[go: up one dir, main page]

JPS6014906A - Concentrating method of aqueous solution containing dissolved nonvolatile substance - Google Patents

Concentrating method of aqueous solution containing dissolved nonvolatile substance

Info

Publication number
JPS6014906A
JPS6014906A JP12347583A JP12347583A JPS6014906A JP S6014906 A JPS6014906 A JP S6014906A JP 12347583 A JP12347583 A JP 12347583A JP 12347583 A JP12347583 A JP 12347583A JP S6014906 A JPS6014906 A JP S6014906A
Authority
JP
Japan
Prior art keywords
aqueous solution
temp
cell
low
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12347583A
Other languages
Japanese (ja)
Inventor
Zenjiro Honda
善次郎 本田
Hajime Komada
肇 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12347583A priority Critical patent/JPS6014906A/en
Publication of JPS6014906A publication Critical patent/JPS6014906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To increase the concentrating efficiency in the wide range of solutes, concns., and temps. by holding an aq. soln. on one side of a porous membrane having specified diameter which is inert to the aq. soln. to be treated contg. a nonvolatile substance, and holding a low-temps. liquid on the opposite side of the membrane. CONSTITUTION:A porous membrane 1 made of polytetrafluoroethylene, for example, having 0.05-150mu pore diameter which is inert to an aq. soln. to be treated contg. a nonvolatile substance is placed in the center to constitute a high- temp. side cell 2 and a low-temp. side cell 3. When the aq. soln. contg. dissolved nonvolatile substance is charged into the high-temp. cell 2 and low-temp. water or an organic or an inorganic aq. soln. into the low-temp. cell 3, the concn. of the nonvolatile substance in the high-temp. side aq. soln. is increased with time. The temp. difference between the high-temp. side and the low-temp. side is regulated preferably within the range of 3-70 deg.C.

Description

【発明の詳細な説明】 本発明は多孔膜を用いて、非揮発性物質溶存水溶液を濃
縮する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of concentrating a non-volatile substance dissolved aqueous solution using a porous membrane.

更に詳しくは非揮発性物質を含む被処理水溶液に対して
不活性な多孔膜を用いて水溶液中に溶存する非揮発性物
質を塩度差を駆動力として濃縮する方法に関するもので
ある。
More specifically, the present invention relates to a method of concentrating non-volatile substances dissolved in an aqueous solution using a salinity difference as a driving force using a porous membrane that is inert to an aqueous solution to be treated containing non-volatile substances.

従来から膜を用いる水溶液の鎖線法としては逆浸透法、
限外四遇法、電気遣竹法などが知られているが、これら
は駆動力として圧力差や電位差を用いるものである。一
方1本発明の方法に於ける膜分離駆゛動力は温度差であ
る。従来温度差を駆動力とする膜透過は使用する膜の孔
径により熱浸透や熱透析と呼ばれることがあるが、本発
明はこのうち熱透析の範躊に入るものである。即ち、多
孔膜をはさんで膜の両側に混合物溶液を貯え、膜で区切
られた両液を異なる温度に保つことにより水が選択的に
高温側から低温間へ膜を透過し、高温側非揮発性物質濃
度を上昇させるものである。従来かかる熱透析の研究声
はあまり多くなく1例えばGietaらがガラス繊維を
アクリル樹脂で固めた多孔膜を使って、酢酸、酢酸ナト
リウム、フェノール等が高温側水溶液で濃縮されること
を報告している( Oan。
Traditionally, the reverse osmosis method is used as a chain line method for aqueous solutions using membranes.
Known methods include the limitless method and the electric bamboo method, which use a pressure difference or a potential difference as a driving force. On the other hand, the driving force for membrane separation in the method of the present invention is the temperature difference. Conventionally, membrane permeation using a temperature difference as a driving force is sometimes called thermal osmosis or thermal dialysis depending on the pore size of the membrane used, but the present invention falls into the category of thermal dialysis. That is, by storing a mixture solution on both sides of the membrane across a porous membrane, and keeping the two liquids separated by the membrane at different temperatures, water selectively permeates through the membrane from the high temperature side to the low temperature side, and the high temperature side It increases the concentration of volatile substances. Until now, there have not been many research reports on such thermal dialysis1.For example, Gieta et al. reported that acetic acid, sodium acetate, phenol, etc. can be concentrated in an aqueous solution at high temperature using a porous membrane made of glass fibers hardened with acrylic resin. There is (Oan.

である。しかしこの報告に使用された多孔膜はアクリル
樹脂をバインダーとして用いるため。
It is. However, the porous membrane used in this report uses acrylic resin as a binder.

酸性あるいはアルカリ性溶液に対する耐性が低く、また
DMF、DM80等の比較的高濃度の有機溶剤に対して
は膜性能の劣化が起きやすいか、あるいは膜表面が溶液
に対して活性となるため凝縮することができない。そこ
で本発明者等は種々の多孔膜を用いて鋭意検討したとこ
ろ、不活性多孔膜を用いることにより既に報告されてい
る方法より広範囲の溶質、広範囲の濃度及び広範囲の温
度にわたって使用できる優れた9m方法を見い出し本発
明に到った。本発明に於て膜め活性とは膜が水浴液によ
って濡れることを意味している。
It has low resistance to acidic or alkaline solutions, and membrane performance tends to deteriorate when exposed to relatively high concentration organic solvents such as DMF and DM80, or condensation occurs because the membrane surface becomes active against the solution. I can't. Therefore, the present inventors conducted intensive studies using various porous membranes, and found that by using an inert porous membrane, an excellent method that can be used over a wider range of solutes, a wider range of concentrations, and a wider range of temperatures than the previously reported method. We found a method and arrived at the present invention. In the present invention, membrane-membrane activity means that the membrane is wetted by a water bath.

即ち本発明は非揮発性物質を含む被処理水溶液に対して
不活性である、0.05μ〜150μることを特徴とす
る非揮発性物質溶存水溶液の濃縮方法を提供するもので
ある。
That is, the present invention provides a method for concentrating a non-volatile substance-dissolved aqueous solution, which is inert to the aqueous solution containing a non-volatile substance and is characterized by a concentration of 0.05 μm to 150 μm.

本発明に用いる不活性多孔膜とは処理温度(例えば30
C)で被処理水溶液、或は15%エタノール水溶液に浸
漬した際に、溶液との親和力が小さく、従って溶液によ
る濡れのない多孔膜をさして言う。この様な膜としては
表面エネルギーの小さい疎水性素材からなる膜をあげる
ことができる。例えばポリテトラフルオロエチレン、ポ
リ(三フッ化塩化エチレン)、ポリ(ヘキサフルオ四プ
pピレン)、ポリフッ化ビニリデンなどの含フツ素ポリ
マー、エチレン、グ四ピレン、塩化ビニル等の炭化水素
或は/九μグン化炭化水素モノマーからなるポリマー、
芳香族ポリエステル、芳香族ポリアミド、芳香族ポリス
ルホン等の疎水性重縮合ポリマー、ポリジメチルシロキ
サンなどの含ケイ素高分子等は疎水性であり、表面エネ
ルギーが小さく本方法に使用する膜素材として適当なも
のである。このうちポリテトラフルオはエチレンからな
る多ある。本発明による濃縮では多くの場合体積流が高
温側から低温側へ向って生じるが、この体積流を強制的
に止めても高温側で濃縮することができる。
The inert porous membrane used in the present invention has a processing temperature (for example, 30
C) refers to a porous membrane that has a low affinity with the solution when immersed in an aqueous solution to be treated or a 15% ethanol aqueous solution, and therefore does not get wet by the solution. Examples of such a film include a film made of a hydrophobic material with low surface energy. For example, fluorine-containing polymers such as polytetrafluoroethylene, poly(trifluorochloroethylene), poly(hexafluorotetrapyrene), polyvinylidene fluoride, hydrocarbons such as ethylene, tetrapyrene, vinyl chloride, etc. Polymers made of μ-gunized hydrocarbon monomers,
Hydrophobic polycondensation polymers such as aromatic polyester, aromatic polyamide, and aromatic polysulfone, and silicon-containing polymers such as polydimethylsiloxane are hydrophobic and have low surface energy and are suitable as membrane materials for use in this method. It is. Among these, polytetrafluorocarbons are mostly made of ethylene. In the concentration according to the present invention, in most cases, the volume flow occurs from the high temperature side to the low temperature side, but even if this volume flow is forcibly stopped, concentration can be performed on the high temperature side.

本発明の方法によって濃縮できる非揮発性物質とは、尚
該水溶液の気液平衡における液体中の非揮発性物質組成
が気体中の非揮発性物質組成よりも大きい物質を言う。
The non-volatile substance that can be concentrated by the method of the present invention refers to a substance in which the non-volatile substance composition in the liquid in the vapor-liquid equilibrium of the aqueous solution is greater than the non-volatile substance composition in the gas.

゛この様な性質を持つ物質の例としては1,3−ブタン
ジオール、1.4−ブタンジオール、グリセリン、エチ
レングリコール、ジメチルスルホキシド、ジメチルホル
ムアミド、酢酸、プ四ピオン酸などの有機低分子化合物
、ポリアクリルアミド、ポリーN−ビニルビ四リドン、
カルボキシメチルセルは一ス、ヒドロキシエチルセルロ
ースなどの高分子化合物、Na01.KOI、NaOH
、硫酸等の無機化合物、及び酢酸ナトリウム、グルコン
酸ナトリウム、アクリル酸カリウム等の有機化合物の無
機塩などをあげることができる。これらの非揮発時間と
共に上昇することを本発明者等は見出したのである。
Examples of substances with such properties include organic low molecular compounds such as 1,3-butanediol, 1,4-butanediol, glycerin, ethylene glycol, dimethyl sulfoxide, dimethylformamide, acetic acid, and tetrapionic acid; polyacrylamide, poly N-vinylbitetralidone,
Carboxymethyl cell is made of one substance, a polymer compound such as hydroxyethyl cellulose, Na01. KOI, NaOH
, inorganic compounds such as sulfuric acid, and inorganic salts of organic compounds such as sodium acetate, sodium gluconate, and potassium acrylate. The present inventors have discovered that these values increase with the non-volatile time.

高温側と低温側との温度差としては3〜70Cの範囲が
適当であり、高温側の水溶液の温度は30〜90C%好
ましくは40〜aOCであり、低温側の水溶液の温度は
40Gから融点までの間、好ましくは30Cから融点ま
での間で選択される。多孔膜の厚さはその材質と、被処
理水溶液の組成により変わるが、一般、に20〜300
0μ、好ましくは50〜1000μである。
The appropriate temperature difference between the high temperature side and the low temperature side is in the range of 3 to 70C, the temperature of the aqueous solution on the high temperature side is 30 to 90C%, preferably 40 to aOC, and the temperature of the aqueous solution on the low temperature side is from 40G to the melting point. The temperature is preferably selected between 30C and the melting point. The thickness of the porous membrane varies depending on its material and the composition of the aqueous solution to be treated, but is generally between 20 and 300 mm.
It is 0μ, preferably 50 to 1000μ.

本発明による凝縮法の応用としては、比較的高温で製造
されてくる非揮発性物質水溶液の濃縮、あるいは比較的
高温で反応する系における原料水溶液の回収等をあげる
ことができる。
Applications of the condensation method according to the present invention include the concentration of an aqueous solution of a non-volatile substance produced at a relatively high temperature, or the recovery of an aqueous raw material solution in a system that reacts at a relatively high temperature.

以下に実施例をもつ【本発明を具体的に説明するが、本
発明は何らこれらにより制限されるものではない。
EXAMPLES The present invention will be specifically explained below with examples, but the present invention is not limited by these in any way.

実施例1 ポリテトラフルオロエチレン製多孔 膜(ダイキン社裂
登録商標ボリフpンペーパーPA−水通水ジャケット、
6は攪拌機、7は温度計、8は膜透過液量測定用キャピ
ラリー、9は温水循環ライン、10は冷水循環ライン、
11はモーターである。セル中の膜の実効面積は38.
5dであった。分離セルの両側に共11C15%1,4
−ブタンジオール水浴液をそれぞれ270m1入れ、左
側セル(高温側セル)2および右側セル(低温側セル)
5の外側ジャケット部4,5へそれぞれ恒温槽からの温
水C6OC)および冷水(OC〕を通じたところ、高温
側セル内溶液温度は51.5 C,低温側セル内溶液温
度は165Cで一定となった。
Example 1 Porous membrane made of polytetrafluoroethylene (Daikin Co., Ltd.'s registered trademark Borifun Paper PA - water flow jacket,
6 is a stirrer, 7 is a thermometer, 8 is a capillary for measuring the amount of liquid permeated through the membrane, 9 is a hot water circulation line, 10 is a cold water circulation line,
11 is a motor. The effective area of the membrane in the cell is 38.
It was 5d. 11C15%1,4 on both sides of the separation cell
- Pour 270ml of butanediol water bath solution into the left cell (high temperature side cell) 2 and the right cell (low temperature side cell).
When hot water (C6OC) and cold water (OC) from a constant temperature bath were passed through the outer jacket parts 4 and 5 of 5, respectively, the temperature of the solution in the cell on the high temperature side was constant at 51.5 C, and the temperature of the solution in the cell on the low temperature side was constant at 165 C. Ta.

一定時間後の高温側及び低温側セルの1,4−ブタンジ
オールの濃度を時間と共に測定すると、高温側セルの濃
度が時間と共に増大し、一方低温側セルの濃度が時間と
共に減少した。7時間後の高温側セルの1,4−ブタン
ジオール濃度は19.2%、低温側セルの濃度は7.7
%であった。
When the concentrations of 1,4-butanediol in the high-temperature and low-temperature cells were measured over time after a certain period of time, the concentration in the high-temperature cells increased with time, while the concentration in the low-temperature cells decreased with time. After 7 hours, the concentration of 1,4-butanediol in the high temperature cell is 19.2%, and the concentration in the low temperature cell is 7.7.
%Met.

体積流は高温側セルから低温側セルへであった。The volumetric flow was from the hot side cell to the cold side cell.

なお開始後3時間時点での流量は0.06117分注入
した。使用した膜は24時間測定後も濡れは認められず
、不活性な膜であった。又この膜は15%エタノールに
対しても25Gに於【濡れない、不活性なものであった
The flow rate at 3 hours after the start was 0.06117 minutes. The membrane used showed no wetting even after 24 hours of measurement, and was an inert membrane. Furthermore, this film was inactive and did not wet with 15% ethanol at 25G.

実施例2〜8 実施例1に於て15%1,4−ブタンジオール水溶液の
代りに、下記の表1に示した種々の溶液を用いる外は実
施例1と同じ方法で濃縮を行った。初期及び7時間測定
後の両側セル内溶液濃度は表1に示した通りであり、い
ずれも高温側セルで非揮発性物質濃度は上昇し、濃縮液
を得ることが出来た。
Examples 2 to 8 Concentration was carried out in the same manner as in Example 1, except that various solutions shown in Table 1 below were used instead of the 15% 1,4-butanediol aqueous solution in Example 1. The solution concentrations in both cells at the initial stage and after 7 hours of measurement are as shown in Table 1. In both cases, the concentration of non-volatile substances increased in the high temperature side cell, and a concentrated solution could be obtained.

1較例1 実施例1においてポリテトラフルオロエチレン製多孔膜
の代りにホウ化ケイ素繊維製多孔膜(Milipore
 製AP−20)を用いて実施例1で使用した測定用分
離セルへ、同じ1%酢酸水溶液を入れ実施例1と同じ温
度の恒温水をそれぞれ高温側及び低温側ジャケットへ通
水したところセル内の温度は高温[47,5C,低温側
2 L8 Cで一定となった。一定時間経過後の両セル
の纜度変化を測定したところ測定開始後1時間以内は高
温側での濃度変化が認められたが以後は逆拡散により1
両セルの濃度差は無くなった。この膜は25tl:’、
15%エタノール水溶液に対してぬれるものであり、又
1%酢酸水溶液に対しても濡れるものであった。
1 Comparative Example 1 In Example 1, a porous membrane made of silicon boride fiber (Milipore) was used instead of the porous membrane made of polytetrafluoroethylene.
When the same 1% acetic acid aqueous solution was added to the measurement separation cell used in Example 1 using a 100% Thermostat (AP-20), and constant-temperature water at the same temperature as in Example 1 was passed through the high-temperature side and low-temperature side jackets, the cell The temperature inside was constant at high temperature [47.5C and low temperature 2L8C]. When we measured the changes in the purity of both cells after a certain period of time, we found that within one hour after the start of the measurement, there was a concentration change on the high temperature side, but after that, the concentration changed to 1 due to back diffusion.
The difference in concentration between both cells disappeared. This membrane is 25tl:',
It was wettable to a 15% ethanol aqueous solution and also wetted to a 1% acetic acid aqueous solution.

比較例2 ホウ化ケイ素繊維製多孔膜(Milipore 製AP
−20)をP813の水酸化ナトリウム水溶液に浸漬し
たところ、異常に膨潤し、数時間後には膜形状を保持で
きず、本発明の濃縮には適用できなかった。
Comparative Example 2 Porous membrane made of silicon boride fiber (AP manufactured by Milipore)
-20) was immersed in an aqueous sodium hydroxide solution of P813, it swelled abnormally and could not maintain its membrane shape after several hours, so it could not be applied to the concentration of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いられる分離セルの一例の@面略示
図である。 1:不活性多孔膜、2:高温側セル、3:低温側セル。
FIG. 1 is a schematic @-plane diagram of an example of a separation cell used in the present invention. 1: Inert porous membrane, 2: High temperature side cell, 3: Low temperature side cell.

Claims (1)

【特許請求の範囲】[Claims] 非揮発性物質を含む被処理水溶液に対して不活性である
、0.05μ〜150μの孔径を有する多孔膜の片側に
上記水溶液を保持し、該層を介した反対側に上記水溶液
より低温にした水又は水浴液を保持することKより、高
温側の水溶液の非揮発性物質凝度を上昇させることを特
徴とする非揮発性物質溶存水溶液の濃縮方法。
The above aqueous solution is held on one side of a porous membrane having a pore size of 0.05 μm to 150 μm, which is inert to the aqueous solution to be treated containing non-volatile substances, and the aqueous solution is held at a lower temperature than the above aqueous solution on the other side across the layer. 1. A method for concentrating a non-volatile substance-dissolved aqueous solution, characterized by increasing the non-volatile substance condensation of the aqueous solution at a higher temperature than by holding water or a water bath liquid.
JP12347583A 1983-07-08 1983-07-08 Concentrating method of aqueous solution containing dissolved nonvolatile substance Pending JPS6014906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12347583A JPS6014906A (en) 1983-07-08 1983-07-08 Concentrating method of aqueous solution containing dissolved nonvolatile substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12347583A JPS6014906A (en) 1983-07-08 1983-07-08 Concentrating method of aqueous solution containing dissolved nonvolatile substance

Publications (1)

Publication Number Publication Date
JPS6014906A true JPS6014906A (en) 1985-01-25

Family

ID=14861544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12347583A Pending JPS6014906A (en) 1983-07-08 1983-07-08 Concentrating method of aqueous solution containing dissolved nonvolatile substance

Country Status (1)

Country Link
JP (1) JPS6014906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139355U (en) * 1989-04-25 1990-11-21
JPH0544085U (en) * 1991-11-20 1993-06-15 松下電器産業株式会社 Washing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551827A (en) * 1978-06-20 1980-01-09 Mitsubishi Heavy Ind Ltd Improved reverse osmosis treating method
JPS57113801A (en) * 1980-04-25 1982-07-15 Gore & Ass Distillation method and its device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551827A (en) * 1978-06-20 1980-01-09 Mitsubishi Heavy Ind Ltd Improved reverse osmosis treating method
JPS57113801A (en) * 1980-04-25 1982-07-15 Gore & Ass Distillation method and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139355U (en) * 1989-04-25 1990-11-21
JPH0544085U (en) * 1991-11-20 1993-06-15 松下電器産業株式会社 Washing machine

Similar Documents

Publication Publication Date Title
JPH07102310B2 (en) Carbon dioxide separation gel membrane and method for producing the same
NO129750B (en)
Mehta Further results on the performance of present-day osmotic membranes in various osmotic regions
US20130313185A1 (en) Forward osmosis membrane and method of manufacture
FR2676007A1 (en) COMPOSITE NANOFILTRATION MEMBRANE.
US4036748A (en) Asymmetric, semipermeable membranes of polybenz-1,3-oxazine diones-(2,4)
CA1052707A (en) Asymmetric, semipermeable membranes of cyclic polyureas
US20180257043A1 (en) Polyvinylidene difluoride membrane, manufacturing method thereof, and purifying brine method thereof
CA1046188A (en) Semipermeable membranes of sulphonated polybenz-1,3-oxazin-2,4-diones
DK145564B (en) PROCEDURE FOR PREPARING AN ANISOTROP POLYMER MEMBRANE
JPH0757825B2 (en) Polysulfone resin porous membrane
JPS6014906A (en) Concentrating method of aqueous solution containing dissolved nonvolatile substance
US5525236A (en) Reverse osmosis purification of water
US5942120A (en) Composite microporous ultrafiltration membrane, method of making thereof, and separation methods
WO2012112123A1 (en) Forward osmosis membrane and method of manufacture
JPH0341203B2 (en)
EP0030451A2 (en) Method for recovering efficiency of semipermeable membrane
CN108348870B (en) Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module including water treatment separator
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
EP0069305B1 (en) Reverse osmosis membrane quenching
Choi et al. Nanofiltration of electrolytes with charged composite membranes
JPH05208123A (en) Porous asymmetrical semi-permeable membrane
JP7586305B2 (en) Method for producing gelatin or concentrated gelatin solution
CN110869400A (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and use thereof
EP3674344B1 (en) Composition for interfacial polymerization of polyamide and manufacturing method for water treatment separation membrane using same