JPS6014942A - Regeneration method of ion exchange resin - Google Patents
Regeneration method of ion exchange resinInfo
- Publication number
- JPS6014942A JPS6014942A JP58123037A JP12303783A JPS6014942A JP S6014942 A JPS6014942 A JP S6014942A JP 58123037 A JP58123037 A JP 58123037A JP 12303783 A JP12303783 A JP 12303783A JP S6014942 A JPS6014942 A JP S6014942A
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- anion exchange
- tower
- regeneration
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、復水の脱塩処理を行なう温床式イオン交換装
置(以下復水脱塩装置という)に用すたイオン交換樹脂
の再生方法に関し、殊に該イオン交換樹脂の再生効率を
極めて高いものとすると共に、Naイオン、及びC1,
オン等のイオンリークを発生させないイオン交換樹脂の
再生方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating an ion exchange resin used in a hot bed type ion exchange device (hereinafter referred to as a condensate desalination device) that desalinates condensate, and particularly In addition to making the regeneration efficiency of the resin extremely high, Na ions and C1,
The present invention relates to a method for regenerating ion exchange resins that does not cause ion leaks such as ions.
復水の脱塩処理の一つとして、陽イオン交換樹脂と陰イ
オン交換樹脂を混合収納してなる復水脱塩装置に復水を
通過させ、復水中の陽イオン及び陰イオンを上記両イオ
ン交換樹脂に吸着して除去する方法がある。この様な復
水脱塩にはH−011型運転と復水中のアンモニアのみ
を通過させるNH3−OH型運転があシ、後者は再生回
数が少なくて済むので経済性が良く、発電プラント用等
に汎用されている。ところで上記NH,−0f(型復水
脱塩装置においても、イオン交換樹脂のイオン交換能力
が低下(貫流点に到達)すると、イオン交換樹脂を再生
しなければならないが、再生法としては従来下記の様な
方法が採られていた。As one of the desalination treatments for condensate, condensate is passed through a condensate desalination device that contains a mixture of cation exchange resin and anion exchange resin, and the cations and anions in the condensate are converted to both of the above ions. There is a method of removing it by adsorbing it to exchange resin. For such condensate desalination, there are H-011 type operation and NH3-OH type operation that only passes ammonia in the condensate.The latter is economical because it requires fewer regenerations, and is suitable for power plants, etc. It is commonly used in By the way, even in the above-mentioned NH, -0f (type condensate desalination equipment), when the ion exchange capacity of the ion exchange resin decreases (reaches the flow-through point), the ion exchange resin must be regenerated. A similar method was adopted.
第1図は再生方法の一例(塔外再生方式)を説明するフ
ロー図で、1は復水脱塩装置(以下復水脱塩塔という)
、2は分離再生塔、3は陰イオン交換樹脂再生塔、4は
混合貯留槽を夫々示す。再生するに当っては、まず始め
に貫流点に達したイオン交換樹脂を復水脱塩塔1から分
離再生塔2に移送した後、分離再生塔2の下部から洗浄
水を導入し、陽イオン交換樹脂(比重1.2〜1.3)
と陰イオン交換樹脂(比重1.05〜1.1)を比重分
離する。次いで上層の陰イオン交換樹脂を分離再生塔2
から取シ出して陰イオン交換樹脂再生塔3に移送する。Figure 1 is a flow diagram explaining an example of a regeneration method (external regeneration method), and 1 is a condensate desalination device (hereinafter referred to as a condensate desalination tower).
, 2 is a separation and regeneration tower, 3 is an anion exchange resin regeneration tower, and 4 is a mixing storage tank. For regeneration, first, the ion exchange resin that has reached the flow-through point is transferred from the condensate demineralization tower 1 to the separation and regeneration tower 2, and then washing water is introduced from the lower part of the separation and regeneration tower 2 to remove cations. Exchange resin (specific gravity 1.2-1.3)
and anion exchange resin (specific gravity 1.05 to 1.1) are separated by specific gravity. Next, the upper layer of anion exchange resin is separated and regenerated tower 2
The resin is taken out and transferred to the anion exchange resin regeneration tower 3.
そして陽イオン交換樹脂の残存する分離再生塔2にはH
2SO4を、また陰イオン交換樹脂再生塔3にはNa1
lを夫々導入し再生した後十分な水洗処理を施し、次い
で再生されたイオン交換樹脂を混合貯留槽4に夫々移送
し、両樹脂を混合した後、復水脱塩塔1に返送する。Then, in the separation and regeneration tower 2 where the cation exchange resin remains, H
2SO4, and Na1 in the anion exchange resin regeneration tower 3.
After introducing and regenerating each resin, the regenerated ion exchange resins are thoroughly washed with water, and then the regenerated ion exchange resins are transferred to the mixing storage tank 4, and after mixing both resins, the resins are returned to the condensate demineralization tower 1.
しかるに上記分離再生方法においては、分離再生塔2に
おける陽イオン交換樹脂と隘イオン交換樹脂の比重分離
をできる限シ完全とする様に努めているにもかかわらず
、分離度には限界があシ現状では互いに異種のイオン交
換樹脂が1〜8−程度混入することは避けられない。そ
の結果分離再生塔2に残留した陰イオン交換樹脂はH2
SO。However, in the above separation and regeneration method, although efforts are made to achieve as complete a specific gravity separation of the cation exchange resin and the ion exchange resin in the separation and regeneration tower 2 as possible, there is a limit to the degree of separation. Under the present circumstances, it is unavoidable that ion exchange resins of different types are mixed together by about 1 to 8. As a result, the anion exchange resin remaining in the separation and regeneration tower 2 is H2
S.O.
によって処理されると共に、陰イオン交換樹脂再生塔3
に混入した陽イオン交換樹脂はN a OHによって処
理され、S04型の陰イオン交換樹脂及びNa型の陽イ
オン交換樹脂が夫々生成する。At the same time, the anion exchange resin regeneration tower 3
The cation exchange resin mixed in is treated with Na OH to produce an S04 type anion exchange resin and an Na type cation exchange resin, respectively.
しかも陰イオン交換樹脂のうち復水脱塩塔1におけるイ
オン交換によって生成したCl型の陰イオン交換樹脂は
、N a OHによるOH型への再生率が悪いので、一
部のCI型陰イオン交換樹脂が未再生のまま残存する傾
向があった。Moreover, among the anion exchange resins, the Cl type anion exchange resin produced by ion exchange in the condensate demineralization tower 1 has a poor regeneration rate to the OH type by NaOH, so some CI type anion exchange resins are There was a tendency for the resin to remain unregenerated.
上記の様に従来法においては、H型陽イオン交換樹脂及
びOH型陰イオン交換樹脂以外に、Na型陽イオン交換
樹脂、S04型陰イオン交換樹脂やC1型陰イオン交換
樹脂が相当量生成若しくは残存したままで、これらの非
再生イオン交換樹脂が前記再生イオン交換樹脂と共に混
合貯留槽4を経て復水脱塩塔1に返送される。そうなる
とこれらの非再生イオン交換樹脂に起因して、Na イ
オン、Cl−イオン等のリークが起こシ処理水の純度低
下の問題が発生する。尚so4”−イオンについては、
陰イオン交換樹脂の804′−イオンに対する選択吸着
性が強いのでイオンリークの問題は発生しない。As mentioned above, in the conventional method, in addition to H-type cation exchange resin and OH-type anion exchange resin, considerable amounts of Na-type cation exchange resin, S04-type anion exchange resin, and C1-type anion exchange resin are produced or While remaining, these non-regenerated ion exchange resins are returned to the condensate demineralization tower 1 through the mixing storage tank 4 together with the regenerated ion exchange resin. In this case, these non-regenerated ion exchange resins cause leakage of Na ions, Cl- ions, etc., resulting in a problem of lowering the purity of the treated water. Regarding the so4”-ion,
Since the anion exchange resin has a strong selective adsorption property for 804'-ions, the problem of ion leakage does not occur.
一方復水脱塩塔1において、イオン交換樹脂はイオン交
換機能と共に復水中に含まれる懸濁固形物状の酸化鉄(
クラッド鉄)等を濾過する機能も果しており、脱塩処理
の進行と共にイオン交換樹脂の表面にはクラッド鉄が付
着してくる。従って付着したクラッド鉄を、前記再生操
作時に逆洗やスクラビングの手法によって除去している
が、この様な物理的扮作のみでは十分に剥離できずクラ
ッド鉄の蓄積が進みついには貫流点に至る迄の処理水量
の低下をまねく。この様な事態に陥った場合には特別の
除鉄剤による除鉄処理を行なう必要を生じるが、該除鉄
処理は前記再生操作に比較して長時間を必要とするので
装置操朶上の隘路となっている。On the other hand, in the condensate demineralization tower 1, the ion exchange resin has an ion exchange function as well as iron oxide (iron oxide) in the form of suspended solids contained in the condensate.
It also has the function of filtering out clad iron (clad iron), etc., and as the desalting process progresses, clad iron adheres to the surface of the ion exchange resin. Therefore, the adhered clad iron is removed by backwashing and scrubbing techniques during the regeneration operation, but such physical removal alone is not sufficient to remove the clad iron, and the accumulation of clad iron progresses, eventually reaching the flow-through point. This leads to a decrease in the amount of water that can be treated. If such a situation occurs, it will be necessary to perform iron removal treatment using a special iron removal agent, but this iron removal treatment requires a longer time than the regeneration operation described above, so it is a bottleneck in equipment operation. It becomes.
本発明者はこうした状況を憂慮し各問題の原因を究明し
ようと研究を重ねた。The inventor of the present invention was concerned about this situation and conducted repeated research to find out the causes of each problem.
即ち従来法の問題点は次の3点に分けられる。That is, the problems with the conventional method can be divided into the following three points.
(f)Na イオンのリーク
(ii) C1−イオンのリーク
011)酸化鉄(クラッド鉄)による貫流点に至るまで
の処理水量の低下
問題点(1)の原因は、基本的には分離再生塔における
分離の不完全さにあるが、詳細に観察すると、比重分離
を行なった場合の分離不完全部分は塔垂直方向略中夫の
境界層の極めて狭い領域だけであり、境界層よシ上層部
分における陰イオン交換樹脂及び境界層よシ下層部分に
おける陽イオン交換樹脂は夫々十分に分離されている。(f) Leakage of Na ions (ii) Leakage of C1- ions 011) Decrease in the amount of treated water up to the flow-through point due to iron oxide (clad iron) Problem (1) is basically caused by the separation and regeneration tower. However, when observed in detail, when specific gravity separation is performed, the incomplete separation is only in a very narrow region of the boundary layer in the vertical direction of the column, and the upper layer of the column is separated from the boundary layer. The anion exchange resin in the boundary layer and the cation exchange resin in the lower layer are sufficiently separated.
従って該境界層よシ上層の陰イオン交換樹脂だけを抜き
出せば、陰イオン交換樹脂再生塔3への陽イオン交換樹
脂の混入はほぼ完全に防止できると想定される。一方分
離再生塔2には上記境界層に含まれる陰イオン交換樹脂
が若干量残留して訃り、これはH2SO4処理によって
S04型となるが、前述の通り陰イオン交換樹脂の80
4′−に対する選択吸着性は強いので804′−イオン
リークの問題は発生し々い。Therefore, it is assumed that if only the anion exchange resin in the upper layer of the boundary layer is extracted, the contamination of the cation exchange resin into the anion exchange resin regeneration tower 3 can be almost completely prevented. On the other hand, a small amount of the anion exchange resin contained in the boundary layer remains in the separation and regeneration tower 2, and this becomes S04 type by H2SO4 treatment, but as mentioned above, 80% of the anion exchange resin
Since the selective adsorption of 4'- is strong, the problem of 804'-ion leakage often occurs.
次に問題点(11)の原因は前述の通りC4型陰イオン
交換樹脂をN a OHで処理した場合のOH型陰イオ
ン交換樹脂への再生率が低いことによる。しかるにSO
2型からOH型への再生率は、前記に比べてはるかに良
好であるので前記Cl型陰イオン交換樹脂を予めH2S
O,で処理してS04型とし、次いでN a OHで処
理すれば、C1型イオン交換樹脂を残留させることなし
に効率よ<OH型イオン交換樹脂に再生することができ
ると考えられる。Next, the cause of problem (11) is that, as described above, the regeneration rate to OH type anion exchange resin when C4 type anion exchange resin is treated with NaOH is low. However, SO
Since the regeneration rate from type 2 to OH type is much better than the above, the Cl type anion exchange resin is preheated with H2S.
It is thought that if treated with O, to form the S04 type, and then treated with NaOH, it is possible to efficiently regenerate the resin into an OH type ion exchange resin without leaving any C1 type ion exchange resin remaining.
更に問題点(iii)の原因は勿論クラッド鉄の蓄積に
あるが、その蓄積状況をみると陰イオン交換樹脂の方に
片寄っている。即ち陽イオン交換樹脂に付着堆積した酸
化鉄はIf2So、による再生処理工程で溶出除去され
るのに対し、陰イオン交換樹脂に付着堆積した酸化鉄は
NaOHによる再生処理工程で一部が水酸化鉄に変換さ
れる程度で殆んどそのまま返還されるので陽イオン交換
樹脂の3〜4倍の速度で蓄積が進行する。従って陰イオ
ン交換イ1す脂についても■l2S04で処理すれば酸
化鉄の蓄積を減少させることが可能であると予想される
。Furthermore, the cause of problem (iii) is, of course, the accumulation of clad iron, but when looking at the accumulation situation, it is biased towards anion exchange resins. In other words, the iron oxide deposited on the cation exchange resin is eluted and removed in the regeneration process using If2So, whereas the iron oxide deposited on the anion exchange resin is partially converted to iron hydroxide during the regeneration process using NaOH. Since it is returned almost as is, the accumulation proceeds at a rate 3 to 4 times that of cation exchange resins. Therefore, it is expected that it is possible to reduce the accumulation of iron oxide even with respect to anion exchange fat by treating it with 12S04.
本発明は上記の様な各問題点に対する知見を基にしてな
されたものであって、各問題を一挙に解決し得る様なイ
オン交換樹脂の再生方法を提供しようとするものである
。The present invention has been made based on the knowledge of the above-mentioned problems, and it is an object of the present invention to provide a method for regenerating ion exchange resins that can solve all of the problems at once.
しかして本発明方法は、復水脱塩塔に使用したイオン交
換樹脂の再生方法であって、分離再生塔において比重分
離したイオン交換樹脂のうち陽イオン交換樹脂と陰イオ
ン交換樹脂が混合している境界層よシ上層の陰イオン交
換樹脂のみを陰イオン交換樹脂再生塔に抜き出す操作と
、陰イオン交換樹脂を硫酸イオン型に置換した後、Na
OHで処理する操作を組合せてなる点に要旨を有するも
のである。Therefore, the method of the present invention is a method for regenerating an ion exchange resin used in a condensate demineralization tower, in which a cation exchange resin and an anion exchange resin are mixed among the ion exchange resins separated by specific gravity in the separation regeneration tower. After extracting only the anion exchange resin in the upper layer of the boundary layer to the anion exchange resin regeneration tower and replacing the anion exchange resin with the sulfate ion type, Na
The main point is that it is a combination of OH processing operations.
以下図面に沿って本発明の具体的構成並びに作用効果を
説明する。The specific configuration and effects of the present invention will be explained below along with the drawings.
即ち第1図において、貫流点に達したイオン交換樹脂を
復水脱塩塔1から抜き出し分離再生塔2に投入した後、
分離再生塔2にH2SO4(2〜10重量%)を注入し
て陽イオン交換樹脂を再生すると共に陰イオン交換樹脂
をso、型に交換する。次いで分離再生塔の底部から洗
浄水を注入し、塔内のイオン交換樹脂を攪拌させて陽イ
オン交換樹脂と陰イオン交換樹脂を比重分離する。尚)
12SO,を注入する前にスクラビングを行なってもよ
い。そして陽イオン交換樹脂と陰イオン交換樹脂が混合
する境界層よシ上層の陰イオン交換樹脂のみを抜き出し
て陰イオン交換樹脂再生塔3に投入した後、再生塔3の
上部からN a OHを注入して陰イオン交換樹脂を再
生する。尚再生操作においては十分な水洗を実施する。That is, in FIG. 1, after the ion exchange resin that has reached the flow-through point is extracted from the condensate demineralization tower 1 and introduced into the separation and regeneration tower 2,
H2SO4 (2 to 10% by weight) is injected into the separation and regeneration tower 2 to regenerate the cation exchange resin and exchange the anion exchange resin to SO type. Next, washing water is injected from the bottom of the separation and regeneration tower, and the ion exchange resin in the tower is stirred to separate the cation exchange resin and the anion exchange resin by specific gravity. still)
Scrubbing may be performed before injecting 12SO. Then, only the anion exchange resin in the upper layer of the boundary layer where the cation exchange resin and anion exchange resin are mixed is extracted and put into the anion exchange resin regeneration tower 3, and then N a OH is injected from the upper part of the regeneration tower 3. to regenerate the anion exchange resin. In addition, sufficient water washing should be carried out during the regeneration operation.
その後、再生された陽イオン交換樹脂と陰イオン交換樹
脂を夫夫混合貯留槽4に導入し十分混合した後、復水脱
塩塔1に返送する。これによpNa型陽イオン交換樹脂
及びC6型陰イオン交換樹脂の残留並びにクラッド鉄の
付着を防止することができ、処理水の純度を高めると共
に貫流点に至るまでの処理水量を増大させることに成功
した。Thereafter, the regenerated cation exchange resin and anion exchange resin are introduced into the mixing storage tank 4 and mixed sufficiently, and then returned to the condensate demineralization tower 1. This can prevent the pNa type cation exchange resin and C6 type anion exchange resin from remaining and the adhesion of clad iron, increasing the purity of the treated water and increasing the amount of treated water up to the flow-through point. Successful.
尚本発明方法のオ;ζ成は前記に限定される訳ではなく
、次の様な方法で再生を行なうこともできる。Incidentally, step (e) and ζ-formation of the method of the present invention is not limited to the above-mentioned method, and the following methods can also be used for regeneration.
即ち第1図において、分離再生塔2に投入したイオン交
換樹脂(貫流点に到達したもの)をまず始めに比重分離
し、境界層よシ上層の陰イオン交換(\’(J脂を陰イ
オン交換樹脂再生塔に投入する。そして分離再生塔2に
H,SO,(2〜10重量9+5)を注入して陽イオン
交換樹脂を再生した後、その排出液を1点鎖綜ラインで
示す様に陰イオン交換樹脂再生塔3に注入して陰イオン
交換樹脂をSO6型に変換する。次いで陰イオン交換樹
脂再生塔3にN a OI−Iを注入して陰イオン交換
樹脂を再生するという方法を採用することも可能であり
、前記と同様の効果を得ることができる。That is, in FIG. 1, the ion exchange resin (that has reached the flow-through point) charged into the separation and regeneration tower 2 is first subjected to specific gravity separation, and then the anion exchange resin (\' (J fat) in the upper layer of the boundary layer and After injecting H, SO, (2 to 10 weight 9+5) into the separation and regeneration tower 2 to regenerate the cation exchange resin, the discharged liquid is poured into the separation and regeneration tower 2 as shown by the one-point chain line. Then, the anion exchange resin is injected into the anion exchange resin regeneration tower 3 to convert the anion exchange resin to SO6 type.Then, N a OI-I is injected into the anion exchange resin regeneration tower 3 to regenerate the anion exchange resin. It is also possible to adopt this method, and the same effect as described above can be obtained.
本発明は概略以上の様に構成されておシ、以下要約する
効果を得ることができる。The present invention is roughly configured as described above, and can obtain the effects summarized below.
(1)陰イオン交換樹脂はH2SO,によってS04型
とされた後、NaOHによってOf(型に再生されるの
で、C1型の陰イオン交換樹脂は全く残留せずC1−イ
オンのリークを皆無とすることができると共に、S04
型からOH型へのイオン交換が効率良く進むので再生レ
ベルが向上する。(1) The anion exchange resin is converted to the S04 type by H2SO, and then regenerated to the Of type by NaOH, so no C1 type anion exchange resin remains and there is no leakage of C1- ions. S04
Ion exchange from the mold to the OH type progresses efficiently, improving the regeneration level.
(2)陽イオン交換樹脂と陰イオン交換樹脂の分離操作
時に、両者が混在する境界層は陰イオン交換樹脂再生塔
へ全く投入されないので、陽イオン交換樹脂がNaOH
で処理されることがなくNa型の陽イオン交換樹脂は全
く生成しない。従ってNa+イオンのリークを皆無とす
ることができる。(2) During the separation operation of cation exchange resin and anion exchange resin, the boundary layer in which both are mixed is not fed into the anion exchange resin regeneration tower at all, so that the cation exchange resin is NaOH
No Na-type cation exchange resin is generated at all. Therefore, leakage of Na+ ions can be completely eliminated.
(3)陰イオン交換樹脂についても一旦H,SO。(3) For the anion exchange resin, temporarily add H and SO.
で処理されるので、クラッド鉄等の金属酸化物は再生工
程でほぼ完全に溶出除去される。金属酸化物の蓄積が起
こらずしかもイオン交換樹脂がクラッド鉄等によって被
包されることがないので貫流点までの処理水量を増大さ
せることができる。Since the metal oxides such as clad iron are almost completely eluted and removed in the regeneration process. Since metal oxides do not accumulate and the ion exchange resin is not encapsulated by clad iron or the like, the amount of water treated up to the flow-through point can be increased.
第1図は従来並びに本発明のイオン交換樹脂再生方法を
説明する為のフロー図である。
1・・・復水脱塩塔 2・・・分離再生塔3・・・陰イ
オン交換樹脂再生塔
4・・・混合貯留槽FIG. 1 is a flow chart for explaining the conventional ion exchange resin regeneration method and the present invention. 1... Condensate demineralization tower 2... Separation and regeneration tower 3... Anion exchange resin regeneration tower 4... Mixing storage tank
Claims (1)
イオン交換樹脂の再生方法であって、分離再生塔におい
て比重分離したイオン交換樹脂のうち陽イオン交換樹脂
と陰イオン交換樹脂が混合している境界層よシ上層の陰
イオン交換樹脂のみを陰イオン交換樹脂再生塔に抜き出
す操作と、陰イオン交換樹脂を硫酸イオン型に置換した
後、N a OHで処理する操作を組合せてなることを
特徴とするイオン交換樹脂の再生方法。A method for regenerating ion exchange resin used in a mixed bed ion exchange device for desalting condensate, in which cation exchange resin and anion exchange resin are mixed among the ion exchange resins separated by specific gravity in a separation and regeneration tower. This is a combination of an operation in which only the anion exchange resin in the upper layer of the boundary layer is extracted to an anion exchange resin regeneration tower, and an operation in which the anion exchange resin is replaced with a sulfate ion type and then treated with NaOH. A method for regenerating an ion exchange resin, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58123037A JPS6014942A (en) | 1983-07-05 | 1983-07-05 | Regeneration method of ion exchange resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58123037A JPS6014942A (en) | 1983-07-05 | 1983-07-05 | Regeneration method of ion exchange resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6014942A true JPS6014942A (en) | 1985-01-25 |
Family
ID=14850644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58123037A Pending JPS6014942A (en) | 1983-07-05 | 1983-07-05 | Regeneration method of ion exchange resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6014942A (en) |
-
1983
- 1983-07-05 JP JP58123037A patent/JPS6014942A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3531401A (en) | Method of regenerating ion exchangers | |
JPS62191800A (en) | Method of processing waste water containing uranium and fluorine | |
JP2001169800A (en) | Method for regenerating mixed bed type device for purifying sugar solution | |
US4049772A (en) | Process for the recovery of chromic acid solution from waste water containing chromate ions | |
JPS595015B2 (en) | How to clean ion exchange resin | |
JPS6014942A (en) | Regeneration method of ion exchange resin | |
JPS6357799A (en) | How to treat plating liquid | |
JP2881107B2 (en) | Regeneration method of mixed bed type ion exchange tower | |
JP3963025B2 (en) | Ion exchange resin separation and regeneration method | |
CA1105158A (en) | Removal of silica from mixed bed demineralizer | |
GB2063094A (en) | Water purification by ion exchange | |
JPS6059013B2 (en) | How to regenerate mixed ion exchange resin | |
JP2004136231A (en) | Method for washing ion-exchange resin after regeneration | |
JPS59183398A (en) | Maintenance system of condensate desalt tower | |
JPH0677687B2 (en) | Regeneration method of ion exchange resin | |
JPH026893A (en) | Condensate desalting device | |
CA1053810A (en) | Method of desalting treatment of condensate water | |
JP3852487B2 (en) | Regeneration method of ion exchange resin | |
JP2001079424A (en) | Ion-exchange resin regeneration equipment and method | |
JPH06285463A (en) | Desalination treatment device and method for regenerating ion exchange resin | |
JPH06154748A (en) | Operation method for ammonia type condensate desalting device | |
JPS56141844A (en) | Regeneration method for ion exchange resin of sugar solution desalting apparatus | |
JPS5841913B2 (en) | Condensate treatment method | |
JPS5811272B2 (en) | Condensate treatment method | |
JPS6259979B2 (en) |