[go: up one dir, main page]

JPS6015134B2 - Polarized electromagnet drive circuit - Google Patents

Polarized electromagnet drive circuit

Info

Publication number
JPS6015134B2
JPS6015134B2 JP9005879A JP9005879A JPS6015134B2 JP S6015134 B2 JPS6015134 B2 JP S6015134B2 JP 9005879 A JP9005879 A JP 9005879A JP 9005879 A JP9005879 A JP 9005879A JP S6015134 B2 JPS6015134 B2 JP S6015134B2
Authority
JP
Japan
Prior art keywords
capacitor
circuit
solenoid
polarized electromagnet
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9005879A
Other languages
Japanese (ja)
Other versions
JPS5613709A (en
Inventor
重信 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYOSHA TSUSHINKIKI SEISAKUSHO KK
Original Assignee
KOGYOSHA TSUSHINKIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYOSHA TSUSHINKIKI SEISAKUSHO KK filed Critical KOGYOSHA TSUSHINKIKI SEISAKUSHO KK
Priority to JP9005879A priority Critical patent/JPS6015134B2/en
Publication of JPS5613709A publication Critical patent/JPS5613709A/en
Publication of JPS6015134B2 publication Critical patent/JPS6015134B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)

Description

【発明の詳細な説明】 この発明は有極電磁石例えば有極ソレノィドの駆動に用
いられる有極電磁石の駆動回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drive circuit for a polarized electromagnet, such as a polarized electromagnet used to drive a polarized solenoid.

近時有機電磁石として有極ソレノィドが省電力化の点で
有利なことから多く用いられる傾向にある。
In recent years, polar solenoids have been increasingly used as organic electromagnets because they are advantageous in terms of power saving.

また、このようなソレノィドの駆動電源には手軽に入手
できる交流電源を用い、この交流電源に整流回路を接続
し、この回路を介して得られる整流出力を用いることが
多くなっている。しかして、従来この種の有極電磁石の
駆動回路として第1図に示すように交流電源AC‘こス
イッチSWを介して整流回路例えば全波整流回路SRを
援続し、この整流回路SRの出力側にリレーRYを接続
し、また、このリレーRYに並列に有極電磁石例えば有
極ソレノィドSL、コンデンサCの直列回路を上記IJ
レーRYの切換点てyの接点s−aを介して接続すると
ともに上言己直列回路に並列に上記切換接点ryの鞍片
s−bを介して抵抗Rを接続し、スイッチSWの投入に
よりリレーRYを動作し、同リレーRYの切換接点ry
の懐片s−aを介してソレノィドSLを付着し自己保持
動作させ、その後スイッチSWの開放によりリレーRY
を復帰し、同リレーRYの切換綾点ひの薮片s−b抵抗
Rを介してコンデンサCの電荷を放電させソレノィドS
Lを復帰させるようにしたものがある。
Furthermore, it is becoming increasingly common to use an easily available AC power source as a drive power source for such a solenoid, connect a rectifier circuit to this AC power source, and use the rectified output obtained through this circuit. Conventionally, as a drive circuit for this type of polarized electromagnet, as shown in FIG. A relay RY is connected to the IJ side, and a series circuit of a polarized electromagnet, such as a polarized solenoid SL, and a capacitor C is connected in parallel to the relay RY.
The switching point of relay RY is connected through the contact s-a of y, and the resistor R is connected in parallel to the series circuit through the saddle s-b of the switching contact ry, and by turning on the switch SW. Operate relay RY and switch contact ry of the same relay RY
Attach the solenoid SL through the pocket piece s-a to operate the self-holding operation, and then open the switch SW to activate the relay RY.
is restored, and the electric charge of the capacitor C is discharged through the switch s-b resistor R of the relay RY, and the solenoid S
There is one that allows L to return.

ところが、このような駆動回路によるとリレーRYの有
接点を用いているため接点不良等を生じ易く信頼性の点
で好ましくない。またリレーRY自体大きなものなので
回路全体が大形で、しかも価格的にも高価なものになっ
てしまう。更にリレーRYが常時電源に後続されている
のでこのリレーRYでの電力消費が大きくなり省電力代
を図るため有極ソレノィドを用いる効果が薄れてしまつ
oこの発明は上記欠点を除去するためなされたもので、
回路を無接点化して信頼性の向上を図り得るとともに小
形で且つ安価にでき加えて交流電源より得られる整流出
力にも安定した動作が期待できる有極電磁石の駆動回路
を提供することを目的とする。
However, since such a drive circuit uses the contacts of the relay RY, contact failures are likely to occur, which is undesirable in terms of reliability. Furthermore, since the relay RY itself is large, the entire circuit is large and also expensive. Furthermore, since the relay RY is always connected to the power supply, the power consumption of the relay RY increases, and the effect of using a polarized solenoid to save power is diminished.The present invention was made to eliminate the above-mentioned drawbacks. With something that
The purpose of the present invention is to provide a drive circuit for a polar electromagnet that can improve reliability by making the circuit non-contact, can be made small and inexpensive, and can be expected to operate stably even with rectified output obtained from an AC power supply. do.

.以下、この発明の一実施例を図面に従い
説明する。
.. An embodiment of the present invention will be described below with reference to the drawings.

第2図においてACは交流電源で、この交流電源ACに
スイッチSWを介して整流回路例えば全波整流回路SR
を接続する。この整流回路SRの出力側に有極電磁石例
えば有極ソレノィドSL、コンデンサC,およびダイオ
ード○の直接回路を接続し、この直列回路に抵抗R2を
並列に接続する。また上記ダィオ−ドDと抵抗R2の接
続点をトランジスタTr(図示例ではNPN形トランジ
スタ)のベースに接続し、このトランジスタTrのェミ
ッタを上記コンデンサC.とダイオードDの接続点、コ
レクタを抵抗R,を介して上記ソレノィドSLと抵抗R
2の接続点に夫々接続する。そして、上記ダイオードD
に並列にコンデンサC2を接続する。ここで、上言己抵
抗R,の抵抗値はソレノィドSLの復帰電圧により異な
るが通常この種の回路ではソレノィドSLの抵抗値の1
〜3倍の範囲に定められる。
In FIG. 2, AC is an alternating current power source, and a rectifier circuit, for example, a full-wave rectifier circuit SR, is connected to this alternating current power source AC via a switch SW.
Connect. A direct circuit of a polar electromagnet, for example, a polar solenoid SL, a capacitor C, and a diode O is connected to the output side of the rectifier circuit SR, and a resistor R2 is connected in parallel to this series circuit. The connection point between the diode D and the resistor R2 is connected to the base of a transistor Tr (an NPN transistor in the illustrated example), and the emitter of the transistor Tr is connected to the capacitor C. and diode D, the collector is connected to the resistor R, and the solenoid SL is connected to the resistor R.
Connect to the two connection points respectively. And the above diode D
Connect capacitor C2 in parallel with . Here, the resistance value of the above-mentioned self-resistance R differs depending on the return voltage of the solenoid SL, but normally in this type of circuit, the resistance value of the solenoid SL is 1
It is set in the range of ~3 times.

また抵抗R2とコンデンサC2の時定数(7,=C2R
2)を整流回路SR出力側に発生する整流電圧波形の立
下り時の変化時間より充分大きな値に設定する。具体的
には交流電源ACを50サイクルとするとC2=10仏
,R2=数十KQ程度のものが用いられる。この場合コ
ンデンサC,と抵抗R2の時定数(ヶ2 =C,R2)
を上記コンデンサC2と抵抗R2の時定数より充分大き
く設定することが必要である。次に以上のように構成し
た駆動回路の作用を説明する。
Also, the time constant of resistor R2 and capacitor C2 (7, = C2R
2) is set to a value sufficiently larger than the change time at the fall of the rectified voltage waveform generated on the output side of the rectifier circuit SR. Specifically, assuming that the AC power supply AC has 50 cycles, C2=10 French and R2=about several tens of KQ are used. In this case, the time constant of capacitor C and resistor R2 (2 = C, R2)
must be set sufficiently larger than the time constants of the capacitor C2 and resistor R2. Next, the operation of the drive circuit configured as above will be explained.

いまスイッチSWを投入すると、整流回路SRに全波整
流出力が発生する。すると、ソレノイドSL−コンデン
サC.ーダィオードDを介して瞬時電流が流れソレノィ
ドSLが動作され同時にコンデンサC,が図示極性に充
電される。その後コンデンサC,の充電が完了すると上
記電流は阻止されソレノィドSLの付勢が解かれるがソ
レノィドSLは動作状態を自己保持する。この場合、整
流回路SL出力側の全波整流出力は半波毎に電圧波形を
零まで立下げる。
When the switch SW is turned on now, a full-wave rectified output is generated in the rectifier circuit SR. Then, solenoid SL-capacitor C. - An instantaneous current flows through diode D to operate solenoid SL, and at the same time capacitor C is charged to the polarity shown. Thereafter, when the charging of capacitor C is completed, the current is blocked and the energization of solenoid SL is released, but solenoid SL maintains its operating state. In this case, the full-wave rectified output on the output side of the rectifier circuit SL lowers the voltage waveform to zero every half wave.

するとこのときの電圧波形の立下がりにともないコンデ
ンサC,の放電電流が抵抗R2を介しててトランジスタ
Trのベース・ェミッタ間に流れ、同トランジスタTr
を誤ってオン動作し、ソレノィドSLを謀復帰させてし
まう薦れがある。ところがこの発明回路ではダイオード
Dと並列に上記抵抗R2とともに充分大きな時定数をな
すコンデンサC2を接続している。このため上記コンデ
ンサC,からの放電電流は全てコンヂンサC2側に流れ
ここに充電されるのでトランジスタTrの誤動作が阻止
され、ソレノィドSLの誤復帰は確実に防止される。次
に、この状態でスイッチSWを開放すると整流回路SR
の全波整流出力は停止する。
Then, as the voltage waveform falls at this time, the discharge current of the capacitor C flows through the resistor R2 between the base and emitter of the transistor Tr.
It is recommended that the solenoid SL be turned on by mistake, causing the solenoid SL to return to its original state. However, in the circuit of the present invention, a capacitor C2 is connected in parallel with the diode D to form a sufficiently large time constant together with the resistor R2. Therefore, all of the discharge current from the capacitor C flows to the capacitor C2 and is charged there, so that malfunction of the transistor Tr is prevented, and erroneous recovery of the solenoid SL is reliably prevented. Next, when the switch SW is opened in this state, the rectifier circuit SR
The full wave rectified output of is stopped.

するとコンデンサC,の放電電流が流れるが、この場合
コンデンサC,と抵抗R2の時定数丁,はコンデンサC
2と抗R2の時定数72 より充分大きくしているので
上記防雷電流は今度はソレノィドSL、抵抗を介してト
ランジスタTrのベースヱミツタにも流れる。従って、
トランジスタTrがオン動作すると上言己放電電流はト
ランジスタTrのコレクタェミッタを通してソレノィド
SLの復帰電流として流れこれによりソレノィドSLは
自己保持された特作状態から元の状態に復帰される。こ
の場合、スイッチSWの投入状態で交流電源AACが停
電したときも整流回路SRの整流出力が停止するので上
述と同様ソレノィドSLを速みやかに復帰させることが
できる。
Then, the discharge current of capacitor C flows, but in this case, the time constant of capacitor C and resistor R2 is equal to capacitor C.
2 and the time constant 72 of resistor R2, the lightning protection current also flows to the base emitter of transistor Tr via solenoid SL and resistor. Therefore,
When the transistor Tr turns on, the self-discharge current flows as a return current of the solenoid SL through the collector-emitter of the transistor Tr, thereby returning the solenoid SL from its self-held special state to its original state. In this case, even if the AC power supply AAC is interrupted while the switch SW is on, the rectified output of the rectifier circuit SR is stopped, so that the solenoid SL can be quickly restored as described above.

ここで、第2図における抵抗R2の一端を第3図に示す
ようにソレノイドSLとコンデンサC,の接続点に接続
すればソレノィドSLの自己保持動作時にもソレノィド
SL、抵抗R2を通してわずかな保持電流が流れるので
ソレノィドSLの保持力をその分大きくすることもでき
る。
If one end of the resistor R2 in Figure 2 is connected to the connection point between the solenoid SL and the capacitor C as shown in Figure 3, a small holding current will be generated through the solenoid SL and the resistor R2 even during the self-holding operation of the solenoid SL. flows, so the holding force of the solenoid SL can be increased accordingly.

従って、このような構成によるとせ、回路構成を1個の
トランジスタ回路を用い無接点化できるので従来の有後
点のりレーを用いたものに比べ回路の信頼性の向上を図
ることができ、しかも回路全体を小形化できるとともに
安価にできる。
Therefore, with such a configuration, since the circuit configuration can be made contactless using one transistor circuit, it is possible to improve the reliability of the circuit compared to the conventional circuit using a trailing point relay. The entire circuit can be made smaller and cheaper.

また、このような構成では抵抗R2が常時電源に接続さ
れるがこの抵抗R2は充分抵抗値の大きなものでここで
の消費電力を小さくできるで従来のリレーを用いたもの
に比べ省電力化を図ることができ有極ソレノイドを用い
たことにより利点を充分生かすことができる。更に交流
電源の停電の場合にはスイッチが投入状態にあっても有
極ソレノィドを速みやかに復帰させることができるので
ソレノィドーこより駆動される負荷を常に安全側に操作
することができる。更にまた、交流電源より得られる整
流出力を用いた場合も整流電圧の半波毎の立下が物こ対
してトランジスタが誤動作するのを確実に防止できるの
で常に安定した動作を期待できる。このことは交流電源
を手軽に使用することができ専用の直流電源を用意する
のに比べ経済的に極めて有利である。尚、この発明は上
記実施例にのみ限定されず要旨を変更しない範囲で適宜
変形して実施できる。
In addition, in such a configuration, resistor R2 is always connected to the power supply, but this resistor R2 has a sufficiently large resistance value so that the power consumption can be reduced, resulting in lower power consumption than in the case of conventional relays. By using a polarized solenoid, the advantages can be fully utilized. Furthermore, in the event of a power outage of the AC power source, the polarized solenoid can be quickly restored even if the switch is in the on state, so that the load driven by the solenoid can always be operated safely. Furthermore, even when a rectified output obtained from an AC power source is used, stable operation can be expected at all times because malfunction of the transistor due to the fall of the rectified voltage every half wave can be reliably prevented. This makes it possible to easily use an AC power source, which is extremely advantageous economically compared to preparing a dedicated DC power source. It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications within the scope without changing the gist.

例えば上述した実施例ではトランジスタ1個により構成
したものを述べたがトランジスタをダーリントン接続し
てものを用いるようにしてもよい。また上述ではNPN
形トランジスタを用いたがPNP形トランジスタを用い
ることもできる。更に上述では有極ソレノィドlこつい
て述べたが他の有極電磁石装置への適用も可能である。
以上述べたようにこの発明によれば回路と無接点化して
信頼性の向上を図り得るとともに小形で且つ安価にでき
、加えて交流電源より得られる整流出力にも安定した動
作が期待できる有機電磁石の駆動回路を提供できる。
For example, in the above-mentioned embodiments, the structure is made up of one transistor, but it is also possible to use a Darlington-connected transistor. Also, in the above, NPN
Although a type transistor is used, a PNP type transistor may also be used. Further, although the above description has focused on a polarized solenoid, it is also possible to apply the present invention to other polarized electromagnetic devices.
As described above, according to the present invention, an organic electromagnet that can improve reliability by having no contact with a circuit, can be made small and inexpensive, and can also be expected to operate stably even with rectified output obtained from an AC power source. drive circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従釆の有機電磁石の駆動回路の一例を示す回路
図、第2図はこの発明の一実施例を示す回路図、第3図
はこの発明の「也実施例を示す回路図である。 AC・・・交流電源、SW・・・スイッチ、SR・・・
整流回路、RY…リレー、SL・・・有極ソレノィド、
C,C,,C2・・・コソデンサ、R,R,,R2・・
・抵抗、D・・・ダイオード、Tr”トランジスタ。 第1図 第2図 第3図
Fig. 1 is a circuit diagram showing an example of a drive circuit for a subordinate organic electromagnet, Fig. 2 is a circuit diagram showing an embodiment of the present invention, and Fig. 3 is a circuit diagram showing an embodiment of the invention. Yes. AC...alternating current power supply, SW...switch, SR...
Rectifier circuit, RY...relay, SL...polarized solenoid,
C, C,, C2... Cosodenser, R, R,, R2...
・Resistance, D...diode, Tr"transistor. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 交流電源と、この交流電源に接続される整流回路と
、この整流回路の整流出力により所定方向に充電される
コンデンサと、このコンデンサの放電電流によりオン動
作されるトランジスタ回路と、上記コンデンサに直列に
接続されコンデンサの充電電流により付勢され動作保持
されるとともに上記トランジスタ回路のオン動作をまっ
て上記コンデンサの放電電流が与えられ復帰される有極
電磁石と、上記整流出力の半波毎の立下り時発生する上
記コンデンサの放電電流を充電し上記トランジスタ回路
のオン動作を阻止するコンデンサとを具備してなること
を等徴とする有極電磁石の駆動装置。 2 上記整流回路の整流出力を常時有極電磁石に与える
回路を設けたことを特徴とする特許請求の範囲第1項記
載有極電磁石の駆動回路。
[Claims] 1. An AC power source, a rectifier circuit connected to the AC power source, a capacitor charged in a predetermined direction by the rectified output of the rectifier circuit, and a transistor circuit turned on by the discharge current of the capacitor. a polarized electromagnet connected in series with the capacitor and energized and maintained in operation by the charging current of the capacitor, and reset by applying a discharging current of the capacitor after the transistor circuit turns on; and the rectified output. A driving device for a polarized electromagnet, comprising: a capacitor that charges the discharge current of the capacitor that occurs at the falling edge of every half wave of and prevents the on-operation of the transistor circuit. 2. The drive circuit for a polarized electromagnet as set forth in claim 1, further comprising a circuit that constantly supplies the rectified output of the rectifying circuit to the polarized electromagnet.
JP9005879A 1979-07-16 1979-07-16 Polarized electromagnet drive circuit Expired JPS6015134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9005879A JPS6015134B2 (en) 1979-07-16 1979-07-16 Polarized electromagnet drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9005879A JPS6015134B2 (en) 1979-07-16 1979-07-16 Polarized electromagnet drive circuit

Publications (2)

Publication Number Publication Date
JPS5613709A JPS5613709A (en) 1981-02-10
JPS6015134B2 true JPS6015134B2 (en) 1985-04-17

Family

ID=13987969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9005879A Expired JPS6015134B2 (en) 1979-07-16 1979-07-16 Polarized electromagnet drive circuit

Country Status (1)

Country Link
JP (1) JPS6015134B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105128A (en) * 1983-11-09 1985-06-10 オムロン株式会社 Drive circuit of relay
FR2784442B1 (en) * 1998-10-07 2000-12-08 Hydroperfect Internat Hpi CONTROLLED FLOW DRAWER VALVE ARRANGEMENT

Also Published As

Publication number Publication date
JPS5613709A (en) 1981-02-10

Similar Documents

Publication Publication Date Title
US7642674B2 (en) Switch state assurance system
CA1093669A (en) Multiple power source automatic switching circuitry
JPS6015134B2 (en) Polarized electromagnet drive circuit
US7102253B2 (en) MOSFET based, high voltage, electronic relays for AC power switching and inductive loads
JPH0322831Y2 (en)
JPH0740289Y2 (en) Off-delay timer
US20050029873A1 (en) MOSFET based, high voltage, electronic relays for ACpower switching and inductive loads
JPH07241030A (en) Power polarity switching device
JPH0631693Y2 (en) DC electromagnet coil constant voltage drive circuit
JPS5847678Y2 (en) lighting equipment
JPH0229441Y2 (en)
JPS594477Y2 (en) Constant voltage charging device for strobe capacitors
JPS6117630Y2 (en)
JPS6029154Y2 (en) DC auxiliary relay power supply circuit
JPS6312414Y2 (en)
JPH0528673Y2 (en)
JPH0452922Y2 (en)
JPS5812396Y2 (en) Emergency light battery checker
JPS6145527A (en) Electromagnetic contactor
KR800002151Y1 (en) Time switch
JPS5910948Y2 (en) power supply
SU1159086A1 (en) Device for changing over to stand-by fuse
SU1275557A1 (en) High-speed electromagnetic device
JPS5926771Y2 (en) Power switching device
JPS594397Y2 (en) alarm power supply