JPS60145153A - Hollow yarn type artificial lung - Google Patents
Hollow yarn type artificial lungInfo
- Publication number
- JPS60145153A JPS60145153A JP130184A JP130184A JPS60145153A JP S60145153 A JPS60145153 A JP S60145153A JP 130184 A JP130184 A JP 130184A JP 130184 A JP130184 A JP 130184A JP S60145153 A JPS60145153 A JP S60145153A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- boat
- gas
- housing
- blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- External Artificial Organs (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は中空糸型人工肺に関し、特に酸素又は酸素奮含
む混合ガス(以下単にガスと称する)が散気管から放射
状に流出し、中空糸に対して横断的多層的に分散する中
空糸型人工肺に係わるものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hollow fiber oxygenator, and in particular, oxygen or a mixed gas containing oxygen (hereinafter simply referred to as gas) flows out radially from a diffuser tube, and is connected to a hollow fiber in a multilayered manner across the hollow fiber. This relates to a hollow fiber oxygenator that is dispersed in the air.
従来より開心術においてに気泡型人工肺が用いられてき
たが、近年士膜型、コイル型、中空糸型等のlII、!
型人工肺が血球破壊、微小血栓子の発生。Bubble-type oxygenators have traditionally been used in open-heart surgery, but in recent years, membrane-type, coil-type, and hollow-fiber type oxygenators have been used.
Type oxygenator destroys blood cells and generates microthrombus.
蛋白質の変性等、血液に対する悪影響が少ないことから
その利用度が高まってきている。Its use is increasing because it has fewer adverse effects on blood, such as protein denaturation.
一般にこの中空糸型人工肺に使用されている中空糸とし
又は、/リコン系樹脂からなる均質ガス透過膜中空糸や
ポリオレフィン系樹脂からなる微多孔質膜中空糸等があ
るが、同じ中空糸を用いても人工肺モジュールの構造に
よりその性能が著しく異なるものである。Generally, the hollow fibers used in this hollow fiber oxygenator include homogeneous gas permeable membrane hollow fibers made of /recon resin, microporous membrane hollow fibers made of polyolefin resin, etc. Even when used, the performance varies significantly depending on the structure of the oxygenator module.
これまで知られている人工肺としては、上記の様なカス
交換能を有する中空糸を単にハウジング内に充填した中
空糸型人工肺が例えば特開昭54−1fiO,098号
に開示されている。これは例えばシリコノ、ポリプロピ
レン等の中空糸2il−5,000本ないし40,00
0本程度ハウジング内vL集束し、その両端全密封用樹
脂により固定した構造のもので、該ハウジングの入口側
ガスボートからガスヶハウジング内部に導入し、該中空
糸の膜を介して該ガスと中空糸内を流れる血液との間で
ガス父換を行なわせ、その後ガスヶ出口側ガスポートか
ら排出するものである。この場合入口側及び出口側カス
ボートはハウジングの上方端及び下方端にそれぞれ設置
され、ガスは中空糸束の長手方向に沿って流れ、かつ血
液はガスの流れと反対方向に流れるように構成されるの
が一般的である。As an artificial lung known so far, a hollow fiber type oxygenator in which a housing is simply filled with hollow fibers having the above-mentioned waste exchange ability is disclosed in, for example, Japanese Patent Application Laid-Open No. 54-1fiO,098. . This is, for example, 2 il of hollow fibers such as silicone, polypropylene, etc. - 5,000 to 40,000
It has a structure in which approximately 0 vLs are focused in the housing and fixed with a sealing resin at both ends.The gas is introduced into the housing from the gas boat on the inlet side of the housing, and the gas and the hollow fibers are introduced through the membrane of the hollow fiber. Gas is exchanged with the blood flowing inside the thread, and then the gas is discharged from the gas port on the gas outlet side. In this case, the inlet side and outlet side cassboards are installed at the upper and lower ends of the housing, respectively, and are configured so that the gas flows along the longitudinal direction of the hollow fiber bundle and the blood flows in the opposite direction to the gas flow. is common.
この従来の中空糸型人工肺でに、上記ハウジング内の中
空糸束全ガスが通過する際、該中空糸束が抵抗となるた
め、ガスはその大部分がハウジング周辺部のみを流れる
傾向にあり、このためハウジング中央部にある中空糸に
カス又換に充分活用されない欠点があった。In this conventional hollow fiber oxygenator, when the entire gas of the hollow fiber bundle inside the housing passes through, the hollow fiber bundle acts as a resistance, so most of the gas tends to flow only around the housing. Therefore, there was a drawback that the hollow fiber in the center of the housing was not fully utilized for waste exchange.
この欠点を解消するための提案として例えば米国人工臓
器学会会報第17巻(1971年刊)第331頁に開示
されたものは第1図に示す構造を有し、ハウジング1円
に散気管9を設け、流出側血液ボート内部に入口側ガス
ポート14を設置した中空糸型人工肺である。この人工
肺の欠点バ一方の端に入口側ガスポートと流出側血液ボ
ートがあるため流出側血液ボー゛トで血流がみだれ長時
間の使用によって凝固が生じる可能性があること及び入
口側ガスポートと散気管とが一体化された構造の場合に
はこの装置の組立ては非常に困難であり、これ全回避す
るためたとえば入口側ガスポートと散気管とを切離した
状態で中空糸束全装填しその後両者’toリング等金介
して接続しても気密シールは難かしく、血液中にガスが
漏洩する危険性がある二lt−ア、ろ。As a proposal to solve this drawback, for example, the one disclosed in the Bulletin of the American Society for Artificial Organs, Vol. 17 (published in 1971), page 331, has the structure shown in FIG. This is a hollow fiber oxygenator in which an inlet side gas port 14 is installed inside the outflow side blood boat. Disadvantages of this oxygenator: Since there is an inlet side gas port and an outflow side blood boat at one end, the blood flow becomes congested at the outflow side blood boat, which may cause clotting due to long-term use, and the inlet side gas port If the port and diffuser tube are integrated, it is extremely difficult to assemble this device.To avoid this, for example, the inlet side gas port and the diffuser tube are separated and the hollow fiber bundle is fully loaded. However, even if the two are then connected via a metal intervening ring or the like, it is difficult to achieve an airtight seal, and there is a risk of gas leaking into the blood.
第2図にはハウジングの長手方向の中央部に入口側ガス
ポートを設置し、ガス導入管により前記散気管と接続し
た中空糸型人工肺が示され、第3図にこの人工肺の入口
側ガス導入管部分の中空糸の充填状態を示す図である。Fig. 2 shows a hollow fiber oxygenator in which an inlet gas port is installed in the longitudinal center of the housing and is connected to the aeration pipe through a gas introduction pipe, and Fig. 3 shows the inlet side of this oxygenator. It is a figure which shows the filling state of the hollow fiber of a gas introduction pipe part.
この人工肺においては前述の欠点に解消しているが、第
3図に明らかな」:うにガス導入管近傍の中空糸12の
配列が乱され、甲室糸の存在しない疎な空間18が生じ
ており、この空間ケ通じてガスの短絡流出が生ずる恐れ
がある。又この部分における中空糸の局部的屈曲は中窒
糸内葡流れる血液の流動抵抗の変動をもたらし、血液分
配の不均等音生じる原因ともなり好1しくない。In this oxygenator, the above-mentioned drawbacks are solved, but it is clear in Figure 3 that the arrangement of the hollow fibers 12 near the sea urchin gas inlet tube is disturbed, creating a sparse space 18 in which no ventricular fibers are present. There is a risk that a short circuit and outflow of gas may occur through this space. In addition, local bending of the hollow fibers in this portion causes fluctuations in the flow resistance of blood flowing through the hollow fibers, which is also undesirable as it causes uneven blood distribution noise.
従って本発明の目的は第一に、中空糸1…へカス全均一
に分散させ、微多孔質中空糸のものにあっては膜間にお
ける血液ペーパーの凝縮のない、がつカス交換能¥ケに
炭酸ガス排出能の優れた中空糸型人工肺音提供J−るこ
とにある。Therefore, the object of the present invention is, first, to have a uniform dispersion of scum throughout the hollow fiber 1, and to have a high scum exchange ability without condensation of blood paper between the membranes in the case of microporous hollow fibers. The purpose of the present invention is to provide a hollow fiber type artificial lung with excellent carbon dioxide evacuation ability.
第二に、血液ボート部における血びtr円滑にして中空
糸全体にわたり−C均等な血液流れを形成し、血液ダメ
ージのない中空糸型人工肺を提供′1−ることにあるn
−4−なわち本発明の一態様によれば両端面に血液心入
ボートと血液流出ボートとを夫々具え、側壁に酸素又似
酸素を含有−[る混合ガス(以下総称してガスと云う)
のための入口ボートと出口ポートと會具えた筒状のハウ
ジング及び該ハウジングの中心軸と同軸的にその内部に
配置された多数のカス流出孔葡具えた管状の散気管全歯
んでなり、該散気管の外周のハウジング円には中望糸束
が充填配列されている中空糸型人工肺において、前記入
口ボート側の前記散気管の外周壁にはその長手方向軸に
沿って前記中空糸束を区分する板部材が固設され、更に
該板部材には前記入口ボートと前記散気管の内部とを連
通するガス導入孔が穿設されていること′に特徴とする
中空糸型人工肺が提供される。Second, the blood flow in the blood boat portion is smoothed to form a uniform blood flow throughout the hollow fiber, thereby providing a hollow fiber oxygenator without blood damage. That is, according to one aspect of the present invention, a blood inlet boat and a blood outflow boat are provided on both end faces, and a mixed gas containing oxygen or similar oxygen (hereinafter collectively referred to as gas) is provided on the side wall.
a cylindrical housing with an inlet port and an outlet port for the housing, and a tubular aeration tube with a number of waste outlet holes disposed therein coaxially with the central axis of the housing; In a hollow fiber oxygenator in which a housing circle on the outer periphery of the diffuser tube is filled and arranged with a middle fiber bundle, the hollow fiber bundle is arranged on the outer peripheral wall of the diffuser tube on the inlet boat side along its longitudinal axis. A hollow fiber oxygenator characterized in that a plate member is fixedly installed to partition the air diffuser, and the plate member is further provided with a gas introduction hole for communicating between the inlet boat and the inside of the diffuser tube. provided.
更に本発明の別の態様によれば前述の構成に加えて前記
ハウジング中日に前記散気官営と同軸にこれ全囲繞する
、多数のガス流出孔を具えた管状の円筒@=4を設け、
これによってハウジングの内周壁と該円筒p士の外周壁
の間に中空糸束の存在しない均圧室′?f:構成したこ
とを特徴とする中空糸型人工肺が提供される。Furthermore, according to another aspect of the present invention, in addition to the above-mentioned configuration, a tubular cylinder @=4 provided with a large number of gas outlet holes is provided in the middle of the housing, coaxially surrounding the air diffuser, and completely surrounding the air diffuser.
This creates a pressure equalizing chamber in which no hollow fiber bundle exists between the inner circumferential wall of the housing and the outer circumferential wall of the cylinder. f: A hollow fiber oxygenator is provided.
この人工肺においては入口側ガスポートから流入したガ
スは上記ガス導入孔を流れ、散気管の流出孔より該ハウ
ジングの横断面において放射状に流出し、均一なガス流
れを形成しながら中空糸層を横断して分散し、均圧室に
流入し、出口側ガスポートから排出される。In this oxygenator, the gas that flows in from the inlet side gas port flows through the gas introduction hole, and flows out radially in the cross section of the housing from the outflow hole of the diffuser tube, forming a uniform gas flow while passing through the hollow fiber layer. It is dispersed across the traverse, flows into the pressure equalization chamber, and is discharged from the outlet side gas port.
以下本発明を添付の図面に基いて更に詳細に説明する。Hereinafter, the present invention will be explained in more detail based on the accompanying drawings.
第4図は本発明による中空糸型人工肺の縦断面図であり
、又第5図は第4図で示す人工肺の■−1断面図である
。この人工肺の両端には血液の導入管2と分配室3及び
流出管5と集合室6をそれぞれ備えた導入側及び流出側
血液ポート4,7が取シ付けられている。人体から取り
出された静脈血は導入管2から分配室3を経て中空糸1
2へ入り、ガス交換されることによp活性化され、集合
室6を通り流出管5から取り出され動脈血として再び人
体へ戻される。FIG. 4 is a longitudinal sectional view of the hollow fiber type oxygenator according to the present invention, and FIG. 5 is a sectional view taken along line 1-1 of the oxygenator shown in FIG. At both ends of this artificial lung, inlet and outlet blood ports 4 and 7 each having a blood inlet tube 2, a distribution chamber 3, an outflow tube 5, and a collection chamber 6 are attached. Venous blood taken out from the human body passes through an introduction tube 2, a distribution chamber 3, and a hollow fiber 1.
2, is activated by gas exchange, is taken out from the outflow tube 5 through the collecting chamber 6, and is returned to the human body as arterial blood.
この人工肺には室を形成する筒状のハウジング1′が設
けられ、該室内にμ該ハウジング1中心軸と同軸的に、
複数個のガス流出孔9を有する散気管8が設置されてい
る。該散気管80両端は密封用樹脂13によって固定さ
れており、又ガス流出孔9は散気管8の円周方向及び長
手方向に相互に一定の間隔音直いて配列され、中空糸に
対するガスの均一な分散全保証する。散気管8の内部は
導入ガス流路10を形成する。This artificial lung is provided with a cylindrical housing 1' forming a chamber, and in the chamber μ coaxially with the center axis of the housing 1,
A diffuser pipe 8 having a plurality of gas outflow holes 9 is installed. Both ends of the diffuser tube 80 are fixed with a sealing resin 13, and the gas outflow holes 9 are arranged at regular intervals in the circumferential and longitudinal directions of the diffuser tube 8 to ensure uniform gas flow to the hollow fibers. Fully guaranteed distribution. The interior of the diffuser pipe 8 forms an introduction gas flow path 10 .
ガスにハウジング1の中央側壁面に設けられた入口側ガ
スポート14から流入し後述する板部材20に設けられ
たガス導入孔19を経て前記散気管8内に入りガス流出
孔9を通って放射状に流出し該散気管の周囲に充填配列
された中空糸束12円に分散し、血液流に対してガス交
換を行なった後、ハウジングの中心軸に対して前記入口
側ガスボート140反対側のハウジング側壁上に設けら
れた出口側ガスボー)] 5.16から系外に流出する
。Gas flows in from the inlet side gas port 14 provided on the central side wall surface of the housing 1, enters the diffuser pipe 8 through the gas introduction hole 19 provided in the plate member 20, which will be described later, and passes through the gas outlet hole 9 to radially flow out. After flowing out into the air diffuser pipe and dispersing it into 12 hollow fiber bundles packed and arranged around the diffuser tube, and performing gas exchange with the blood flow, Outlet side gas bow provided on the side wall) 5.16 flows out of the system.
散気管8の前記入口側ガスポート14側の外周壁にはそ
の長手方向軸に沿って板部材20が接合され、充填され
ている中空糸束121cハウジング内で区分している。A plate member 20 is joined along the longitudinal axis to the outer circumferential wall of the diffuser pipe 8 on the inlet side gas port 14 side, and divides the filled hollow fiber bundle 121c within the housing.
該板部材20には前述のようにガス導入孔19が設けら
れ、入口側ガスポート14と散気管8の内部とを連通し
ている。従ってその厚さはガス導入孔19の直径よりも
大きいことが必要であり、又その軸方向長さは散気管8
のそれと実質的に同一になされている。このため散気管
の外周に充填された中空糸束12はこの板部材20に沿
って直線的に配列されることが可能となり、従来技術に
おけるようにガス導入管によって屈曲させられる欠点は
解消する。The gas introduction hole 19 is provided in the plate member 20 as described above, and the inlet side gas port 14 and the inside of the aeration pipe 8 are communicated with each other. Therefore, its thickness needs to be larger than the diameter of the gas introduction hole 19, and its axial length needs to be larger than the diameter of the gas introduction hole 19.
It is made substantially the same as that of . Therefore, the hollow fiber bundles 12 filled around the outer periphery of the diffuser tube can be arranged linearly along this plate member 20, and the drawback of being bent by the gas introduction tube as in the prior art is eliminated.
この板部材20は散気管8の外周壁からハウジング1の
円周壁捷でその内部を完全に仕切って設置されてもよい
が、好ましくt″j、第4図及び第5図に示す実施例に
見られるように後述する円筒体21の内周壁1でに限定
されてもよい。又第4図においては入口側ガスポート1
4に対応してその直下に一個のガス導入孔19を設けた
が、核化の数はこれに限定されるものでなく複数の孔に
分岐させてガスの均分化を企ってもよい。This plate member 20 may be installed so that the inside thereof is completely partitioned from the outer circumferential wall of the air diffuser pipe 8 by the circumferential wall of the housing 1, but it is preferable that the plate member 20 is installed in the embodiment shown in FIGS. As can be seen, it may be limited to the inner circumferential wall 1 of the cylindrical body 21, which will be described later.In addition, in FIG.
4, one gas introduction hole 19 is provided directly below it, but the number of nucleations is not limited to this, and it may be branched into a plurality of holes to evenly divide the gas.
この様にガス導入孔19を有する板部材20を設置する
ことによジ、第3図で示した様な中空糸束内の空間部の
形成及び中空糸の局部的屈曲が回避され、従来の人工肺
の欠点を大「[Jに改善するこ −とが可能となるので
ある。By installing the plate member 20 having the gas introduction holes 19 in this manner, the formation of a space within the hollow fiber bundle and local bending of the hollow fibers as shown in FIG. 3 can be avoided, and the conventional It will be possible to greatly improve the shortcomings of the artificial lung.
又・本発明の人工肺は第5図で最も良く示されているよ
うに、ハウジング1の内部に該ハウジング1の内壁と一
定の距離をおいて該ハウジング1と同心円的に円筒体2
1を設け、均圧室23を形成することが好ま−しい。こ
の円筒体21はハウジング1内壁の円周方向の全部を覆
い、その一部は板部材20と接合されており、その長さ
はハウジング1の内部空間の長さと実質的に同一である
。Further, as best shown in FIG. 5, the artificial lung of the present invention has a cylindrical body 2 inside the housing 1 concentrically with the housing 1 at a certain distance from the inner wall of the housing 1.
1 to form the pressure equalizing chamber 23. This cylindrical body 21 covers the entire inner wall of the housing 1 in the circumferential direction, a part of which is joined to the plate member 20, and its length is substantially the same as the length of the inner space of the housing 1.
均圧室23金規定する円筒体21は多数個の排出ガス流
入孔22全有L7てお一部、ガス交換を終えたガスは第
5図の矢印で示す通り、中空糸12に対して横断的な多
層のガス流動を形成し該排出ガス流入孔22から均圧室
23へと流れ、ハウジング1に設けられた出口側ガスボ
ート15.16より排出される。排出ガス流入孔22I
f′s、円筒体21の円周方向及び一定の間隔tおいて
多数個配置されその寸法は直径1 m+eないし10胴
の小孔で、スリット状、長円状のものでも可能である。The cylindrical body 21 defining the pressure equalizing chamber 23 has a large number of exhaust gas inflow holes 22, some of them L7, and the gas after gas exchange crosses the hollow fiber 12 as shown by the arrow in FIG. The exhaust gas forms a multilayer gas flow, flows from the exhaust gas inlet 22 to the pressure equalization chamber 23, and is discharged from the outlet side gas boat 15, 16 provided in the housing 1. Exhaust gas inflow hole 22I
f's, a large number of small holes are arranged at constant intervals t in the circumferential direction of the cylindrical body 21 and have a diameter of 1 m+e to 10 cylinders, and may be slit-shaped or oval-shaped.
父上記円筒体21はガス流通孔25を有する支持リング
24を介してハウジング1に取り付けられ、その両端は
密封用樹脂13内に埋設される。The cylindrical body 21 is attached to the housing 1 via a support ring 24 having gas flow holes 25, and both ends thereof are embedded in the sealing resin 13.
この工うに均圧室23ケ構成することにより、散気管8
より放射状に流出したガスに、中空糸12束の内部空間
をほぼ直線状−進行する多数の流れをつくpながら、中
空糸12のすべての1化分と均一な接触を行うことかり
能となるのである。By configuring 23 pressure equalization chambers in this construction, 8 air diffusers
It is possible to uniformly contact all the components of the hollow fibers 12 while creating a large number of flows that flow approximately linearly through the inner space of the 12 bundles of hollow fibers to the gas flowing out more radially. It is.
もちろん、上記均圧室23は、コストその他の面で該均
圧室23を設けないことも有り得る。しかしこの場合で
も従来の人工肺に比較[7てその性能は良好であること
はいうまでもない。Of course, the pressure equalization chamber 23 may not be provided due to cost and other reasons. However, even in this case, it goes without saying that its performance is better than that of a conventional oxygenator [7].
以上の説明で明らかな様に、本発明は、ガス導入孔?有
する板部材?設けることにより、中空糸の局部的な屈曲
をなくし、中空糸に対して均等な血液分配全可能とする
一方、空間部の形成によるガスの短絡流出を防止し、中
空糸全体にわたって効率よ<r1&累加、炭酸ガス排出
を行うこと?可能とする。併せて導入側及び流出側血液
ボートの構造がシンプルであるため、血液のガス側への
漏洩、血液凝固等金起こさず、従って長時間の使用にも
耐え得る安定し后λ人工肺の提供全可能とするものであ
る。As is clear from the above explanation, the present invention is based on gas introduction holes. Board member with? By providing this, local bending of the hollow fibers is eliminated and blood can be distributed evenly to the hollow fibers, while short-circuiting and outflow of gas due to the formation of spaces is prevented, and efficiency is maintained throughout the hollow fibers. Does it cumulatively emit carbon dioxide gas? possible. In addition, since the structure of the blood boat on the inlet side and the outflow side is simple, there is no risk of blood leakage to the gas side, blood coagulation, etc., and therefore, it is possible to provide a stable λ oxygenator that can withstand long-term use. It makes it possible.
さらに又ハウジング内壁に均圧室を構成すること(よ、
中空糸束に対する横断的、多層的なガス流れの形成を促
進12、血液ベーパーの膜面凝縮によるガス交換能の低
下全防止すると共に、さらに性能の艮好な、特に炭酸ガ
ス排出能の浸れた人工肺を提供することを可能とする。Furthermore, a pressure equalization chamber may be formed on the inner wall of the housing.
It promotes the formation of a cross-sectional, multilayered gas flow for the hollow fiber bundle.12 It completely prevents the deterioration of gas exchange ability due to condensation of blood vapor on the membrane surface, and also improves the performance, especially the ability to remove carbon dioxide. It will be possible to provide artificial lungs.
父、上記人工肺はモジュール加工性の面からも妥当なも
のであゃ実用性の優れたものである。Father, if the artificial lung mentioned above is suitable in terms of module workability, it is highly practical.
第1図は散気管を設は流出側血液ボート内に入口側ガス
ポーl−を設置した従来の人工肺の縦断面図。第2図ば
散気管の長手方向の中央部に入口側ガスポート全設置し
た従来の人工肺の縦断面図。
第3図は第2図で示す人工肺の一部破断側面図。
第4図は本発明による人工肺の縦断面図。用5図は身!
4(辺の線1−1に沿った断面図である。
■・・・・・・ハウジング、2・・・・・・導入管、3
・・・・−・分配室、4・・・・・導入側血液ボート、
5・・・・・・流出管、6・・・・・・集合室、7・・
・・・・流出側血液ボート、8・・・・・・散気管、9
・・・・・・ガス流出孔、10・・・・・・導入ガス流
路、11・・・・・・0リング、12・・・・・・中空
体、13・・・・・・密封用樹脂、14・・・・・・入
口側ガスボート、15 、1.6・・・・・・出口側ガ
スポート、17・・・・・・ガス導入管、1B・・・・
・・空間部、19・・・・・・ガス導入孔、20・・・
・・・板部材、21・・・・・・円筒体、22・・・・
・・排出ガス流入孔、23・・・・・・均圧室、24・
・・・・・支持リング、25・・・・・・ガス流通孔。
特許出願人
三菱レイヨン株式会社
特許出願代理人
弁理士 青 木 朗
弁理士 西 舘 和 之
弁理士 山 口 昭 之
弁理士 西 山 雅 也FIG. 1 is a longitudinal cross-sectional view of a conventional artificial lung in which a diffuser tube is installed and an inlet gas port is installed in an outflow blood boat. FIG. 2 is a longitudinal cross-sectional view of a conventional artificial lung in which all the gas ports on the inlet side are installed in the longitudinal center of the diffuser tube. FIG. 3 is a partially cutaway side view of the artificial lung shown in FIG. 2. FIG. 4 is a longitudinal sectional view of the artificial lung according to the present invention. Figure 5 is for you!
4 (This is a sectional view taken along the side line 1-1. ■...Housing, 2...Introduction pipe, 3
......Distribution chamber, 4...Introduction side blood boat,
5...Outflow pipe, 6...Collection room, 7...
... Outflow side blood boat, 8 ... Diffuser pipe, 9
......Gas outflow hole, 10...Introduction gas flow path, 11...0 ring, 12...Hollow body, 13...Sealing resin, 14...Inlet side gas boat, 15, 1.6...Outlet side gas port, 17...Gas introduction pipe, 1B...
...Space part, 19... Gas introduction hole, 20...
... Plate member, 21 ... Cylindrical body, 22 ...
・・Exhaust gas inflow hole, 23・・・・Pressure equalization chamber, 24・
...Support ring, 25...Gas distribution hole. Patent applicant Mitsubishi Rayon Co., Ltd. Patent agent Akira Aoki Kazuyuki Nishidate Patent attorney Akira Yamaguchi Patent attorney Masaya Nishiyama
Claims (1)
7)と?夫々具え、側壁に酸素又は酸素を含有する混合
ガスのための入口ボート(14)と出口ボー) (15
,16)と金具えた筒状のハウジング(1)及び該ハウ
ジング(1)の中心軸と同軸的にその内部に配置された
、多数のガス流出孔金具えた管状の散気’1i(81k
aんでなり、該散気管(8)の外周のハウジングfil
内には中空糸束が充填配列されている中空糸型人工肺に
おいて、前記入口ボート(14)側の前記散気管(8)
の外周壁にはその長手方向軸に沿って前記中空糸束全区
分する板部材(20)が固設され、更に該板部材(20
)には前記入口ボート(14)と前記散気管(8)の内
部とを連通ずるガス導入孔(19)がノ設されているこ
と全特徴とする中空糸型人工肺。 2 両端面に血液導入ボート(4)と血液流出ボート(
7)とを夫々具え、側壁に酸素又は酸素を含有する混合
ガスのための入口ボー) (14)と出口ボー) (1
5,16)とを具えた筒状のハウジング(1)及び該ハ
ウジング(1)の中心軸と同軸的にその内部に配置され
た、多数のガス流出孔を具えた管状の散気管(8)ヲ含
んでなり、該散気管(8)の外周のハウジング(1)円
には中空糸束が充填配列されている中空糸型人工肺にお
いて、前記入口ポー) (14)側の前記散気管(8)
の外周壁にはその長手方向軸に治って前記中空糸束を区
分する板部材(20)が固設され、更に該板部材(20
)には前記入口ポー) (14)と前記散気管(8)の
内部とt連通するガス導入孔(19)が穿設されており
、更にまた前記I・ウジング(1)内に前記散気管(8
)と同軸にこれ全囲繞する、多数のガス流出孔を具えた
管状の円筒(21)t−設け、これによってハウジング
の内周壁と該円筒(21)の外周壁の間に中空糸束の存
在しない均圧室全構成したことを特徴とする中空糸型人
工肺。[Claims] 1. A blood introduction boat (4) and a blood outflow boat (4) on both end faces.
7) And? an inlet boat (14) and an outlet boat (15) for oxygen or a mixed gas containing oxygen, respectively, on the side walls;
, 16) and a cylindrical housing (1) with metal fittings, and a tubular air diffuser '1i (81k
a housing fil around the outer periphery of the air diffuser pipe (8);
In a hollow fiber oxygenator in which hollow fiber bundles are packed and arranged, the diffuser pipe (8) on the inlet boat (14) side.
A plate member (20) is fixed to the outer circumferential wall of the hollow fiber bundle along its longitudinal axis, and the plate member (20) is fixed to the outer peripheral wall of the hollow fiber bundle.
) is provided with a gas introduction hole (19) that communicates the inlet boat (14) with the inside of the diffuser tube (8). 2 Blood introduction boat (4) and blood outflow boat (
7) and an inlet bow (14) and an outlet bow) (14) for oxygen or a mixed gas containing oxygen on the side walls, respectively.
a cylindrical housing (1) comprising a cylindrical housing (1) and a cylindrical aeration tube (8) having a large number of gas outlet holes arranged therein coaxially with the central axis of the housing (1); In the hollow fiber oxygenator, the air diffuser tube (14) on the inlet port (14) side is provided with hollow fiber bundles packed and arranged in the housing (1) circle on the outer periphery of the air diffuser tube (8). 8)
A plate member (20) is fixed to the outer peripheral wall of the hollow fiber bundle along its longitudinal axis to divide the hollow fiber bundle, and the plate member (20)
) is provided with a gas introduction hole (19) that communicates with the inlet port (14) and the interior of the air diffuser pipe (8), and furthermore, the air diffuser pipe (14) is provided in the I/Using (1). (8
), coaxially surrounding the entire cylinder (21), provided with a tubular cylinder (21) equipped with a large number of gas outlet holes, thereby preventing the presence of a hollow fiber bundle between the inner circumferential wall of the housing and the outer circumferential wall of the cylinder (21). A hollow fiber oxygenator characterized by having a complete pressure equalization chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP130184A JPS60145153A (en) | 1984-01-10 | 1984-01-10 | Hollow yarn type artificial lung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP130184A JPS60145153A (en) | 1984-01-10 | 1984-01-10 | Hollow yarn type artificial lung |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60145153A true JPS60145153A (en) | 1985-07-31 |
Family
ID=11497649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP130184A Pending JPS60145153A (en) | 1984-01-10 | 1984-01-10 | Hollow yarn type artificial lung |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60145153A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6440059A (en) * | 1987-08-05 | 1989-02-10 | Terumo Corp | Artificial lung made of hollow yarn membrane |
WO1991000090A1 (en) * | 1986-01-14 | 1991-01-10 | Alliance Pharmaceutical Corp. | Oxygenation of blood substitutes |
JP2007218539A (en) * | 2006-02-17 | 2007-08-30 | Nissan Motor Co Ltd | Hollow fiber membrane module |
CN110575579A (en) * | 2019-09-23 | 2019-12-17 | 中国科学技术大学 | A dialysis-enhanced hemodialyzer that improves blood flow |
-
1984
- 1984-01-10 JP JP130184A patent/JPS60145153A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991000090A1 (en) * | 1986-01-14 | 1991-01-10 | Alliance Pharmaceutical Corp. | Oxygenation of blood substitutes |
JPS6440059A (en) * | 1987-08-05 | 1989-02-10 | Terumo Corp | Artificial lung made of hollow yarn membrane |
JP2007218539A (en) * | 2006-02-17 | 2007-08-30 | Nissan Motor Co Ltd | Hollow fiber membrane module |
CN110575579A (en) * | 2019-09-23 | 2019-12-17 | 中国科学技术大学 | A dialysis-enhanced hemodialyzer that improves blood flow |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0160268B1 (en) | Blood oxygenator using a hollow-fiber membrane | |
US4374802A (en) | Oxygenator | |
US4239729A (en) | Oxygenator | |
US4659549A (en) | Blood oxygenator using a hollow fiber membrane | |
JPH0286817A (en) | Hollow fiber type fluid treatment equipment | |
US4231877A (en) | Blood dialyzer | |
EP0167162A2 (en) | Hollow fiber type oxygenator | |
US4237013A (en) | Hollow fiber permeability apparatus | |
JPH1147268A (en) | Hollow fiber membrane type artificial lung | |
JPS60145153A (en) | Hollow yarn type artificial lung | |
JPH02109572A (en) | Hollow fiber type fluid processing equipment | |
JP2792048B2 (en) | Hollow fiber type fluid treatment device | |
JPH0321189B2 (en) | ||
CN114796664A (en) | Blood purification device and purification method thereof | |
JPS60225572A (en) | Hollow yarn membrane type artificial lung | |
JPS6311972Y2 (en) | ||
JPS6237992B2 (en) | ||
EP0157941B1 (en) | Blood oxygenator using a hollow fiber membrane | |
JPS6129360A (en) | Artificial lung having dialytic function | |
JPS61119273A (en) | Hollow yarn membrane type artificial lung | |
JPH0345735Y2 (en) | ||
JPS6137251A (en) | Oxygenator with built-in heat exchanger | |
JP2515828Y2 (en) | Hollow fiber type oxygenator | |
JPS6145771A (en) | Hollow yarn membrane type artificial lung | |
JPH0299067A (en) | Hollow fiber type fluid treatment equipment |