JPS60153631A - Surface acoustic wave element - Google Patents
Surface acoustic wave elementInfo
- Publication number
- JPS60153631A JPS60153631A JP1128984A JP1128984A JPS60153631A JP S60153631 A JPS60153631 A JP S60153631A JP 1128984 A JP1128984 A JP 1128984A JP 1128984 A JP1128984 A JP 1128984A JP S60153631 A JPS60153631 A JP S60153631A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- substrate
- electrode layer
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 230000000694 effects Effects 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14538—Formation
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は表面弾性波を利用した電気通信用素子である弾
性表面波(SAW)素子に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a surface acoustic wave (SAW) device which is a telecommunication device using surface acoustic waves.
口、従来技術
固体表面を伝播する表面弾性波に着目し、圧電効果を有
する基板上に所定形状の電極層を形成して、電気信号と
表面弾性波の変換を巧みに行なわせた電気通信用素子で
ある弾性表面被装W(以下SAW素子と呼ぶ)は遅延素
子・ろ波器・発振器など広い範囲に応用可能なもので、
数百MHzから数GHzの領域で安定な回路を容易に実
現できる可能性を持っている。Conventional technology Focusing on surface acoustic waves that propagate on solid surfaces, an electrode layer of a predetermined shape is formed on a substrate with a piezoelectric effect to skillfully convert electrical signals and surface acoustic waves for telecommunications. Elastic surface coating W (hereinafter referred to as SAW element), which is an element, can be applied to a wide range of applications such as delay elements, filters, and oscillators.
It has the potential to easily realize stable circuits in the range from several hundred MHz to several GHz.
第1図はる波器として使用した構造例について説明する
もので、圧電効果を有する基板(1)の表面にすだれ状
電極(2)(3)を被着形成し、一方のすだれ状電極(
2)に電気信号eを入力して、基板(1)に表面弾性波
を発生させ、これを他方のすだれ状電極(3)で電気信
号に変換することにより、一定の共振周波数でろ波され
た出力Eを取り出す構成である。なお同図において、(
4)(4)はダンピング物質である。Fig. 1 explains an example of a structure used as a wave device, in which interdigital electrodes (2) and (3) are adhered and formed on the surface of a substrate (1) having a piezoelectric effect, and one interdigital electrode (
2) by inputting an electrical signal e to generate a surface acoustic wave on the substrate (1), which is converted into an electrical signal by the other interdigital electrode (3), which is filtered at a constant resonant frequency. The configuration is such that output E is taken out. In the same figure, (
4) (4) is a damping substance.
第2図は共振子として使用したものである。FIG. 2 shows the device used as a resonator.
圧電効果を有する基板(1)の表面にすだれ状のグレー
ティング反射器(5)(5)を表面弾性波の半波長の整
数倍の距離隔てて形成すると、表面弾性波は二つの反射
器間で反射を繰り返し定在波となる。定在波の腹に当た
る部分にすだれ状の電極(ff)を設けることにより共
振子が構成できる。When interdigital grating reflectors (5) (5) are formed on the surface of a substrate (1) having a piezoelectric effect at a distance that is an integral multiple of the half wavelength of the surface acoustic wave, the surface acoustic wave will be transmitted between the two reflectors. It repeats reflection and becomes a standing wave. A resonator can be constructed by providing a blind-shaped electrode (ff) at the antinode of the standing wave.
而して上記第1図及び第2図に示すすだれ状の電tl(
2)(3)(5)及びグレーティング反射器(5)は圧
電効果を有する基板(1)の表面に第3図に示すように
金属膜(6)を被着して形成されている。この形成はリ
フトオフ法又はエツチング法により行なわれている。Therefore, the blind-shaped electric current tl (
2)(3)(5) and the grating reflector (5) are formed by depositing a metal film (6) on the surface of a substrate (1) having a piezoelectric effect, as shown in FIG. This formation is performed by a lift-off method or an etching method.
リフトオフ法は基板表面に金属膜形成部分を除いてフオ
トレジストIffを形成し、全面に金属蒸着を行った後
フォトレジスト膜をその上に被着した金属膜と共に除去
して必要部分にのみ金属膜を残すものである。In the lift-off method, a photoresist Iff is formed on the substrate surface except for the area where the metal film is to be formed, and after metal evaporation is performed on the entire surface, the photoresist film is removed together with the metal film deposited on top of the photoresist film, and the metal film is formed only in the necessary areas. It leaves behind.
またエツチング法は基板の表面全面に金属膜を被着し、
その上にフォトリソグラフィ法により電極形成予定部分
の上のめにフォトレジスト膜を形成し、エツチング処理
によりフォトレジスト11?jが形成されていない部分
を除去して所定形状の金nFを形成するものである。In addition, the etching method deposits a metal film on the entire surface of the substrate.
Thereon, a photoresist film is formed over the portion where the electrode is to be formed by photolithography, and the photoresist 11? is etched. Gold nF having a predetermined shape is formed by removing the portion where j is not formed.
しかしながら上記方法によって形成される金属膜は、第
3図に示すように基板(1)上に段状に突出した形状と
なる。このため表面弾性波が金属膜間を往復する際に損
失が生じ、共振尖鋭度Qが大きくとれず充分な特性が得
られない問題がある。However, the metal film formed by the above method has a stepped shape protruding from the substrate (1) as shown in FIG. For this reason, there is a problem in that loss occurs when the surface acoustic waves travel back and forth between the metal films, and the resonance sharpness Q cannot be made large, making it impossible to obtain sufficient characteristics.
そこで電気−機械結合効率を改善して共振尖鋭度Qを大
きく取るなどの特性の改善を図ったものとして、第4図
に示すような埋め込み電極(7)が1982年2月15
日発行の日経エレクトロニクスP 186〜P187に
おいて発表されている。Therefore, as an attempt to improve the characteristics such as improving the electro-mechanical coupling efficiency and increasing the resonance sharpness Q, a buried electrode (7) as shown in Fig. 4 was developed on February 15, 1982.
Published in Nikkei Electronics P186-P187 published by Japan.
しかしながら上記のような埋め込み電極(7)の形成は
、フォトレジスト等により電極形成部分を除いてマスク
を形成し、基板(1)にエツチング処理により溝を形成
した後、この溝に金属電極層を埋め込み形成するという
繁雑な処理を行なわなければならず、工数が増大し、生
産効率が悪くなると共に電極形成の精度を向」二するの
か困難になる欠点があった。However, in order to form the buried electrode (7) as described above, a mask is formed using a photoresist or the like excluding the electrode formation area, a groove is formed in the substrate (1) by etching, and then a metal electrode layer is formed in the groove. A complicated process of embedding must be performed, which increases the number of man-hours, reduces production efficiency, and makes it difficult to improve the accuracy of electrode formation.
ハ0発明の目的
本発明は上記埋め込み電極形成の製造工程の繁雑さに鑑
み、これを改良したもので、上記埋め込み電極と同様の
構造を有し簡単な工程で製造できるものの提供を目的と
する。In view of the complexity of the manufacturing process for forming the buried electrodes, the present invention aims to provide an improved product that has a similar structure to the buried electrodes and can be manufactured in a simple process. .
二0発明の構成
本発明は圧電効果を有する基板の表面に、所定形状の金
属電極層を被着形成すると共に、金属電極層が形成され
ていない部分に金属電極層と同一金属の酸化物層を被着
形成したことを特徴とする。20 Structure of the Invention The present invention involves forming a metal electrode layer of a predetermined shape on the surface of a substrate having a piezoelectric effect, and forming an oxide layer of the same metal as the metal electrode layer on the part where the metal electrode layer is not formed. It is characterized by being formed by adhering to it.
上記構成によれば、SAV/素子の電極は基板の表面全
面に被着した金h Jtaを電極形成部分を除いて酸化
することによって形成できるから、その製造は容易であ
り、その形状も埋め込み電極と同様になっ−(良好な特
性が得られる。According to the above configuration, the electrodes of the SAV/element can be formed by oxidizing the gold hJta deposited on the entire surface of the substrate except for the electrode forming part, so manufacturing is easy and the shape is also that of the buried electrode. The result is similar to (good characteristics can be obtained).
ホ、実施例 本発明の一実施例をその製造工程に従って説明する。E, Example An embodiment of the present invention will be described according to its manufacturing process.
まず圧電効果を有する基板を用意する。この基板の材質
は、例えばタンタル酸リチウム(Li Ta 03 )
、ニオブ酸リチウム(LiNb、水晶圧電セラミック
等である。この基板の表面全面に、第5図に示すように
基板(1)となじみ易く、且つ導電率が高く酸化時に良
好な絶縁物となる金属、例えばアルミニウム(/l)、
チタン(Ti)、タンタル(Ta)等を金属蒸着等によ
り被着して金属Ji (8)を形成する。次に第6図に
示すように電極を形成すべき部分の上に、フォトリソグ
ラフィ法等により選択的にレジスト11tH9)を被着
形成する。次にこれを酸化させる通光な環境、例えば酸
化雰囲気中におき、レジスト膜(9)に覆われていない
部分を選択的に酸化して酸化物71 (8a)に変える
。最初に被着した金属がアルミニウム(/l)の場合、
この酸化物層(8a)はアルミナ(八I1203 ”)
である。この後レジスト膜(9)を所定の溶剤を用いて
除去する。これによって第7図に示すように埋め込み電
極と同様の構造を有する金属電極層(8b)を酸化物層
(8a)に囲まれた形状にて得ることができる。First, a substrate having a piezoelectric effect is prepared. The material of this substrate is, for example, lithium tantalate (Li Ta 03 ).
, lithium niobate (LiNb, crystal piezoelectric ceramic, etc.).As shown in Figure 5, the entire surface of this substrate is coated with a metal that is easily compatible with the substrate (1), has high conductivity, and becomes a good insulator during oxidation. , for example aluminum (/l),
Metal Ji (8) is formed by depositing titanium (Ti), tantalum (Ta), etc. by metal vapor deposition or the like. Next, as shown in FIG. 6, a resist 11tH9) is selectively deposited on the portion where the electrode is to be formed by photolithography or the like. Next, it is placed in a light-permeable environment that oxidizes it, for example, an oxidizing atmosphere, and the portions not covered by the resist film (9) are selectively oxidized and converted into oxide 71 (8a). If the first metal deposited is aluminum (/l),
This oxide layer (8a) is alumina (8I1203”)
It is. Thereafter, the resist film (9) is removed using a predetermined solvent. As a result, as shown in FIG. 7, a metal electrode layer (8b) having a structure similar to that of a buried electrode can be obtained surrounded by an oxide layer (8a).
03)なお筆記酸化物層の形成を精度良(行いたい場合
は、第9図に示すような陽極酸化処理をすればよい。す
なわち金属層(8)並びにレジスト膜(9)が被着形成
された基板(1)を、電解液(10)中に浸漬し、電解
液中に投入された酸化用電極(11)と金属層(8)間
に全屈層側を陽極にして直流電圧Vを加えると高速且つ
高精度に所定部分を酸化することができる。03) If you want to form the writing oxide layer with good precision, you can perform an anodizing treatment as shown in Figure 9. That is, the metal layer (8) and the resist film (9) are deposited and formed. The substrate (1) which has been prepared is immersed in an electrolytic solution (10), and a DC voltage V is applied between the oxidizing electrode (11) placed in the electrolytic solution and the metal layer (8) with the fully bent layer side as the anode. When added, a predetermined portion can be oxidized at high speed and with high precision.
へ0発明の効果
本発明のSAW素子は基板上に被着した金属層を選択的
に酸化することにより、埋め込み電極と同様の構造を有
する電極(グレーティング電極を含む)を簡易な方法で
形成することができる。従って電気−機械変換効率が高
く大きな共振尖鋭度Qが得られるなど良好な特性が得ら
れるSAW素子をローコストに製造することができる。Effects of the Invention The SAW device of the present invention forms electrodes (including grating electrodes) having the same structure as buried electrodes by a simple method by selectively oxidizing the metal layer deposited on the substrate. be able to. Therefore, it is possible to manufacture a SAW element having good characteristics such as high electromechanical conversion efficiency and large resonance sharpness Q at low cost.
第1図及び第2図はSAW素子の構造例を示す斜視図で
、第1図はろ波器、第2図は共振子である。第3図及び
第4図は従来の電極構造例を示す断面図、第5図乃至第
8図は本発明の一実施例の製造工程を順に示す断面図、
第9図は本発明装置の製造に採用できる陽極酸化処理を
説明する断面図である。
(1)・・圧電効果を有する基板、(8a)・・金属電
極層、(8b)・・酸化物層。1 and 2 are perspective views showing structural examples of SAW elements, with FIG. 1 showing a filter and FIG. 2 showing a resonator. 3 and 4 are cross-sectional views showing examples of conventional electrode structures, and FIGS. 5 to 8 are cross-sectional views sequentially showing manufacturing steps of an embodiment of the present invention.
FIG. 9 is a cross-sectional view illustrating anodizing treatment that can be employed in manufacturing the device of the present invention. (1)...Substrate having a piezoelectric effect, (8a)...Metal electrode layer, (8b)...Oxide layer.
Claims (1)
極層と同一金属の絶縁酸化物層とを被着し、前記電極層
を前記酸化物層に対して埋め込み状態で形成したことを
特徴とする弾性表面波素子。(1) A metal conductive electrode layer and an insulating oxide layer of the same metal are deposited on the surface of a substrate having a piezoelectric effect, and the electrode layer is embedded in the oxide layer. surface acoustic wave device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1128984A JPS60153631A (en) | 1984-01-24 | 1984-01-24 | Surface acoustic wave element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1128984A JPS60153631A (en) | 1984-01-24 | 1984-01-24 | Surface acoustic wave element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60153631A true JPS60153631A (en) | 1985-08-13 |
Family
ID=11773834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1128984A Pending JPS60153631A (en) | 1984-01-24 | 1984-01-24 | Surface acoustic wave element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60153631A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7629866B2 (en) | 2006-01-11 | 2009-12-08 | Murata Manufacturing Co., Ltd. | Method for manufacturing surface acoustic wave device and surface acoustic wave device |
-
1984
- 1984-01-24 JP JP1128984A patent/JPS60153631A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7629866B2 (en) | 2006-01-11 | 2009-12-08 | Murata Manufacturing Co., Ltd. | Method for manufacturing surface acoustic wave device and surface acoustic wave device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6601276B2 (en) | Method for self alignment of patterned layers in thin film acoustic devices | |
US6661162B1 (en) | Piezoelectric resonator and method of producing the same | |
US20210408998A1 (en) | Electronic component | |
CN113541636A (en) | Acoustic wave resonator and preparation method thereof | |
JPH11340775A (en) | Piezoelectric oscillator | |
JPS60153631A (en) | Surface acoustic wave element | |
JP3832214B2 (en) | SAW device and manufacturing method thereof | |
US10181835B2 (en) | Bulk acoustic resonator devices and processes for fabricating bulk acoustic resonator devices | |
JPS58137318A (en) | Thin-film piezoelectric oscillator | |
JPH10209794A (en) | Piezoelectric thin-film resonator | |
JP3603571B2 (en) | Piezoelectric element and method of manufacturing the same | |
JP2709520B2 (en) | Structure of surface acoustic wave converter with minute gap between electrode fingers and method of manufacturing the same | |
JPH10200369A (en) | Piezoelectric thin film resonator | |
JPH03204212A (en) | Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter | |
JP2673122B2 (en) | Three-dimensional wiring method using anodic oxidation | |
JPH09199973A (en) | Surface acoustic wave transducer | |
US5344745A (en) | Method for the manufacture of surface acoustic wave transducer | |
JP2000059165A (en) | Surface acoustic wave device and method of manufacturing the same | |
CN213125989U (en) | Back silicon etching type shear wave filter | |
JPS61117913A (en) | Surface acoustic wave element | |
JPS5840848B2 (en) | Dansei Hiyoumenhasudarejiyoudenkiyokunoseizohouhou | |
JPH03119815A (en) | Internal reflection type unidirectional surface acoustic wave converter with floating electrode | |
JPS6346605B2 (en) | ||
JPH10107572A (en) | Surface acoustic wave device | |
JPS598964B2 (en) | Manufacturing method of surface acoustic wave device |