[go: up one dir, main page]

JPS60145592A - Magnetic bubble element - Google Patents

Magnetic bubble element

Info

Publication number
JPS60145592A
JPS60145592A JP59001648A JP164884A JPS60145592A JP S60145592 A JPS60145592 A JP S60145592A JP 59001648 A JP59001648 A JP 59001648A JP 164884 A JP164884 A JP 164884A JP S60145592 A JPS60145592 A JP S60145592A
Authority
JP
Japan
Prior art keywords
pattern
plain
magnetic field
becomes
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59001648A
Other languages
Japanese (ja)
Inventor
Osamu Okada
修 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computer Basic Technology Research Association Corp
Original Assignee
Computer Basic Technology Research Association Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computer Basic Technology Research Association Corp filed Critical Computer Basic Technology Research Association Corp
Priority to JP59001648A priority Critical patent/JPS60145592A/en
Publication of JPS60145592A publication Critical patent/JPS60145592A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent a charged wall from becoming weak by setting an in-plain magnetic anisotropic magnetic field of an ion implanting layer to a prescribed value in a contiguous disk ion implanting magnetic bubble element. CONSTITUTION:When a pattern of 3,000Angstrom of SiO2 is formed on an ion implanting layer 22 due to double implantation and anealed at 250 deg.C, etc., in a hydrogen gas atmosphere, an in-plain anisotropic magnetic field becomes maximum in a pattern edge 25 due to diffusion of hydrogen, and it becomes smaller as it goes away from the field. In a center of a pattern it becomes minimum, and a value of the in-plain magnetic anisotropic magnetic field of the maximum part becomes larger than that of the minimum part by >=10%. As a result, an in-plain anisotropic magnetic field value becomes larger without any increase in implantation distortion of an ion layer, and a charge in the reverse direction of a charged wall will not occur near the charged wall. As a result, weakening of a charged wall can be prevented, a magnetic bubble element needs low power consumption and becomes high reliable and a high density.

Description

【発明の詳細な説明】 本発明はコンティキーアスディスクイオン注入バブル素
子、よりくわしくはコンティキーアスディスクパターン
エッジ近傍におけるイオン注入層の異方性磁場の分布形
状に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a contiki ass disk ion implantation bubble device, and more particularly to a distribution shape of an anisotropic magnetic field in an ion implantation layer in the vicinity of a contiki ass disk pattern edge.

イオン注入バブル素子はコンテイギユアスディスク状の
マスクパターンを金などで形成したのち、ヘリウムイオ
ンなどによりイオン注入することにヨリ、パターンエツ
ジ近くのイオン注入層にできるチャージドウオールによ
り磁気バブルを転送するバブル素子である。このような
イオン注入バブル素子においては、バブルの安定な転送
をはかるためには強いチャージドウオールの、なめらか
な移動が必要である。ジャーナル・オブ・アプライド・
フィジックス第53巻5815頁(Jarnalof 
Applied Physics 、 Vol 、 5
3 + 5815 )に述べられているように、チャー
ジドウオールはパターンエツジ近傍の歪の緩和にもとづ
いて形成されるので、チャージドウオールを強くするた
めには、イオン注入層の注入歪を大きくすればそれにと
もなって強く々る。ところが歪を大きくして、面内異方
性磁界を大きくした場合には、第1図に示すように、チ
ャージドウオール近くのパターンエツジには、チャージ
ドウオールとは逆符号のチャージが発生し、そのチャー
ジもまた強くなる。
Ion-implanted bubble elements are created by forming a continuous disk-shaped mask pattern with gold or the like, then implanting ions with helium ions, etc., and then transferring magnetic bubbles through a charged wall created in the ion-implanted layer near the edge of the pattern. It is a bubble element. In such an ion-implanted bubble device, smooth movement of a strong charged wall is required to ensure stable transfer of bubbles. Journal of Applied
Physics Vol. 53, p. 5815 (Jarnalof
Applied Physics, Vol. 5
3 + 5815), a charged wall is formed based on the relaxation of strain near the pattern edge, so in order to strengthen a charged wall, increasing the implantation strain in the ion-implanted layer will reduce the strain. It also makes me stronger. However, when the strain is increased and the in-plane anisotropic magnetic field is increased, as shown in Figure 1, a charge with the opposite sign to that of the charged wall is generated at the pattern edge near the charged wall, and the charge is The charge also becomes stronger.

このため結果的にはチャージドウオールがかえって弱く
なり、あるいはバブルの転送が不安屋になり、イオン注
入バブル素子の技術上の問題点となっている。
As a result, the charged wall becomes weaker or the bubble transfer becomes unstable, which is a technical problem of the ion-implanted bubble device.

本発明は上述の従来のイオン注入バブル素子のチャージ
ドウオール形成の問題点に解決を与えるものである。
The present invention provides a solution to the problems of charged wall formation in conventional ion implantation bubble devices described above.

すなわち、本発明の素子は、イオン注入層の面内磁気異
方性磁界が、パターンエツジ部にて最大であり、該パタ
ーンエツジ部から離れるにしたがって漸次小さくなり、
転送ループ間の中央にて最小であるとともに、面内磁気
異方性磁界の最大値が、最小値より少なくとも10%以
上大きい。
That is, in the element of the present invention, the in-plane magnetic anisotropy field of the ion-implanted layer is maximum at the edge of the pattern, and gradually decreases as it moves away from the edge of the pattern.
The minimum value of the in-plane magnetic anisotropy field is at least 10% larger than the minimum value at the center between the transfer loops.

以下実施例を示して詳細に説明する。The present invention will be described in detail below with reference to examples.

GGG基板上にY。、38 m 。、2 L u 1.
46 B 1 ’6.3Ca o、75B’ e 、2
5G e o4g O□2組成のガーネットをLPE法
にて形成した。金を用いたコンティキーアスディスクパ
ターンマスクを形成後s He ’e (100keV
Y on GGG board. , 38 m. , 2 L u 1.
46 B 1 '6.3Ca o, 75B' e, 2
A garnet having a composition of 5G e o4g O□2 was formed by the LPE method. After forming a contiki ass disk pattern mask using gold, s He 'e (100 keV
.

3.8X101′//Ctl)T (40keV 、 
1.8X1 o15/Cn)の条件で二重イオン注入し
た。金マスクパターンを剥離して、第2図に示すように
イオン注入層(22)上に5i023000人厚のパタ
ーン(23)を形成した。次に、水素ガス雰囲気中25
0℃の条件で10分間アニールした。
3.8X101'//Ctl)T (40keV,
Double ion implantation was performed under the conditions of 1.8×1 o15/Cn). The gold mask pattern was peeled off to form a pattern (23) with a thickness of 5i023,000 on the ion-implanted layer (22) as shown in FIG. Next, in a hydrogen gas atmosphere,
Annealing was performed for 10 minutes at 0°C.

このようなプロセスを行うことにより、第2図(24)
に示すように、パターンエツジ部(25)で面内異方性
磁界が最大となり、5i02のパターン下の中央で最小
となる。これは特願昭58−126716号に示されて
いるように、水素雰囲気アニールを行うことによシ、イ
オン注入j曽に水素が拡散し、その部分の異方性磁場変
化△Hkを大きくするという効果にもとづくものである
。このようなプロセスを行ったバブル素子においては次
にのべるような利点があられれだ。第1に、最小駆動峰
界が約100e低下した。これはパターンエツジに沿う
異方性が強められたためと思われる。第2に最小バイア
ス磁界が約100e低下し、バイアスマージンが広がっ
た。これは、バブルがループ間をとびうつるエラーが低
下したためである。面内磁気異方性磁界の最大値と最小
値との差が、最小値010%未満の場合には、実験誤差
範囲で改善効果はみとめられなかった。
By performing such a process, Figure 2 (24)
As shown, the in-plane anisotropic magnetic field is maximum at the pattern edge portion (25) and minimum at the center under the pattern 5i02. As shown in Japanese Patent Application No. 58-126716, by performing hydrogen atmosphere annealing, hydrogen diffuses into the ion implanted region, increasing the anisotropic magnetic field change ΔHk in that region. This is based on the effect. Bubble elements manufactured using this process have the following advantages. First, the minimum driving peak field was reduced by about 100e. This seems to be due to the enhanced anisotropy along the pattern edges. Second, the minimum bias magnetic field was lowered by about 100e, and the bias margin was expanded. This is because the error caused by bubbles jumping between loops has been reduced. When the difference between the maximum value and the minimum value of the in-plane magnetic anisotropy field was less than the minimum value of 010%, no improvement effect was observed within the experimental error range.

イオン注入層上に形成する水素ガス雰囲気アニールに対
するマスクは、5i02の他にAl2O5などの無機材
料でも、また、Auなどの金属材料であっても同様の効
果がある。また、その形状は第3図に示すようにパター
ンエツジより約1μm(4μm周期パターンの場合)離
して、パターンに沿って形成された場合でも、また、第
4図に示すような単にループ間にストライプ状のマスク
を形成したよシ簡単な形状であっても同様な効果がある
。また、この技術によυ、ループ間飛び移りを抑制する
ことができるので、ループ周期を従来の1μmバブルに
対する8μm周期から7μm周期に減小することも可能
である。
The mask for hydrogen gas atmosphere annealing formed on the ion-implanted layer may be made of an inorganic material such as Al2O5, or a metal material such as Au, in addition to 5i02, with similar effects. Moreover, the shape can be formed along the pattern at a distance of approximately 1 μm (in the case of a 4 μm periodic pattern) from the pattern edge as shown in FIG. 3, or simply between the loops as shown in FIG. A similar effect can be obtained even with a simpler shape such as a striped mask. Furthermore, since this technique can suppress jumps between loops, it is also possible to reduce the loop period from an 8 μm period for a conventional 1 μm bubble to a 7 μm period.

以上のべたように、本発明により、磁気バブル素子の低
消費電力化、高信頼化、尚密度化を達成できる。
As described above, according to the present invention, lower power consumption, higher reliability, and higher density of magnetic bubble elements can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はチャージドウオールと面内磁化成分が大きくな
ったときにできる逆符号のチャージとを示す図、第2図
はイオン注入層の上に形成された水素雰囲気アニールに
対するマスクおよび面内磁気異方性磁界−HkIがマス
ク中心で最小となシバターンエツジ部で最大となってい
ることを示す図、第3図(a)および(b)はそれぞれ
水素芥囲気アニールに対するマスクの形状を示す平面図
および断面図ならびに第4図(a)および(b)はそれ
ぞれ他のマスクの形状を示す平面図および断面図である
。 図において、31.41・゛°°°°非イオン注入部パ
ターン、32.42・・・・・・マスク、33.43・
・・・・・イオン注入層。 第1図 14 1 第2に 第3図 (り) 3 寿4図 (8)
Figure 1 shows a charged wall and charges with opposite signs that occur when the in-plane magnetization component increases, and Figure 2 shows the mask and in-plane magnetic annealing formed on the ion-implanted layer for hydrogen atmosphere annealing. A diagram showing that the directional magnetic field -HkI is minimum at the center of the mask and maximum at the edge of the shield. Figures 3 (a) and (b) are planes showing the shape of the mask for hydrogen gas annealing, respectively. The figure and the sectional view and FIGS. 4(a) and 4(b) are a plan view and a sectional view showing other mask shapes, respectively. In the figure, 31.41.゛°°°°non-ion implantation pattern, 32.42...mask, 33.43.
...Ion implantation layer. Figure 1 14 1 Second Figure 3 (ri) 3 Longevity Figure 4 (8)

Claims (1)

【特許請求の範囲】[Claims] コンテイギユアスディスク・イオン注入磁気バブル素子
において、イオン注入層の面内磁気異方性仏界が、コン
テイギユアスディスク・パターンエツジ部にて最大であ
り、該エツジ部から離れるにしたがっ′C漸次小さくな
り、転送ループ間の中央に°C最小であるとともに、面
内磁気異方性仏界の最大値が、最小値より少なくとも1
0%以上大きいことを特徴とする磁気バブル素子3、
In a continuous disk ion-implanted magnetic bubble device, the in-plane magnetic anisotropy field of the ion-implanted layer is maximum at the edge of the continuous disk pattern, and as it moves away from the edge, The minimum value of the in-plane magnetic anisotropy is at least 1 °C in the middle between the transfer loops, and the maximum value of the in-plane magnetic anisotropy is at least 1 °C smaller than the minimum value.
A magnetic bubble element 3 characterized by being larger than 0%,
JP59001648A 1984-01-09 1984-01-09 Magnetic bubble element Pending JPS60145592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001648A JPS60145592A (en) 1984-01-09 1984-01-09 Magnetic bubble element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001648A JPS60145592A (en) 1984-01-09 1984-01-09 Magnetic bubble element

Publications (1)

Publication Number Publication Date
JPS60145592A true JPS60145592A (en) 1985-08-01

Family

ID=11507332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001648A Pending JPS60145592A (en) 1984-01-09 1984-01-09 Magnetic bubble element

Country Status (1)

Country Link
JP (1) JPS60145592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711694A (en) * 1984-11-12 1987-12-08 Commissariat A L'energie Atomique Process for producing a layer having a high magnetic anisotropy in a ferrimagnetic garnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711694A (en) * 1984-11-12 1987-12-08 Commissariat A L'energie Atomique Process for producing a layer having a high magnetic anisotropy in a ferrimagnetic garnet

Similar Documents

Publication Publication Date Title
US4404233A (en) Ion implanting method
JPS60145592A (en) Magnetic bubble element
US4346456A (en) Magnetic bubble device
US4525808A (en) Hybrid magnetic bubble memory device
US4559617A (en) Magnetic bubble memory device
JPS58125289A (en) magnetic bubble element
JPS607682A (en) magnetic bubble memory element
JPS598699A (en) Preparation of magnetic bubble element
JPS59217286A (en) Ion implantation magnetic bubble device
JPS6038785A (en) Composite magnetic bubble element
JPS6187296A (en) Manufacturing method of ion implantation bubble device
JPS60117475A (en) Magnetic bubble memory element
JPS6079590A (en) magnetic bubble memory element
JPS6284486A (en) Composite magnetic bubble memory element
CA1056040A (en) Image pickup element and system utilizing magnetic bubbles
JPS5972696A (en) Magnetic bubble memory element
JPS59221887A (en) Magnetic bubble memory device
JPS6129484A (en) Ion implantation method
JPS5990285A (en) Bidirectional gate of ion implanted magnetic bubble device
JPS6248316B2 (en)
JPS59223989A (en) Composite magnetic bubble memory element
JPS5867006A (en) Laminated vertically magnetizing film
JPH01109587A (en) Manufacture of magnetic bubble memory element
JPS6134781A (en) magnetic bubble memory element
JPS55153189A (en) Manufacture of magnetic bubble unit