Habo. As is clear from the difference between P-14 and P-13,
By adding vinyl resin, the rising wavelength of radiation is increased to 7.
It can be seen that the wavelength shifts from μm to 4 μm.

P−1から明らかな通り、カーボンを顔料とする系では
、むしろ、長波長即ち、遠赤外線側の輻射率は、低くな
る傾向が分る。
As is clear from P-1, in systems using carbon as a pigment, the emissivity at longer wavelengths, that is, on the far infrared rays side, tends to be lower.

尚第1表において、用いているフッ素樹脂の粒径は2μ
m、ポリエチレン樹脂が4μm、塩素化ポリエチレンは
3μmの中心粒径を有する。まだ、ジルコニア、ジルコ
ン系金属酸化物は、いずれもその中心粒径が0.3μm
のものを用いている。
In Table 1, the particle size of the fluororesin used is 2μ.
m, the polyethylene resin has a median particle size of 4 μm, and the chlorinated polyethylene has a median particle size of 3 μm. However, both zirconia and zircon-based metal oxides have a central particle size of 0.3 μm.
I'm using one.

以上のように、本発明の被覆は約10μmと極めて薄膜
であるにも拘らず、遠赤外線領域(4μm〜16μm)
において、極めて高輻射性を有することが分る。
As described above, although the coating of the present invention is extremely thin at approximately 10 μm, it is effective in the far infrared region (4 μm to 16 μm).
It can be seen that it has extremely high radiation.

本発明の被覆は、極めて優れた密着性と、耐食性、耐汚
染性等を示した。このような優れた、耐食性、#1汚染
性が得られた理由はフッ素樹脂等のビニル系樹脂の疎水
性、非粘着性の物性に依存するものと考えられる。
The coating of the present invention exhibited extremely excellent adhesion, corrosion resistance, stain resistance, etc. The reason why such excellent corrosion resistance and #1 stain resistance were obtained is thought to be due to the hydrophobicity and non-adhesive physical properties of the vinyl resin such as fluororesin.

発明の効果 以上のように本発明の被覆は、 1 30μm以下の通常の塗膜の膜厚で、4μm以上の
遠赤外線高輻射性能を実現している。
Effects of the Invention As described above, the coating of the present invention achieves high far-infrared radiation performance of 4 μm or more with a normal coating film thickness of 130 μm or less.

2 通常のスプレーにて塗布可能であり、量産性に優れ
ている。
2. It can be applied by regular spray and has excellent mass productivity.

3 従来の多孔質なセラミック系被覆と比較して、塗膜
が緻密であり、耐食性、耐汚染性が、とくに優れている
3. Compared to conventional porous ceramic coatings, the coating film is denser and has particularly excellent corrosion resistance and stain resistance.

4 本発明の被覆の系は、白色系であるため、必要に応
じて、各種の色に着色可能であり、色彩的にカラフルな
高輻射面を形成できる。
4. Since the coating system of the present invention is white, it can be colored in various colors as required, and a colorful high radiation surface can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の赤外線高輻射被覆の要部断
面図、第2図は同分光輻射特性図である。 1・・・・・・基材、2・・・・・・アクリル樹脂、3
・・・・・ジルコニア等、4・・・・・・樹脂。
FIG. 1 is a sectional view of a main part of a high-infrared radiation coating according to an embodiment of the present invention, and FIG. 2 is a spectral radiation characteristic diagram thereof. 1...Base material, 2...Acrylic resin, 3
...Zirconia, etc., 4...Resin.

Claims (1)

【特許請求の範囲】[Claims] (1)アクリル樹脂、およびポリエチレン樹脂、ポリプ
ロピレン樹脂、購ヒポリエチレン樹脂、塩素化ポリプロ
ピレン樹脂、フッ素樹脂、フッ化ビニル樹脂の群から選
定した1種以上の樹脂で、とくに粒径が0.5〜5μm
の範囲の樹脂およびジルコニア、もしくはジルコン単独
か、または希土類元素酸化物との複合酸化物で、とくに
粒径が0.1〜0.5μmの酸化物を主成分とする赤外
線輻射被覆組成物@
(1) Acrylic resin, and one or more resins selected from the group of polyethylene resins, polypropylene resins, purchased polyethylene resins, chlorinated polypropylene resins, fluororesins, and vinyl fluoride resins, especially those with a particle size of 0.5 to 5μm
An infrared radiation coating composition consisting mainly of a resin in the range of and zirconia or zircon alone or a composite oxide with a rare earth element oxide, especially an oxide with a particle size of 0.1 to 0.5 μm.
JP59010405A 1984-01-24 1984-01-24 Infrared radiating coating composition Granted JPS60155267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010405A JPS60155267A (en) 1984-01-24 1984-01-24 Infrared radiating coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010405A JPS60155267A (en) 1984-01-24 1984-01-24 Infrared radiating coating composition

Publications (2)

Publication Number Publication Date
JPS60155267A true JPS60155267A (en) 1985-08-15
JPS6319542B2 JPS6319542B2 (en) 1988-04-22

Family

ID=11749226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010405A Granted JPS60155267A (en) 1984-01-24 1984-01-24 Infrared radiating coating composition

Country Status (1)

Country Link
JP (1) JPS60155267A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274970A (en) * 1985-09-28 1987-04-06 Kansai Paint Co Ltd Coating composition for steel plate and plate coated therewith
JPS6424837A (en) * 1987-07-21 1989-01-26 Keiichi Yamamoto Elastic foam
WO1990001880A1 (en) * 1988-08-30 1990-03-08 Mitsui Toatsu Chemicals, Inc. Implement for keeping freshness of food or water
WO1990002152A1 (en) * 1988-08-30 1990-03-08 Mitsui Toatsu Chemicals, Inc. Resin composition containing far infrared ray-radiating ceramics
JPH06345881A (en) * 1993-06-04 1994-12-20 Touden Kankyo Eng Kk Water-repellent material and its production
US6890457B2 (en) * 2002-09-20 2005-05-10 Toshiyuki Waragai Adhesive
US7313909B2 (en) 2004-10-25 2008-01-01 General Electric Company High-emissivity infrared coating applications for use in HIRSS applications
JP2013209508A (en) * 2012-03-30 2013-10-10 Dic Corp Thermoplastic resin composition and molded article thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183792A (en) * 1989-01-10 1990-07-18 Hiroshi Kawarazuka Defatting furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213771A (en) * 1983-05-19 1984-12-03 Nishimura Togyo Kk Coating composition for radiating far infrared ray

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213771A (en) * 1983-05-19 1984-12-03 Nishimura Togyo Kk Coating composition for radiating far infrared ray

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274970A (en) * 1985-09-28 1987-04-06 Kansai Paint Co Ltd Coating composition for steel plate and plate coated therewith
JPS6424837A (en) * 1987-07-21 1989-01-26 Keiichi Yamamoto Elastic foam
WO1990001880A1 (en) * 1988-08-30 1990-03-08 Mitsui Toatsu Chemicals, Inc. Implement for keeping freshness of food or water
WO1990002152A1 (en) * 1988-08-30 1990-03-08 Mitsui Toatsu Chemicals, Inc. Resin composition containing far infrared ray-radiating ceramics
EP0387356A1 (en) * 1988-08-30 1990-09-19 MITSUI TOATSU CHEMICALS, Inc. Resin composition containing far infrared ray-radiating ceramics
US5151463A (en) * 1988-08-30 1992-09-29 Mitsui Toatsu Chemicals, Inc. Resin compositions including ceramics emitting far infrared rays
JPH06345881A (en) * 1993-06-04 1994-12-20 Touden Kankyo Eng Kk Water-repellent material and its production
US6890457B2 (en) * 2002-09-20 2005-05-10 Toshiyuki Waragai Adhesive
US7313909B2 (en) 2004-10-25 2008-01-01 General Electric Company High-emissivity infrared coating applications for use in HIRSS applications
JP2013209508A (en) * 2012-03-30 2013-10-10 Dic Corp Thermoplastic resin composition and molded article thereof

Also Published As

Publication number Publication date
JPS6319542B2 (en) 1988-04-22

Similar Documents

Publication Publication Date Title
JP3746824B2 (en) Visible light absorber
KR20040012567A (en) Master batch containing heat radiation shielding component, and heat radiation shielding transparent resin form and heat radiation shielding transparent laminate for which the master batch has been used
CN107160773B (en) Composite membrane with infrared radiation heat dissipation function and preparation method and application thereof
CN102533011A (en) Thermosetting reflection thermal insulation coating and preparation method thereof
JPS60155267A (en) Infrared radiating coating composition
US20010044489A1 (en) Coating substance with low emissivity in the heat radiation range
CN108329726A (en) Scattering radiation cooling accumulates microballoon coating and preparation method thereof at random
AU685629B2 (en) Coating substance with low emissivity in the heat radiation range
CN209178283U (en) Scattering radiation cooling accumulates microballoon coating at random
JP2003326638A (en) Heat insulating decorative material and manufacturing method therefor
CN108012347B (en) Preparation process of infrared electrothermal film
JPS60156771A (en) Coating composition for solar heat energy selective absorption
KR101827836B1 (en) Construction method for infrared reflection coating
JPH0120663B2 (en)
EP0283280B1 (en) Novel stoving lacquers and their use
CN109382289A (en) High-weatherability chameleon Coil Coating Products and preparation method thereof
JPH0243552B2 (en)
JPH0155380B2 (en)
JP2014043581A (en) Coating material for coated metal plate, coated metal plate, and production method of coated metal plate
JPH0684270B2 (en) Infrared radiation coating
JPS59226064A (en) Infrared-radiating coating composition
JPH10151412A (en) Highly reflective surface treated plate
US6331357B1 (en) Articles with stable coatings having tailorable optical properties
JP2006249424A (en) Coating liquid for selective permeable membrane, selective permeable membrane and selective permeable multilayered membrane
JPS6154158B2 (en)