[go: up one dir, main page]

JPS60147158A - Close-contact image sensor - Google Patents

Close-contact image sensor

Info

Publication number
JPS60147158A
JPS60147158A JP59003793A JP379384A JPS60147158A JP S60147158 A JPS60147158 A JP S60147158A JP 59003793 A JP59003793 A JP 59003793A JP 379384 A JP379384 A JP 379384A JP S60147158 A JPS60147158 A JP S60147158A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
image sensor
conversion film
individual electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59003793A
Other languages
Japanese (ja)
Inventor
Satoshi Nishigaki
敏 西垣
Masataka Ito
政隆 伊藤
Shoshichi Kato
加藤 昭七
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59003793A priority Critical patent/JPS60147158A/en
Publication of JPS60147158A publication Critical patent/JPS60147158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/18Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈技術分野〉 本発明は非晶質シリコン薄膜を光電変換素子部に用いた
、原稿幅と同一サイズの長尺な密着型イメージセンサに
関するもので、特に光電変換素子の光応答特性を向上さ
せ、高速ファクンミリ、インテリジェントコピア等の高
速読取装置に使用できる密着型イメージセンサに関する
[Detailed Description of the Invention] <Technical Field> The present invention relates to a long contact type image sensor of the same size as the width of a document, using an amorphous silicon thin film in the photoelectric conversion element portion, and particularly relates to a long contact type image sensor that uses an amorphous silicon thin film in the photoelectric conversion element portion. The present invention relates to a contact type image sensor that has improved optical response characteristics and can be used in high-speed reading devices such as high-speed facunmills and intelligent copiers.

〈従来技術〉 一次元イメージセンサはファクシミリ、インテリジエン
トコピア等における原稿の読み取シ用として知られてい
る。従来、この種の受光センサとしては、−次元の固体
イメージ素子(CODあるいはMOS型)を用い、原稿
像をスυソト露光かつ縮小結像することにより、対応し
た画像情報信号を得ている。この−次元固体イメージ素
子はIC技術を使って作製され、30閣程度の大きさの
素子であり、このだめ原稿からの反射光を受光部に導く
には光路長の長い光学系を用いざるを得す、装置の小型
化が困難である。さらに、このような装置では光学系の
複雑な調整が必要であシ、また、画面周辺部の光量低下
1分解能の劣化といった問題も生じる。
<Prior Art> One-dimensional image sensors are known for use in reading documents in facsimiles, intelligent copiers, and the like. Conventionally, this type of light-receiving sensor uses a -dimensional solid-state image device (COD or MOS type), and obtains a corresponding image information signal by vertically exposing and reducing an original image. This -dimensional solid-state image device is manufactured using IC technology and is approximately 30 cm in size, and an optical system with a long optical path length must be used to guide the reflected light from the original to the light receiving section. However, it is difficult to miniaturize the device. Furthermore, such an apparatus requires complicated adjustment of the optical system, and also causes problems such as a decrease in the amount of light at the periphery of the screen and a deterioration in resolution.

これらの問題点の改善のために、原稿幅と同−寸長の長
さの長尺イメージ素子を用い、ファイバーレンズアレイ
を用いて密着結像するいわゆる密着型イメージ素子が考
案されている。この様な密着型イメージ素子では大型の
光電変換部が必要で、大面積にわたる均一な光電変換膜
の形成が要求される。現在、長尺の一次元イメージ素子
を作るためCd8・CdSe膜、 Se −A5−Te
系非晶質薄膜。
In order to improve these problems, a so-called contact type image element has been devised, which uses a long image element with a length equal to the width of the document and forms a close image using a fiber lens array. Such a contact type image element requires a large photoelectric conversion section, and requires the formation of a uniform photoelectric conversion film over a large area. Currently, Cd8/CdSe film, Se-A5-Te is used to make long one-dimensional image elements.
system amorphous thin film.

非晶質Si薄膜等が提案されているが、光応答速度が不
充分、あるいは光感度、明暗比が不十分であるため、■
ラインあたりの読取り時間が限定され高速読み取り装置
用としては必ずしも充分でなく、実用化には問題があっ
た。
Amorphous Si thin films, etc. have been proposed, but their light response speed is insufficient, or their photosensitivity and contrast ratio are insufficient.
The reading time per line is limited, which is not necessarily sufficient for high-speed reading devices, and there are problems in practical use.

〈発明の目的〉 本発明は従来の密着型イメージセンサのもつ種々の問題
点に鑑みてなされたもので、光電変換部をpinダイオ
ード構造とし、逆バイアス印加状態で駆動することによ
シ、非常に高速の光応答性を有しかつ明暗比、光感度等
のイメージセンサに要求される特性を著しく向上させた
密着型イメージセンサを提供することにある。
<Object of the Invention> The present invention has been made in view of various problems of conventional contact type image sensors. An object of the present invention is to provide a contact image sensor that has high-speed photoresponsiveness and has significantly improved characteristics required for an image sensor, such as contrast ratio and photosensitivity.

〈実施例〉 第1図は本発明による密着型イメージセンサの基本構造
を示す平面図であシ、I−1における同 2断面を第2
図に示す。
<Example> Fig. 1 is a plan view showing the basic structure of a contact type image sensor according to the present invention.
As shown in the figure.

光電変換素子は透光性基板1上に設けられた平板状の共
通電極2、半導体層3およびストライプ状に加工された
個別電極4から構成される。上記電極2.4のうちどち
らか一方は透明電極である必要があるが、共通電極2お
よび個別電極4の位置は逆転してもよく、また、場合に
よっては基板1は透光性である必要もない。上記個別電
極4の他端側は、上記光電変換用の半導体層3と分離さ
せてす、−り防止用ブロッキングダイオードとなる半導
体層5に接続されている。また該半導体層5の他端は個
別電極4を走査するだめのマ) IJソクス電極6に接
続されている。該マトリックス電極6は、基板1上に金
属膜によって形成されるが、上記共通電極2に属する個
別電極4の本数に対応させてグループに分割され、マト
リックス駆動させるべく分割されたグループの対応する
マトリックス電極は共通に接続されている。
The photoelectric conversion element is composed of a flat common electrode 2 provided on a transparent substrate 1, a semiconductor layer 3, and individual electrodes 4 processed into stripes. One of the electrodes 2.4 above needs to be a transparent electrode, but the positions of the common electrode 2 and the individual electrodes 4 may be reversed, and in some cases, the substrate 1 needs to be transparent. Nor. The other end of the individual electrode 4 is connected to a semiconductor layer 5 which is separated from the photoelectric conversion semiconductor layer 3 and serves as a blocking diode for preventing deterioration. The other end of the semiconductor layer 5 is connected to an IJ source electrode 6 for scanning the individual electrodes 4. The matrix electrode 6 is formed of a metal film on the substrate 1, and is divided into groups corresponding to the number of individual electrodes 4 belonging to the common electrode 2, and the matrix corresponding to the divided group is The electrodes are connected in common.

上記透光性基板1としては例えばガラス基板を用いるこ
とが可能であシ、透光性が要求されない場合にはポリイ
ミド樹脂に代表される側熱性有機フィルムあるいはセラ
ミック基板を使用する。透明電極としては酸化インジウ
ム(I n203)酸化ス、((SnOz)あるいはイ
ンジウム・スズ酸化物(ITO)などが、まd透光性を
必要としない場合にはAt+ Cu + Cr + A
u + P t + In + I n Sn合金。
For example, a glass substrate can be used as the light-transmitting substrate 1, and if light-transmitting properties are not required, a heat-transmitting organic film typified by polyimide resin or a ceramic substrate is used. As a transparent electrode, indium oxide (I n203), tin oxide, (SnOz), or indium tin oxide (ITO) can be used.If translucency is not required, At+Cu+Cr+A
u + P t + In + In Sn alloy.

In−Ga合金、Ni−Cr合金などの金属電極を使用
する。半導体層3としては非晶質水素化シリコンで構成
し、pinダイオード構造とする。
A metal electrode such as In-Ga alloy or Ni-Cr alloy is used. The semiconductor layer 3 is made of amorphous hydrogenated silicon and has a pin diode structure.

等価回路及び走査回路を第3図(a)、(b)に示す。The equivalent circuit and scanning circuit are shown in FIGS. 3(a) and 3(b).

尚第3図(a)はクロストーク防止のだめのブロッキン
グダイオードを用いない方式の等価回路図で、画素数に
対応したスイッチング素子7を必要とする。一方第3図
(b)は、各画素毎にクロストーク防止のだめのブロク
キングダイオード5を設けた上記第1図に示すマトリッ
クス型のスイッチ方式によりスイッチング素子8118
2の減少をはかったイメージセンサの等価回路図である
。本実−例によるイメージセンサはどちらの方式でも走
査可能である妙へ以下の説明ではマトリックス型のスイ
ッチ方式を採用する。このスイッチ方式では蓄積型の信
号読出し方式を用いると読出時間が長くなシ高速読み取
りには不利となるため、実時間型の読み出し方式を用い
る。マトリックス配線の採用により、スイッチング素子
数8+ 、 82は大幅に減少させることができる。ス
イッチング素子81.82としては、たとえばC−MO
S)ランジスタを用い、各ゲートをシフトレジスタに接
続し、順次スイッチング動作を行っていくと、各画素は
受光した光量に応じた信号電流を出力し、イメージ情報
の読み取りができる。
FIG. 3(a) is an equivalent circuit diagram of a method that does not use a blocking diode to prevent crosstalk, and requires switching elements 7 corresponding to the number of pixels. On the other hand, FIG. 3(b) shows a switching element 8118 using the matrix type switch system shown in FIG.
2 is an equivalent circuit diagram of an image sensor in which the number of pixels is reduced by 2. The image sensor according to this example can scan using either method, but in the following explanation, a matrix type switch method will be adopted. In this switch method, a real-time readout method is used since the use of an accumulation type signal readout method requires a long readout time and is disadvantageous for high-speed reading. By employing matrix wiring, the number of switching elements (8+, 82) can be significantly reduced. As the switching elements 81 and 82, for example, C-MO
S) By using a transistor and connecting each gate to a shift register and sequentially performing a switching operation, each pixel outputs a signal current according to the amount of light it receives, and image information can be read.

上記構造からなる密着型イメージセンサの電圧−電流特
性を第4図に、出力電流の照度依存性を第5図に、光応
答速度の逆バイアス電圧依存性を第6図に示し、高速読
み取り用素子としての適合性を説明する。第4図の曲m
Aは60ルツクスの明部、曲線Bは暗部における特性を
示し、両市線から明らかな様に本イメージセンサは5V
以下の低電位での駆動が可能であり、明暗比(静特性)
が〜104ときわめて大きな値を示す。寸だ、第5、第
6図に示されるごとく、高感度かつ良好なγ−特性を示
しかつ光応答性にも非常に優れており、立ち上がり(9
0%)および立ち下がり(90%)に要する応答時間t
on+ toffを第7図に示すように定義すると、こ
れらの応答時間ともに50μsec以下と著しく速い応
答を示すなど、高速読み取シ用素子としてきわめて好ま
しい特性を示す。
Figure 4 shows the voltage-current characteristics of the contact image sensor with the above structure, Figure 5 shows the illuminance dependence of the output current, and Figure 6 shows the reverse bias voltage dependence of the optical response speed. The compatibility as an element will be explained. Song m in Figure 4
Curve A shows the characteristics in the bright area of 60 lux, and curve B shows the characteristics in the dark area.As is clear from both lines, this image sensor has a voltage of 5V.
It is possible to drive at the following low potentials, and the contrast ratio (static characteristics)
shows an extremely large value of ~104. As shown in Figures 5 and 6, it exhibits high sensitivity and good γ-characteristics, as well as excellent photoresponsiveness.
0%) and falling (90%) response time t
When on+toff is defined as shown in FIG. 7, both of these response times exhibit extremely fast responses of 50 .mu.sec or less, exhibiting extremely favorable characteristics as an element for high-speed reading.

上記イメージセンサの光電変換膜3は非晶質水素化シリ
ランから構成されているため、p層あるいはn層の固有
体積抵抗となる傾向があり、画素間のリークの原因とな
る場合もあるので必要に応じてp層あるいはn層を個別
電極4と同形状のパターンに分割加工した形状が望まし
い。この際、エツチング工程による素子特性への影響は
小さい。
The photoelectric conversion film 3 of the above image sensor is made of amorphous hydrogenated silyran, so it tends to have a specific volume resistance of the p-layer or n-layer, which may cause leakage between pixels, so it is necessary. A shape in which the p layer or n layer is divided into patterns having the same shape as the individual electrodes 4 is preferable. At this time, the effect of the etching process on the device characteristics is small.

なお、光照射側のpまたはn層は、この層での光損失を
最小限にとどめるため、50〜100OAの薄層とする
必要がちり、またi層はピンホール等の欠陥をなくし電
流のまわ9込みをなくすため05μm程度以上10μm
以下、好ましくは1〜3μm程゛度の膜厚をもち、10
7Ω・m以上、好ましくは108Ω・副程度の固有抵抗
値が必要となる。
Note that the p or n layer on the light irradiation side needs to be a thin layer of 50 to 100 OA in order to minimize optical loss in this layer, and the i layer must be made to eliminate defects such as pinholes to prevent current flow. 05μm or more or more 10μm to eliminate rounding 9
Below, the film thickness is preferably about 1 to 3 μm, and 10
A specific resistance value of 7 Ω·m or more, preferably about 10 8 Ω·m is required.

以下、上記基本構造に基いた本発明の詳細を具体例7・
示す。
Hereinafter, details of the present invention based on the above basic structure will be explained in Example 7.
show.

〔実施例2」 基板1として60X150−のパイレックスガラスを用
い、この上に約200OAの膜厚のAtを蒸着し、共通
電極2及びマ) IJノクス配線用下層配線6をフォト
リソグラフィプロセスを用いてパターン形成する。フォ
トダイオード及びブロッキングダイオードを形成するた
め、プラズマCVD法にてp形の非晶質シリコンを50
OA堆積させ、さらにi形、n形の非晶質シリコン膜を
各々2μm及び100Aの厚さだけ堆積させて半導体層
3゜5を形成する。このようにして形成された非晶質シ
リコン薄膜3,5は、通常のCF 4を用いたドライエ
ツチングプロセスによす、フォトタイオード3、プoソ
キングダイオード5共にn層のみを8本/闘の密度でス
トライプ状に加工する。なお、上記非晶質シリコン膜の
作成条件は以下の通シである。基板温度は2501:、
放電圧力0.aTorrs高周波電力100 W (8
0mW/crl ) にて、p形の非晶質シリコン層は
B2H6とSiH4の体積比が500ppmの混合ガス
をH2で10%程度に希釈したもの、i形は5iHaを
H2で30%に希釈した混合ガス、さらにn形はPH3
とSiH4との体積比が110000ppの混合ガスを
20%程度に希釈したものをそれぞれグロー放電によっ
て分解し形成する。次にこの半導体層上およびマトリッ
クス配線部上にプラズマCVD法により、S iCh膜
(約200OA)9を形成し、第1図及び第2図に示す
ごとくスルーホール10.11をエツチング加工する。
[Example 2] A 60×150-Pyrex glass was used as the substrate 1. On this, At was deposited to a thickness of about 200 OA, and the common electrode 2 and lower layer wiring 6 for IJ node wiring were formed using a photolithography process. Form a pattern. In order to form a photodiode and a blocking diode, 50% of p-type amorphous silicon was deposited using the plasma CVD method.
After OA deposition, I-type and N-type amorphous silicon films are deposited to a thickness of 2 μm and 100 Å, respectively, to form a semiconductor layer 3.5. The amorphous silicon thin films 3 and 5 thus formed are etched by a normal dry etching process using CF4. Processed into stripes based on the density of the fight. Note that the conditions for forming the amorphous silicon film are as follows. The substrate temperature is 2501:,
Discharge pressure 0. aTorrs high frequency power 100W (8
0 mW/crl), the p-type amorphous silicon layer was made by diluting a mixed gas of B2H6 and SiH4 with a volume ratio of 500 ppm to about 10% with H2, and the i-type was made by diluting 5iHa to 30% with H2. Mixed gas, and n-type is PH3
A mixed gas having a volume ratio of 110,000 ppm and SiH4 is diluted to about 20% and decomposed by glow discharge. Next, a SiCh film (approximately 200 OA) 9 is formed on this semiconductor layer and matrix wiring portion by plasma CVD, and through holes 10 and 11 are etched as shown in FIGS. 1 and 2.

なお5iOz絶縁膜以外にも例えば5j3N4等も使用
できるのは云うまでもない。さらにこの絶縁膜9上に、
光電変換部3とダイオード部5間には透明導電膜によっ
て個別電極としてI T O(Inz03SnO2(5
X ))をRFスパッタリングで約100 OA、マト
リックス配線部の上層配線にはAtを約300OA各々
蒸着する。なお、この時同時にブロッキングダイオード
部5にはITO上にさらにAtを蒸着し、遮光膜12と
しだ。ITO膜4はn層と同一の8本/wのストライプ
状とし、マトリックス配線部6も所定のパタ−7にエツ
チング加工し、最終的に1024画素(1画素: 10
0X100μ 2)から成る光電変換部を作成する。各
端子を上記第3図(b)に示すごとく、駆動回路に接続
し、RLより実時間で画像信号を読み出しだ。本実施例
により1ms/1ine以上の高速読取が可能となった
It goes without saying that in addition to the 5iOz insulating film, for example, 5j3N4 can also be used. Furthermore, on this insulating film 9,
ITO (Inz03SnO2 (5
X)) is evaporated to about 100 OA by RF sputtering, and At is evaporated to about 300 OA to the upper layer wiring of the matrix wiring portion. At the same time, At is further vapor-deposited on the ITO in the blocking diode portion 5 to form a light-shielding film 12. The ITO film 4 has the same stripe shape as the n-layer, with 8 lines/w, and the matrix wiring part 6 is also etched into a predetermined pattern 7, resulting in 1024 pixels (1 pixel: 10
A photoelectric conversion section consisting of 0x100μ2) is created. Each terminal was connected to a drive circuit as shown in FIG. 3(b) above, and image signals were read out from RL in real time. This embodiment enables high-speed reading of 1 ms/line or higher.

〔実施例3〕 実施例2と光照射方向が逆となる素子構造とする。まず
、パイレックスガラス基板1上にRFスパッタリングで
画素形成部及びブロッキングダイオード形成部に約10
0OAの5nOz 、マI・リソクス配線部にはAtを
各々蒸着し、各々所定のパターンにエツチング加工し、
共通電極2及び下層配線部6を形成した。なお基板上に
はブロッキングダイオードの遮光及び画像露光幅を限定
するだめの遮光膜をあらかじめ形成するのが望ましい。
[Example 3] An element structure is used in which the direction of light irradiation is opposite to that of Example 2. First, on the Pyrex glass substrate 1, about 10%
0OA of 5nOz, At was vapor-deposited on the main I/lithography wiring part, and etched into a predetermined pattern.
A common electrode 2 and a lower wiring section 6 were formed. Note that it is desirable to form in advance a light-shielding film on the substrate for blocking light from the blocking diode and limiting the image exposure width.

遮光膜が金属薄膜(Cr、At等)の場合はスパッタ蒸
着等でこの上にS ioz等の絶縁膜を形成する必要が
あるのは云うまでもない。
If the light shielding film is a metal thin film (Cr, At, etc.), it goes without saying that an insulating film such as Sioz must be formed thereon by sputter deposition or the like.

受光部及びブロッキングダイオード部にp形。P type for light receiving part and blocking diode part.

i形およびn形の非晶質シリコン層を約80人。Approximately 80 I-type and N-type amorphous silicon layers.

3μm、300Aの膜厚で形成する0非晶質シリコン膜
の作成条件は実施例2とほぼ同様である。この場合も同
様にn層のみをストライプ状にエツチング加工後、ポリ
イミド系フォトレジストを塗膜形成しく約1μm)、A
x、管ぢ様にスルーホールを形成する。このフォトレジ
ストは剥離することなく層間絶縁層として用いる。この
上に個別電極4及びマトリックス配線上層部をAt蒸着
により形成、パターン加工し、8本/間の画素密度を有
する光電変換部を形成する。各端子を第3図(b)の様
に駆動回路に接続し、センサ特性を評価したところ、ダ
イオード特性は実施例2とほぼ同等であシ、画素間の信
号のバラツキも±5%以内と安定しまた特性が得られた
The conditions for forming a zero amorphous silicon film with a film thickness of 3 μm and 300 A are almost the same as in Example 2. In this case as well, after etching only the n layer into stripes, a polyimide photoresist film is formed (approximately 1 μm thick) and A
x, form a through hole like a tube. This photoresist is used as an interlayer insulating layer without being peeled off. The individual electrodes 4 and the upper layer of the matrix wiring are formed and patterned by At vapor deposition on this, thereby forming a photoelectric conversion section having a pixel density of 8/. When each terminal was connected to the drive circuit as shown in Figure 3(b) and the sensor characteristics were evaluated, the diode characteristics were almost the same as in Example 2, and the signal variation between pixels was within ±5%. It was stable and good characteristics were obtained.

〔実施例4〕 実施例2とほぼ同一のセンサ構造であるが光電 ?変換
部の非晶質シリコン層を完全に画素毎に分離した構成と
した。本イメージセンサの画素間のり−ク電流を実施例
2及び3のものと比較したととろ、いずれの実施例の構
造に二・夕いても、リーク電流は微弱で悪影響のないこ
とを確認した。この様にp層はその固有抵抗値が100
・α程度以上であれば画素密度に応じた分割をする必要
はなく、低抵抗となる少なくともn層のみを分割すれば
、画像の横流れはなく、すぐれたイメージ素子の作成が
可能となる。
[Example 4] Almost the same sensor structure as Example 2, but photoelectric? The amorphous silicon layer of the conversion section is completely separated for each pixel. When the leakage current between the pixels of this image sensor was compared with that of Examples 2 and 3, it was confirmed that the leakage current was weak and had no adverse effect regardless of the structure of either Example. In this way, the p-layer has a specific resistance value of 100
- If it is about α or more, there is no need to divide according to the pixel density, and if only at least n layers, which have low resistance, are divided, there will be no horizontal flow of images, and it is possible to create an excellent image element.

〔効果〕〔effect〕

以上、本発明によれば素子構造の簡単な長尺のイメージ
素子を容易に作ることができる。また、とにより、感度
、応答性に優れた高速読取素子を量産性よく作ることが
できる。
As described above, according to the present invention, a long image element with a simple element structure can be easily manufactured. Furthermore, high-speed reading elements with excellent sensitivity and responsiveness can be manufactured with good mass productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例の基本構造を示す平面図、
第2図は同1−1断面図、第3図(a)は同実施例の等
価回路図、第3図(b)は同実施例の他の等価回路図、
第4図は同実施例の電圧−電流特性図 第5図は同実施
例の面照度−出力電流特性図、第6図は同実施例の印加
電圧−光応答速度特性図、第7図は第6図における応答
時間ton+ toffの定義を説明する図である。
FIG. 1 is a plan view showing the basic structure of an embodiment according to the present invention;
Fig. 2 is a 1-1 sectional view of the same, Fig. 3 (a) is an equivalent circuit diagram of the same embodiment, Fig. 3 (b) is another equivalent circuit diagram of the same embodiment,
FIG. 4 is a voltage-current characteristic diagram of the same example. FIG. 5 is a surface illuminance-output current characteristic diagram of the same example. FIG. 6 is an applied voltage-light response speed characteristic diagram of the same example. 7 is a diagram illustrating the definition of response time ton+toff in FIG. 6. FIG.

Claims (4)

【特許請求の範囲】[Claims] (1)光学情報をその光強度に応じた電気信号に変換す
る画像読取素子を支持基板上に配列してなるセッサにお
いて、pin構造を持つ光電変換膜と、該光電変換膜の
夫々の面に形成された平板状の共通電極及び画像読取素
子に対応する個別電極とを備え、上記共通電極と個別電
極の少なくとも一方は透明電極から成る密着型イメージ
センサ。
(1) In a processor in which image reading elements that convert optical information into electrical signals according to the light intensity are arranged on a support substrate, a photoelectric conversion film having a pin structure and a photoelectric conversion film on each surface of the photoelectric conversion film are provided. A contact image sensor comprising a flat common electrode formed and individual electrodes corresponding to image reading elements, wherein at least one of the common electrode and the individual electrode is made of a transparent electrode.
(2)前記光電変換膜は非晶Vシリコンで形成されたp
−1−nダイオード構造から成り、電極によって逆バイ
アスされて入射光量に対応した信号電流を出力し、画像
情報が得られることを特徴とする特許請求の範囲第1項
記載の密着型イメージセンサ。
(2) The photoelectric conversion film is made of amorphous V silicon.
2. The contact image sensor according to claim 1, comprising a -1-n diode structure, reverse biased by an electrode, outputting a signal current corresponding to the amount of incident light, and obtaining image information.
(3)前記光電変換膜は、pin積層構造のうち個別電
極に接する半導体層のみが個別電極とほぼ同一形状に分
割され、他の半導体層は一体的に形成されていることを
特徴とする特許請求の範囲第1項又は第2項記載の密着
型イメージセンサ。
(3) In the photoelectric conversion film, only the semiconductor layer in contact with the individual electrodes in the pin stacked structure is divided into almost the same shape as the individual electrodes, and the other semiconductor layers are integrally formed. A contact type image sensor according to claim 1 or 2.
(4)前記光電変換膜は基板側電極上に順次p、itn
形から成る半導体層によって形成され、かつ固有抵抗値
が1060・m以下、膜厚50A以上1000A以下の
n層が個別電極と同一形状に分割されていることを特徴
とする特許請求の範囲第1項又は第2項記載の密着型イ
メージセンサ0
(4) The photoelectric conversion film is sequentially arranged on the substrate side electrodes such as p and itn.
Claim 1, characterized in that the n-layer is formed of a semiconductor layer consisting of a shape, has a specific resistance value of 1060 m or less, and a film thickness of 50 A to 1000 A, and is divided into the same shape as the individual electrodes. Close-contact image sensor 0 according to item or item 2
JP59003793A 1984-01-10 1984-01-10 Close-contact image sensor Pending JPS60147158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59003793A JPS60147158A (en) 1984-01-10 1984-01-10 Close-contact image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59003793A JPS60147158A (en) 1984-01-10 1984-01-10 Close-contact image sensor

Publications (1)

Publication Number Publication Date
JPS60147158A true JPS60147158A (en) 1985-08-03

Family

ID=11567061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59003793A Pending JPS60147158A (en) 1984-01-10 1984-01-10 Close-contact image sensor

Country Status (1)

Country Link
JP (1) JPS60147158A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764682A (en) * 1986-09-16 1988-08-16 Ovonic Imaging Systems, Inc. Photosensitive pixel sized and shaped to optimize packing density and eliminate optical cross-talk
JPH022676A (en) * 1988-06-17 1990-01-08 Konica Corp Image sensor
US5191202A (en) * 1990-03-14 1993-03-02 Nippon Steel Corporation Photoelectric conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764682A (en) * 1986-09-16 1988-08-16 Ovonic Imaging Systems, Inc. Photosensitive pixel sized and shaped to optimize packing density and eliminate optical cross-talk
JPH022676A (en) * 1988-06-17 1990-01-08 Konica Corp Image sensor
US5191202A (en) * 1990-03-14 1993-03-02 Nippon Steel Corporation Photoelectric conversion device

Similar Documents

Publication Publication Date Title
JPS60161664A (en) Tightly adhered two-dimensional image readout device
US6710370B2 (en) Image sensor with performance enhancing structures
US5200634A (en) Thin film phototransistor and photosensor array using the same
US4354104A (en) Solid-state image pickup device
JPS5856363A (en) Light-receiving element
GB2188482A (en) Optical sensor
CA1314627C (en) Photoresponsive arrays
US4764682A (en) Photosensitive pixel sized and shaped to optimize packing density and eliminate optical cross-talk
EP0361515B1 (en) Thin film phototransistor and photosensor array using the same
US4714836A (en) Photosensitive pixel with exposed blocking element
JPH0120592B2 (en)
KR100265871B1 (en) Semiconductor device and manufacturing method thereof
JPH0730089A (en) Image sensor
US4746804A (en) Photosensitive pixel with exposed blocking element
JPS60147158A (en) Close-contact image sensor
JPH0730084A (en) Two-dimensional contact image sensor
JP3135309B2 (en) Photoelectric conversion device and information processing device
JP3484340B2 (en) Image sensor
Mimura et al. A two-dimensional image sensor with aSi: H pin diodes
JPS5879756A (en) Amorphous si image sensor
JPS6317554A (en) photoconductive device
JPH01192166A (en) Photodetector
JP2899052B2 (en) Thin film semiconductor device
JP2796336B2 (en) Two-dimensional photosensor array
JPS60192361A (en) Color image senser