[go: up one dir, main page]

JPS60147654A - Attitude sensor - Google Patents

Attitude sensor

Info

Publication number
JPS60147654A
JPS60147654A JP59004011A JP401184A JPS60147654A JP S60147654 A JPS60147654 A JP S60147654A JP 59004011 A JP59004011 A JP 59004011A JP 401184 A JP401184 A JP 401184A JP S60147654 A JPS60147654 A JP S60147654A
Authority
JP
Japan
Prior art keywords
liquid
ring
shaped vessel
container
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59004011A
Other languages
Japanese (ja)
Inventor
Kazue Nishihara
主計 西原
Ryoichi Hashimoto
亮一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59004011A priority Critical patent/JPS60147654A/en
Publication of JPS60147654A publication Critical patent/JPS60147654A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To measure an angular velocity and an angular acceleration by setting a pair of valve constituting bodies in symmetrical positions of a fluid flow passage in a ring-shaped vessel where a liquid is sealed and detecting change in the ring-shaped vessel, which is caused in accordance with flow of the liquid, as the variance of the electrostatic capacity. CONSTITUTION:Single-hinged plane valves 4 forming valve constituting bodies 3 are supported by springs 6 and 5 and are provided in the liquid flow passage in a ring-shaped vessel 2, where the liquid is sealed, in this state, and masses provided in free ends of plane valves 4 consist of insulated conductive materials. These masses are allowed to face electrodes 8 and 8 provided on the inner face of the outside wall of the ring-shaped vessel 2. Valve constituting bodies 3 are displaced by the liquid pressure which is generated by flow of the liquid due to angular speed and angular acceleration components of space motion of the system of the ring-shaped vessel and the liquid, and this displacement is measured as variance of the electrostatic capacity according to change of areas where plane valves 4 and electrodes 8 and 8 face each other.

Description

【発明の詳細な説明】 本発明は、ロボット腕等のごとく、可搬重量が小さく、
旋回の激しい可動作業装置に装着するのに適した小形の
姿勢センサに関するものであり。
[Detailed Description of the Invention] The present invention has a low payload capacity, such as a robot arm, etc.
The present invention relates to a small-sized attitude sensor suitable for mounting on a movable work device that turns violently.

特に被験体の傾き角度、角速度、角加速度を検出するた
めの姿勢センサに関するものである。
In particular, the present invention relates to a posture sensor for detecting a tilt angle, angular velocity, and angular acceleration of a subject.

移動機械には何らかの姿勢認識装置を必要とする場合が
多く、飛行機、船にはレートジャイロが、また最近の自
動車ではガスレートジャイロが用いられ、自動的に方位
を検出できるようにしている。作業ロボット、移動作業
ロボット、2足歩行ロボットなどにも姿勢検出器が有効
で、作業ロボットでは可動腕とは別の系に視覚装置をお
き、腕の姿勢を画像としてとらえる方法があるが、視覚
装置としてのカメラはかなりの重量をもち、そのため、
直接腕の先端もしくは腕の各関節等に装着して、腕の姿
勢の認識を容易、正確に行うことはむづかしい。さらに
、移動作業ロボットでは車体に視覚装置を搭載すること
ができ、必要に応じてジャイロも搭載することができる
。しかし、その視覚装置の情報の大半は移動環境の認識
とワークの選択に使われ、ハンドの制御を行うには不便
がある。また、ジャイロは作業腕に装着するには重すぎ
る。
Mobile machines often require some kind of attitude recognition device, and rate gyros are used in airplanes and ships, and gas rate gyros are used in recent automobiles to automatically detect orientation. Posture detectors are also effective for work robots, mobile work robots, bipedal walking robots, etc. For work robots, there is a method of placing a visual device in a system separate from the movable arm and capturing the arm posture as an image. The camera as a device has considerable weight, so
It is difficult to easily and accurately recognize the posture of the arm by directly attaching it to the tip of the arm or each joint of the arm. Furthermore, a mobile work robot can be equipped with a visual device and, if necessary, a gyro. However, most of the information from the visual device is used for recognizing the moving environment and selecting the workpiece, which is inconvenient for controlling the hand. Also, the gyro is too heavy to wear on the working arm.

一方、2足歩行ロボットは不安定系であるため、姿勢制
御が不可欠であるが、現状では、振子の鉛直軸からの振
れによる傾きセンサが用いられる程度で、速度、角速度
は検出されていない。しかし、今後の制御技術の進歩と
ともに小形軽量のセンサで角速度や角加速度を検出する
必要が生じてくるものと思われる。
On the other hand, since bipedal walking robots are unstable systems, posture control is essential, but at present, only tilt sensors are used based on the swing of the pendulum from the vertical axis, and velocity and angular velocity are not detected. However, as control technology advances in the future, it is thought that there will be a need to detect angular velocity and angular acceleration using small and lightweight sensors.

このような現状に鑑み、本発明は、ジャイロ、視覚カメ
ラ等に比べて十分小形軽量であり、かつ原理的には微小
なまでに小形化し得る姿勢センサを提供しようとするも
ので、特に環状容器内の液体流動速度が外部から加えら
れる角速度に依存することに着目し、環状容器−液体系
によって角度、角速度、角加速度の検出を可能にするも
のである。
In view of the current situation, the present invention aims to provide an attitude sensor that is sufficiently smaller and lighter than gyros, visual cameras, etc., and that can be miniaturized to the point of being microscopic in principle. Focusing on the fact that the liquid flow rate inside the container depends on the angular velocity applied from the outside, the annular container-liquid system enables the detection of angle, angular velocity, and angular acceleration.

即ち、本発明の姿勢センサは、環状容器内に液体を封入
し、その容器内の液体流路における対称位置に、質量及
びばね成分をもつ弁構造体を対にして組入れ、これらの
弁構造体と容器との間に、容器内液体の流動に伴って生
じる弁構造体の変位により対向面積あるいは対向距離が
変化してそれを静電容量の変化として検出する一対の電
極を対設したことを特徴とするものである。
That is, in the attitude sensor of the present invention, a liquid is sealed in an annular container, a pair of valve structures having a mass and a spring component are installed at symmetrical positions in a liquid flow path in the container, and these valve structures and the container, a pair of electrodes are installed opposite each other to detect changes in the facing area or distance as a change in capacitance due to displacement of the valve structure caused by the flow of liquid in the container. This is a characteristic feature.

以下、本発明の実施例について説明するに先立ち、まず
、環状容器内の液体流動速度が外部から加える角速度に
依存することを説明する。
Hereinafter, before describing embodiments of the present invention, it will first be explained that the liquid flow rate within the annular container depends on the angular velocity applied from the outside.

第1図(a)はロボット座標系を示し、同図(b)は、
そのロボント腕の先端に取付ける環状容器−液体系の姿
勢センサ1の座標系を示すものであlる。
Figure 1(a) shows the robot coordinate system, and Figure 1(b) shows the robot coordinate system.
This figure shows the coordinate system of an annular container-liquid system attitude sensor 1 attached to the tip of the robot's arm.

いま、第1図(a)に示すような静止座標0−XYZ(
Ko)系において、ロボットの腕r、を角度φ0.θ8
.ψ8だけ回転し、その先端位置0′での局所座標0′
−ξr ξθ ξ中(Ka)系に第1図(b)のセンサ
系0′−ζr ζφ ζ2 (Kζ)系が取付けられて
いるとする。また、センサ1の環状容器内の液体はrb
で表わし、Ko系から自系へ、ice系からにζ系への
変換マトリックスをそれぞれA、Bとする。この場合に
おいて、センサ系は0′位置に固定されているので、φ
b、θb、ψbは一定で、ωb=0である。
Now, the stationary coordinates 0-XYZ (
Ko) system, the arm r of the robot is set at an angle φ0. θ8
.. Rotated by ψ8, local coordinates 0' at the tip position 0'
It is assumed that the sensor system 0'-ζr ζφ ζ2 (Kζ) system shown in FIG. 1(b) is attached to the -ξr ξθ ξ medium (Ka) system. Also, the liquid in the annular container of sensor 1 is rb
The transformation matrices from the Ko system to the self system and from the ice system to the ζ system are respectively denoted as A and B. In this case, since the sensor system is fixed at the 0' position, φ
b, θb, and ψb are constant, and ωb=0.

なお、簡単のため、液体の流動はφb力方向のみ起こる
と仮定し、 υb=(0,v。、0)1 とおく。さらに、この場合の流動ではφb力方向圧力勾
配、速度勾配は0である。
For simplicity, it is assumed that liquid flow occurs only in the φb force direction, and υb=(0, v., 0)1. Furthermore, in the flow in this case, the pressure gradient in the φb force direction and the velocity gradient are zero.

面して、 Ωb=Ω8+ωb、 Ω、=Bωa と表わすとき、Kc系で記述する液体の運動方程式%式
% ただし、νは動粘性係数、S (r、z、t)は外力で
あり、この外力S (r、z、t)は、α8をRaの併
進加速度、vaをRaの併進速度として、 S (r、z、t) = a、+ (M、X R,+ 
11bx rb)+2(Ω、xva+Ωb×υb) +(Ωa×(ΩaxRa)+Ωb×(Ωbxrb))串
・・(3) となる。
When expressed as Ωb = Ω8 + ωb, Ω, = Bωa, the equation of motion of the liquid written in the Kc system is %Formula, where ν is the kinematic viscosity coefficient, S (r, z, t) is the external force, and this The external force S (r, z, t) is expressed as S (r, z, t) = a, + (M, X R, +
11bx rb) + 2 (Ω, xva + Ωb x υb) + (Ωa x (ΩaxRa) + Ωb x (Ωbxrb)) skewer (3).

第2図(a)は計算に用いたモデルを示すもので、同図
に示す如く、Kζ系の原点0′がK。系の原点Oに一致
させ、容器をZ軸回りに第2図(b)に示す角速度ω2
で回転させる場合には、式(3)は、ub −−y V2υb= ri3□ O・ 番 (4)t となり、ν→0の極限において、液体速度υbの回″転
方向成分υ。は、与えられる角速度ω2に比例すること
がわかる。
FIG. 2(a) shows the model used in the calculation. As shown in the figure, the origin 0' of the Kζ system is K. The container is rotated around the Z-axis at an angular velocity ω2 shown in Fig. 2(b), with the origin O of the system aligned.
When rotating at It can be seen that it is proportional to the given angular velocity ω2.

第3図は、第2図(b)のステップ状角速度入力に応動
する環状容器内の液体の平均流速0゜が動粘性係数νに
依存した特性を有すること、を示し、特に動粘性係数ν
が小さい場合には流速Vゆが角速度に追従でき、例えば
、ν=0.001 (水銀に相当)のものは95%の確
度をもつことがわかる。
FIG. 3 shows that the average flow velocity of the liquid in the annular container 0° in response to the step-like angular velocity input in FIG. 2(b) has a characteristic that depends on the kinematic viscosity coefficient ν.
When V is small, the flow velocity V can follow the angular velocity; for example, when v=0.001 (corresponding to mercury), it is found that the accuracy is 95%.

次に、第4図(a)(b)に示すような姿勢センサのモ
デルによって角運動量について考察する。第4図(a)
は、流路断面の中心線の半径なaとし、流路断面の半径
をbとした円環状容器2を動座標0′−ζr ζφ ζ
2系の原点0′に一致させて配置した状態を示し、同図
(b)は、−上記センサ1における円1状容器2の一部
に、弁構造体3として、液体流動をほぼ妨げるような面
状弁4の一端を、ばね要素kを旧設したヒンジ5によっ
て取付けた状態を示している。
Next, angular momentum will be considered using a posture sensor model as shown in FIGS. 4(a) and 4(b). Figure 4(a)
is the radius of the center line of the flow channel cross section, and the radius of the flow channel cross section is b.
Fig. 2(b) shows a state in which the sensor 1 is arranged so as to coincide with the origin 0' of the sensor 1; One end of the planar valve 4 is shown attached by a hinge 5 on which a spring element k was previously installed.

このように、円環状容器2内に液体流動を11妨げるよ
うに弁構造体3を配置した場合にお0て、点線で囲った
検査面をS、その体積をVとするとき、角運動量の方程
式は、 で与えられる。ただし、ρは液体の密度、rbは液体の
位置、eは検査面に沿って働く応力、Fマは弁の中央に
おいて液体を押す力、Sは式(3)によって与えられる
外力である。上記式(5)は、右辺第1項を滑らかな円
管の層流管摩擦として見積ると、第2図(a)の簡単な
例のとき、以下の近似方程式が導かれる。
In this way, when the valve structure 3 is arranged in the annular container 2 so as to obstruct the liquid flow by 11 degrees, and when the inspection surface surrounded by the dotted line is S and its volume is V, the angular momentum is The equation is given by. Here, ρ is the density of the liquid, rb is the position of the liquid, e is the stress acting along the inspection surface, F is the force pushing the liquid at the center of the valve, and S is the external force given by equation (3). In the above equation (5), when the first term on the right side is estimated as the laminar flow pipe friction of a smooth circular pipe, the following approximate equation is derived for the simple example shown in FIG. 2(a).

唇+ ccj+ + kcφ=−ω2* * (6)た
だし、 Co=8 ν/ b2.ko= )C/ρvb2である
Lips+ccj++kcφ=-ω2** (6) However, Co=8 ν/b2. ko= )C/ρvb2.

式(8)は角度φに対する振動方程式であり、左辺第2
項、第3項の定数の与え方により、角度、角速度、角加
速度の検出領域が存在する。それを極く簡単に調べると
、ko→小とする極限では、式(8) %式%(7) となり、液体変位φは角速度を直接計測し、時間と共に
指数関数的に平衡状態に落ち付く。また、k0→大にお
いて、 Cc↓+kcφキーω2 拳・(8) となり、角変位φは角加速度を直接計測する。
Equation (8) is the vibration equation for the angle φ, and the second left side
Depending on how the constants of the third term and the third term are given, detection areas for angle, angular velocity, and angular acceleration exist. Examining it very simply, in the limit where ko → small, the formula (8) % formula % (7) is obtained, and the liquid displacement φ directly measures the angular velocity, and exponentially settles into an equilibrium state over time. . Also, when k0→large, Cc↓+kcφ key ω2 fist・(8), and the angular displacement φ directly measures the angular acceleration.

次に、上述したところに従って姿勢の検出を行う本発明
の姿勢センサの実施例について説明する。
Next, an embodiment of the posture sensor of the present invention that detects the posture according to the above-mentioned method will be described.

本発明に係る姿勢センサは、上記第4図(a) (b)
1に示すモデルによっても明らかなように、滑らか量に
閉じた環状容器2内に水、絶縁油、水銀等の適宜液体を
封入し、その環状容器−液体系が空間運動を行ったとき
、その運動における角速度もしくは角加速度成分により
引き起こされる液体の流動に伴う液圧変動を、弁構造体
3の変位とじて計測するものである。上記弁構造体3は
、質量及びばね成分をもつ面状弁あるいは柔軟薄膜等に
よって構成され、環状容器2内の流路における液体の流
動をほぼ妨げるように配設される。
The attitude sensor according to the present invention is shown in FIGS. 4(a) and (b) above.
As is clear from the model shown in 1, when an appropriate liquid such as water, insulating oil, mercury, etc. is sealed in a smoothly closed annular container 2, and the annular container-liquid system moves in space, the Fluid pressure fluctuations accompanying liquid flow caused by angular velocity or angular acceleration components in motion are measured as displacement of the valve structure 3. The valve structure 3 is constituted by a planar valve or a flexible thin film having a mass and a spring component, and is arranged so as to substantially obstruct the flow of liquid in the flow path within the annular container 2.

第5図(a)〜(C)は、本発明の姿勢センサの実施例
を示すもので、液体を封入した環状容器2内の液体流路
に、弁構造体3を構成する片側ヒンジの面状弁4を、そ
の両側からばね8.θで支えた状態で設置し、この面状
弁4の自由端に設けた質量7を絶縁された導電性材料に
より形成して、電極としても機能させ、これを環状容器
2の外壁内面に設けた電極8,8と対向させることによ
り、弁構造°体3の変位で両電極の対向面積が変化した
とき゛に、それを静電容量の変化として検出できるよう
(に゛構成している。而して、上記環状容器2の外壁内
面の電極8.8を面状弁4のヒンジ軸9を中心とする半
円筒状(または半円環状)に形成すると共に、弁構造体
3の質量7を上記外壁の曲率に合わせて湾曲させた板状
とし、さらに上記電極8,8を一対の逆向きのくさび状
に形成している。なお、環状容器内に封入する液体が誘
電体でない場合には、各電極を絶縁する必要がある。
5(a) to (C) show an embodiment of the attitude sensor of the present invention, in which a surface of one side hinge constituting the valve structure 3 is placed in a liquid flow path in an annular container 2 filled with liquid. Spring 8. The mass 7 provided at the free end of the planar valve 4 is made of an insulated conductive material to function as an electrode, and this is provided on the inner surface of the outer wall of the annular container 2. By arranging the electrodes 8, 8 to face each other, when the opposing area of both electrodes changes due to displacement of the valve structure body 3, this can be detected as a change in capacitance. The electrode 8.8 on the inner surface of the outer wall of the annular container 2 is formed into a semi-cylindrical shape (or semi-circular shape) centered on the hinge axis 9 of the planar valve 4, and the mass 7 of the valve structure 3 is It has a plate shape curved to match the curvature of the outer wall, and the electrodes 8, 8 are formed in a pair of oppositely directed wedge shapes.In addition, if the liquid sealed in the annular container is not dielectric, , each electrode must be insulated.

このような姿勢センサにおける弁構造体3は、環状容器
−液体系の空間運動における角速度もしくは角加速度成
分により引き起こされる内部液体の流動で生じる液正に
よって変位し、従ってその変位を面状弁4と容器内壁に
設けた電極における対向面積の変化に応じた静電容量変
化として計測することにより、角速度もしくは角加速度
等による姿勢の検出を行うことができ、特に、くさび状
に形成した電極8.8と、面状弁4に設けた電極を兼ね
る質量7とは、弁構造体3の傾動に伴って電一対向面積
が一方で増加すると共に他方で減少す葛ため、その双方
の静電容量変化を取り出すことにより、上記角速度もし
くは角加速度の大きさ、方向を計測することができる。
The valve structure 3 in such a posture sensor is displaced by the liquid positive caused by the flow of the internal liquid caused by the angular velocity or angular acceleration component in the spatial motion of the annular container-liquid system, and therefore, the valve structure 3 is displaced by the liquid force generated by the flow of the internal liquid caused by the angular velocity or angular acceleration component in the spatial motion of the annular container-liquid system. By measuring the capacitance change according to the change in the facing area of the electrodes provided on the inner wall of the container, it is possible to detect the posture based on angular velocity or angular acceleration, etc. In particular, the wedge-shaped electrode 8.8 and the mass 7 provided on the planar valve 4 that also serves as an electrode.As the valve structure 3 tilts, the area facing the electrode increases on one side and decreases on the other, so that the capacitance of both of them changes. By taking out the angular velocity or angular acceleration, the magnitude and direction of the angular velocity or angular acceleration can be measured.

また、上記のように弁構造体3の質量が大きくなると、
慣性が無視できなくなり、センサが回転運動のみならず
、併進運動にも応動することになる。第4図(a)及び
第5図(a)において環状容器10の対称位置に対にし
て組入れた弁構造体3及び対をなす電極は、それを補償
するためのものである。即ち、それらの姿勢センサでは
、環状容器の流路の対称の位置に同一の弁構造体3を設
けているため、両弁構造体の傾動の差から上記併進運動
の影響を消去して回転運動についての角速度、角加速度
の計測を行うことができる。さらに、上記姿勢センサは
ロボット等のどの位置にどのように取り付けられるがわ
からず、従って重力による初動たわみがばねに発生して
いるが、それについても−上記と同様に二対の電極を設
けることにより補−償することができる。
Moreover, when the mass of the valve structure 3 increases as described above,
Inertia can no longer be ignored, and the sensor responds not only to rotational motion but also to translational motion. The valve structure 3 and the pair of electrodes incorporated in pairs in symmetrical positions in the annular container 10 in FIGS. 4(a) and 5(a) are intended to compensate for this. That is, in those attitude sensors, since the same valve structures 3 are provided at symmetrical positions in the flow path of the annular container, the influence of the translational movement is eliminated from the difference in the tilting of both valve structures, and the rotational movement is calculated. The angular velocity and angular acceleration can be measured. Furthermore, it is not known where and how the above-mentioned attitude sensor should be attached to the robot, etc., and therefore initial deflection due to gravity occurs in the spring, but in this regard - two pairs of electrodes should be provided in the same way as above. Compensation can be made by

第6図(a)(b)に示す実施例は、円盤状をなす容器
の外周壁11に対向させて一対の弧状の内周壁12.1
2を設けることにより、それらの間に環状の流路13を
もつ環状容器を構成し、剛性のある板によって形成した
面状弁15の両端に質量1B 、 lftを取付けて、
その面状弁15の中心位置をピボット17により上記容
器の中心に回転可能に支持させ、また上記面状弁15の
両面と容器の内周壁12.12との間にばね18を介装
し、これによって環状容器内における液体流路の対称位
置に対にして組入れる一対の弁構造体14を形成させて
いる。
In the embodiment shown in FIGS. 6(a) and 6(b), a pair of arc-shaped inner peripheral walls 12.1 are arranged opposite to an outer peripheral wall 11 of the container which is shaped like a disc.
2 to form an annular container with an annular flow path 13 between them, and masses 1B and lft are attached to both ends of a planar valve 15 formed by a rigid plate,
The center position of the planar valve 15 is rotatably supported at the center of the container by a pivot 17, and a spring 18 is interposed between both sides of the planar valve 15 and the inner peripheral wall 12.12 of the container, This forms a pair of valve structures 14 that are assembled in pairs at symmetrical positions in the liquid flow path within the annular container.

而して、上記面状弁15に数個けた質量16.18は、
それらを絶縁された導電性材料により形成して、電極と
しても機能させ、これらを環状容器の外周壁11内面に
設けたくさび状の電極19と対向させている。環状容器
の対称位置に配設した上記一対のくさび状電極19.1
9は、面状弁15がピボット17のまわりでいずれかの
方向に回転したとき、面状弁15に設けた電極との対向
面積が一方の電極18において増大し、他方の電極13
において減少するように、逆向きのくさひ状としたもの
である。
Therefore, the mass 16.18 of the above planar valve 15 of several orders of magnitude is:
They are formed of an insulated conductive material to function as electrodes, and are opposed to a wedge-shaped electrode 19 provided on the inner surface of the outer peripheral wall 11 of the annular container. The pair of wedge-shaped electrodes 19.1 are arranged at symmetrical positions in the annular container.
9, when the planar valve 15 rotates in either direction around the pivot 17, the area facing the electrode provided on the planar valve 15 increases at one electrode 18, and the area facing the electrode 13 at the other electrode 13 increases.
It is wedge-shaped in the opposite direction so that it decreases at .

このような構成により、弁構造体14の変位で両電極の
対向面積が変化したときには、その変位の大きさ及び方
向、即ち角速度あるいは角加速度を静電容量の変化とし
て検出することができる。また、液体流動に伴う作用力
が弁構造体14に作用しないときには、ばね18の反力
により弁構造体14が初期位置に復帰することになる。
With this configuration, when the facing area of both electrodes changes due to displacement of the valve structure 14, the magnitude and direction of the displacement, that is, the angular velocity or angular acceleration, can be detected as a change in capacitance. Furthermore, when the force associated with the liquid flow does not act on the valve structure 14, the reaction force of the spring 18 causes the valve structure 14 to return to its initial position.

第7図(a)(b)は、環状容器内に配設する弁構造体
の異なる構成例を示すもので、環状容器2の液体流路2
0を遮断するように配設した一対のダイヤフラム22,
22を絶縁体23.24及び可動電極25.25で一体
に連結することにより弁構造体21を構成している。こ
の弁構造体21は、絶縁体23.2’4及び電極25.
25が質量をもち、ダイヤフラム22,22がばねとし
ての機能をも有するものである。このような構成にする
と、両ダイヤフラム22,22の外側の流動液体と両ダ
イヤフラム間の流体をそれぞれの機能に適した別異のも
のとすることができ、例えば上記外側の流動液体として
粘度の小さい水や水銀を用い、両ダイヤフラム間には空
気や稀ガス、絶縁油あるいはその他の誘電体などを封入
することができる。
FIGS. 7(a) and 7(b) show different configuration examples of the valve structure disposed within the annular container, in which the liquid flow path 2 of the annular container 2 is
A pair of diaphragms 22 arranged to block 0,
22 are integrally connected by insulators 23, 24 and movable electrodes 25, 25 to form the valve structure 21. This valve structure 21 comprises an insulator 23.2'4 and an electrode 25.2'4.
25 has mass, and diaphragms 22, 22 also have a function as a spring. With such a configuration, the fluid on the outside of both diaphragms 22, 22 and the fluid between the two diaphragms can be made into different fluids suitable for their respective functions. For example, the fluid on the outside may be a fluid with a low viscosity. Water or mercury can be used, and air, rare gas, insulating oil, or other dielectric material can be filled between the two diaphragms.

上記一対のダイヤプラム22.22間に絶縁体を介して
取付けた可動電極25.25は、相互に逆方向に向くく
さび状としたものであり、しかもこの可動電極25は第
7図(b)かられかるように数枚の電極板25aを間隔
を置いて重設することにより構成し、一方、環状容器2
には上記可動電極の電極板25a間にそれと平行する数
枚の電極板28aを突出させた固定電極26を設け、そ
れぞれの電極を絶縁□膜で被うなどして非接触とし、ダ
イヤフラムの変動を電極25.26間の静電容量変化と
して検出できるように構成している。
The movable electrode 25.25 attached between the pair of diaphragms 22.22 via an insulator is wedge-shaped and faces in opposite directions, and this movable electrode 25 is shown in FIG. 7(b). It is constructed by stacking several electrode plates 25a at intervals so that they can be connected to each other, while the annular container 2
A fixed electrode 26 is provided between the electrode plates 25a of the movable electrode with several electrode plates 28a protruding parallel to the electrode plates 25a, and each electrode is covered with an insulating □ film to make them non-contact, thereby preventing the fluctuation of the diaphragm. is configured so that it can be detected as a change in capacitance between the electrodes 25 and 26.

第8図に示す実施例は、上記第7図の実施例と同様に、
環状容器2における液体流路30に二つのダイヤフラム
32,32を設け、それらのダイヤフラム32,32を
絶縁棒33を介して直結し、環状容器2にそれらのダイ
ヤフラム32,32間の中央部に位置して上記絶縁棒3
3が遊嵌する孔35をもった固定電極34を取付けてい
る。また、上記絶縁棒33には、固定電極34と平行で
その両側から等距離の位置にそれぞれ可動電極36.3
8を取付けている。
The embodiment shown in FIG. 8 is similar to the embodiment shown in FIG.
Two diaphragms 32, 32 are provided in the liquid flow path 30 in the annular container 2, and the diaphragms 32, 32 are directly connected via an insulating rod 33, and the annular container 2 is located in the center between the diaphragms 32, 32. and the above insulating rod 3
A fixed electrode 34 having a hole 35 into which No. 3 is loosely fitted is attached. Further, movable electrodes 36.3 are provided on the insulating rod 33 at positions parallel to the fixed electrode 34 and equidistant from both sides thereof.
8 is installed.

従って、ダイヤフラム32,32の変位により、固定電
極34の両側の電極間ギャップが変動したとき、それを
静電容量変化として検出することができる。なお、上記
ダイヤフラム32,32間に絶縁油等を封入することに
より、ダンピング、比誘電率などを改善することができ
る。
Therefore, when the gap between the electrodes on both sides of the fixed electrode 34 changes due to the displacement of the diaphragms 32, 32, this can be detected as a change in capacitance. Incidentally, damping, dielectric constant, etc. can be improved by sealing insulating oil or the like between the diaphragms 32, 32.

上述の姿勢センサにおける環状容器内の液体流路は、そ
の流路断面積が一様である必要はなく、第9図に示すよ
うに、弁構造体41の収容部分のみを1膨大部42.4
2とし、一対の膨大部42.42間における流動部43
.43を、例えば膨大部の1000程度の断面積の細管
によって形成することができ、これによってセンサ全体
を著しく小形化することができる。
The liquid flow path in the annular container in the above-mentioned attitude sensor does not need to have a uniform flow path cross-sectional area, and as shown in FIG. 4
2, and the flow part 43 between the pair of ampullae parts 42 and 42.
.. 43 can be formed, for example, by a capillary tube with a cross-sectional area of the order of 1000 in the ampullae, thereby making it possible to significantly reduce the size of the entire sensor.

また、上述した弁構造体41及びそれらに付設する電極
は、環状容器40内における一対の対称位置だけでなく
、第1θ図に例示するように、環状容器40内の二対の
対称位置に配設することもできる。
Furthermore, the above-described valve structure 41 and the electrodes attached thereto are arranged not only at a pair of symmetrical positions within the annular container 40 but also at two symmetrical positions within the annular container 40, as illustrated in FIG. 1θ. It is also possible to set

また、3次元的な姿勢の検出を行うためには、第11図
に示すように、互いに直交する三っ゛の平面内に位置す
る環状容器51,52.53を連結体54において相互
に連通状態に連結し、各環状容器51,52.53にそ
れぞれ−・対の弁構造体及びその変位を検出する電極を
設ければよい。
In addition, in order to detect the three-dimensional posture, as shown in FIG. Each annular container 51, 52, 53 may be provided with a pair of valve structures and an electrode for detecting the displacement thereof.

以上に詳述したところから明らかなように、本1発明に
よれば、ロボット腕等に付設するのに適しまた簡単で小
形な姿勢センサを得ることができる。
As is clear from the detailed description above, according to the first invention, it is possible to obtain a simple and compact posture sensor suitable for being attached to a robot arm or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の基本原理を説明するため
のロボット座標系及びセンサ座標系についての説明図、
第2図(a)(b)は計算に用いたセンサのモデルの構
成図及びステップ状角速度入力の波形図、第3図は上記
ステップ状角速度入力に応動する液体の平均流速につい
ての計算結果を示す線図、第4図(a) (b)は計算
のための姿勢センサのモデルの構成図及び部分拡大構成
図、第5図(a)〜(c)は本発明の実施例の一部破断
正面図、要部側断面図及び外壁内面の展開図、第6図(
a) (b)は本発明の他の実施例の断面図及び外周壁
内面の展開図、第7図(a)(b)及び第8図は弁構造
体の異なる構成例を示す断面図、第9図及び第10図は
本発明のさらに異なる実施例の平面図、第11図は同斜
視図である。 指定代理人 工業技術院製品科学研究所長 高嬌枚司 第35図 −2 一θ (・)第7図 <b> 第 8 図
FIGS. 1(a) and 1(b) are explanatory diagrams of a robot coordinate system and a sensor coordinate system for explaining the basic principle of the present invention,
Figures 2 (a) and (b) are the configuration diagram of the sensor model used in the calculations and the waveform diagram of the step-like angular velocity input, and Figure 3 shows the calculation results for the average flow velocity of the liquid in response to the step-like angular velocity input. 4(a) and 4(b) are configuration diagrams and partially enlarged configuration diagrams of a posture sensor model for calculation, and FIGS. 5(a) to (c) are part of an embodiment of the present invention. Broken front view, main part side sectional view, developed view of the inner surface of the outer wall, Figure 6 (
a) (b) is a sectional view and a developed view of the inner surface of the outer peripheral wall of another embodiment of the present invention, FIGS. 7(a), (b) and 8 are sectional views showing different configuration examples of the valve structure, 9 and 10 are plan views of still another embodiment of the present invention, and FIG. 11 is a perspective view thereof. Designated Agent: Agency of Industrial Science and Technology, Director, Product Science Research Institute, Tsutomu Tsukasa Figure 35-2 1θ (・) Figure 7 <b> Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1、環状容器内に液体を封入し、その容器内の液体流路
における対称位置に、質量及びばね成分をもつ弁構造体
を対にして組入れ、これらの弁構造体と容器との間に、
容器内液体の流動に伴って生じる弁構造体の変位により
対向面積あるいは対向゛距離が変化してそれを静電容量
の変化として検出する一対の電極を対設したことを特徴
とする姿゛勢センサ。
1. A liquid is sealed in an annular container, a pair of valve structures having a mass and a spring component are installed at symmetrical positions in the liquid flow path in the container, and between these valve structures and the container,
A position characterized by having a pair of electrodes arranged opposite each other to detect changes in the facing area or facing distance as a change in capacitance due to displacement of the valve structure caused by the flow of liquid in the container. sensor.
JP59004011A 1984-01-12 1984-01-12 Attitude sensor Pending JPS60147654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004011A JPS60147654A (en) 1984-01-12 1984-01-12 Attitude sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004011A JPS60147654A (en) 1984-01-12 1984-01-12 Attitude sensor

Publications (1)

Publication Number Publication Date
JPS60147654A true JPS60147654A (en) 1985-08-03

Family

ID=11573025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004011A Pending JPS60147654A (en) 1984-01-12 1984-01-12 Attitude sensor

Country Status (1)

Country Link
JP (1) JPS60147654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396865A (en) * 1989-09-08 1991-04-22 Chugoku X-Ray Kk Omnidirectional sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810661A (en) * 1981-07-02 1983-01-21 サートル・エレクトロニク・オルロジュール・ソシエテ・アノニム Measuring instrument for acceleration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810661A (en) * 1981-07-02 1983-01-21 サートル・エレクトロニク・オルロジュール・ソシエテ・アノニム Measuring instrument for acceleration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396865A (en) * 1989-09-08 1991-04-22 Chugoku X-Ray Kk Omnidirectional sensor
JPH0692979B2 (en) * 1989-09-08 1994-11-16 株式会社シーエックスアール Omni-directional sensor

Similar Documents

Publication Publication Date Title
US7239975B2 (en) Method and system for automatic stabilization and pointing control of a device
US10371715B2 (en) MEMS accelerometer with proof masses moving in an anti-phase direction
US7143648B2 (en) Magnetofluidic accelerometer with capacitive sensing of inertial body position
US10281486B2 (en) Microelectromechanical accelerometer device
JP2008537139A (en) Device comprising a sensor device
EP3792638B1 (en) Low-noise multi axis mems accelerometer
US3422965A (en) Manipulator apparatus
JP4223554B2 (en) Sensor device for three-dimensional measurement of posture or acceleration
Halme et al. A spherical mobile micro-robot for scientific applications
JPS60147654A (en) Attitude sensor
Elaswad et al. Basic and advanced inertial navigation fluid-based technology
CN108872637B (en) Two-axis flexible pendulum accelerometer
KR20100033894A (en) Security surveillance apparatus and its method for sensing oscillation with mems sensor like 3-axis accelerometer
Xu et al. A liquid MEMS inclinometer sensor with improved sensitivity
JPS60147611A (en) Attitude sensor
Brandstötter et al. Virtual compliance control of a kinematically redundant serial manipulator with 9 dof
KR101717877B1 (en) Single structure three axis MEMS Gyroscope with Z-shaped coupling spring
JP2020046233A (en) Angular acceleration sensor
US6851317B2 (en) Device for measuring horizontal acceleration
Tsai et al. Design and dynamics of an innovative micro gyroscope against coupling effects
JP3783061B1 (en) Method and apparatus for detecting tilt angle and translational acceleration
Cardou et al. Simplectic architectures for true multi-axial accelerometers: A novel application of parallel robots
Terekhov et al. Controlling spherical mobile robot in a two-parametric friction model
Van Thang et al. The performance improvement of a lowcost ins/gps integration system using the street return algorithm
JPS58221171A (en) Angular acceleration sensor