[go: up one dir, main page]

JPS60143575A - Conversion device of heat to electricity - Google Patents

Conversion device of heat to electricity

Info

Publication number
JPS60143575A
JPS60143575A JP58250809A JP25080983A JPS60143575A JP S60143575 A JPS60143575 A JP S60143575A JP 58250809 A JP58250809 A JP 58250809A JP 25080983 A JP25080983 A JP 25080983A JP S60143575 A JPS60143575 A JP S60143575A
Authority
JP
Japan
Prior art keywords
gas diffusion
gas
heat
hydrogen
diffusion electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58250809A
Other languages
Japanese (ja)
Other versions
JPH0423387B2 (en
Inventor
Tadayasu Mitsumata
光亦 忠泰
Kimimasa Miyazaki
仁誠 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58250809A priority Critical patent/JPS60143575A/en
Publication of JPS60143575A publication Critical patent/JPS60143575A/en
Publication of JPH0423387B2 publication Critical patent/JPH0423387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/182Regeneration by thermal means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To efficiently convert heat energy to electric energy with a simple device by supplying hydrogen to a gas diffusion electrode by heating metal hydride. CONSTITUTION:A gas diffusion electrode 6 is formed by fixing on one side of a proton ion conductor 5, and a gas diffusion electrode 7 is fixed on the other side of the conductor 5. Gas chambers 8 and 9 are installed on each back of electrodes 6 and 7. Metal hydrides 12 and 13 are accommodated in heat exchangers 10 and 11 installed in cases 1 and 2. When this device is placed on a heated metal plate 14, the lower part of the device becomes high pressure and its upper part becomes lower pressure, hydrogen gas is transfered from the lower part to the upper part and electric power is obtained. After discharge of hydrogen is completed, when the device is placed upside down on the heated plate, electric power is obtained again. By this simple construction, heat energy is efficiently converted to electric energy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱エネルギーを直接電気エネルギーに効率よ
く変換する装置に関するものであり、こ2′・ン の装置は、エネルギー変換、センサなど熱エネルギーの
存在するところで広く利用できるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a device that efficiently converts thermal energy directly into electrical energy. It is widely available where it exists.

従来例の構成とその問題点 熱エネルギーを電気エネルギーに変換する方法として、
機械的エネルギーを介して変換する火力発電、原子力発
電、地熱発電、海洋温度差発電などがあり、これらは広
く実用化されているものが多い。しかし、これらのエネ
ルギー変換効率は最高4o%程度であり、一層の高効率
化が望まれている。
Conventional configuration and its problemsAs a method of converting thermal energy into electrical energy,
There are thermal power generation, nuclear power generation, geothermal power generation, ocean temperature difference power generation, etc. that convert mechanical energy, and many of these have been widely put into practical use. However, the energy conversion efficiency of these devices is about 40% at most, and even higher efficiency is desired.

一方、機械的エネルギーを介さないで直接電気に変換す
る方式として、熱電発電、熱電子発電。
On the other hand, thermoelectric power generation and thermionic power generation are methods that directly convert electricity into electricity without using mechanical energy.

MHD発電などが古くから研究されているが、実用的規
模で工業的に実施できるほど高効率のものはまだ得られ
ていない。
Although MHD power generation has been studied for a long time, it has not yet been achieved with high efficiency enough to be implemented industrially on a practical scale.

また、別の方式として、電気化学電池がある。Another method is an electrochemical cell.

これは通常の二次電池と異なり、電気による充電の代り
に、加熱あるいは冷却などの熱エネルギーを加えること
によって、放電可能な状態に再生す3ノ・7 るものである。
Unlike ordinary secondary batteries, this battery is regenerated into a dischargeable state by applying thermal energy such as heating or cooling instead of being charged electrically.

この種の電池として、リチウムなどのアルカリ金属と水
素の組合せの高温作動型電池、Fe3+−Fe2+ある
いはFe(CN)j”f Fe(ON)j+ の酸化還
元対を用いた水溶液電池などがある。しかし前者におい
ては、開路電圧がo、2V/−vしと比較的低く、熱エ
ネルギー変換効率は10%以下と低い。
Examples of this type of battery include a high-temperature operating type battery using a combination of an alkali metal such as lithium and hydrogen, and an aqueous solution battery using a redox couple of Fe3+-Fe2+ or Fe(CN)j"f Fe(ON)j+. However, in the former case, the open circuit voltage is relatively low at 2 V/-v, and the thermal energy conversion efficiency is low at 10% or less.

さらに後者については0.05〜0.07 V/−Uし
、変換効率0.1%と非常に低い。
Furthermore, the latter has a conversion efficiency of 0.05 to 0.07 V/-U, which is very low at 0.1%.

発明の目的 本発明は、比較的簡単々構成で熱エネルギーを効率よく
電気エネルギーに聞けつ的にあるいは連続的に変換する
装置を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a device that has a relatively simple configuration and efficiently converts thermal energy into electrical energy in a continuous or continuous manner.

発明の構成 本発明の装置は、プロトンイオン伝導体の両面にそれぞ
れ独立したガス拡散電極を設け、これらのガス拡散電極
に水素を供給あるいはガス拡散電極で生じた水素ガスを
貯蔵するだめのガス室を設け、少なくとも一方のガス室
内に金属水素化物を収納し、この金属水素化物を必要に
より加熱あるいは放熱させるだめの熱交換器を備えたも
のである。そして、この金属水素化物を加熱して水素ガ
スをこれに連通ずるガス拡散電極に供給することにより
、前記ガス拡散電極f正極、他方のガス拡散電極が負極
となり、この両者間で電力を取出すものである。
Structure of the Invention The device of the present invention has independent gas diffusion electrodes on both sides of a proton ion conductor, and a gas chamber for supplying hydrogen to these gas diffusion electrodes or storing hydrogen gas generated by the gas diffusion electrodes. A metal hydride is housed in at least one of the gas chambers, and a heat exchanger is provided to heat or radiate heat from the metal hydride as necessary. Then, by heating this metal hydride and supplying hydrogen gas to the gas diffusion electrode communicating with it, the gas diffusion electrode f becomes a positive electrode and the other gas diffusion electrode becomes a negative electrode, and electric power is extracted between the two. It is.

各々のガス室に金属水素化物を収納すれば、一方向の水
素ガスが移動し終わった後反対側の金属水素化物を加熱
し、他方を冷却すると、電池の正負極が逆になるが、同
じく電力が得られる。
If a metal hydride is stored in each gas chamber, after the hydrogen gas has moved in one direction, the metal hydride on the opposite side is heated and the other side is cooled, and the positive and negative electrodes of the battery are reversed, but the same effect occurs. You can get electricity.

また、電力は間けつ的に得られることになるが、水素を
元の方向へ戻す通路として、両室間にバイパスを設けて
もよい。この時の特徴として、正極側の金属水素化物の
平衡圧力を、負極側より低くすることにより、より高電
圧で、また1サイクルで得られる電気量が増大する。
Further, although electric power is obtained intermittently, a bypass may be provided between both chambers as a path for returning hydrogen to its original direction. The feature at this time is that by lowering the equilibrium pressure of the metal hydride on the positive electrode side than on the negative electrode side, the amount of electricity obtained in one cycle is increased at a higher voltage.

正負極で生じる反応式は次のとおりである。The reaction formula occurring at the positive and negative electrodes is as follows.

負極(高圧側) H2−2H” +2 e正極(低圧側
)2H++2e→H2 ここで、プロトンは電解質を通って負極側から51\−
ン 正極側へ移動する。
Negative electrode (high pressure side) H2-2H" +2 e Positive electrode (low pressure side) 2H++2e→H2 Here, protons pass through the electrolyte and move from the negative electrode side to 51\-
move to the positive side.

実施例の説明 第1図は本発明による装置の構成例を示す。1は正極端
子を兼ねる上ケース、2は負極端子を兼ねる下ケースで
あり、両者の開口縁に設けた鍔部は絶縁体3を介してボ
ルト4により一体に結合されて装置の外筐を形成してい
る。5はスルホン基を有するフッ素樹脂系イオン交換膜
で構成した厚さ0.5aのプロトンイオン伝導体であり
、外筐の中央に配置されている。6はプロトンイオン伝
導体6の一方の面に密着して設けたガス拡散電極、7は
他方の面に密着して設けたガス拡散電極であり、これら
の電極の背面にはそれぞれガス室8゜9が設けである。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of the configuration of an apparatus according to the present invention. Reference numeral 1 designates an upper case that also serves as a positive electrode terminal, and 2 a lower case that also serves as a negative electrode terminal.The flanges provided at the opening edges of both are integrally connected by bolts 4 through an insulator 3 to form the outer casing of the device. are doing. Reference numeral 5 denotes a proton ion conductor having a thickness of 0.5 mm and made of a fluororesin ion exchange membrane having sulfone groups, and is placed in the center of the outer casing. 6 is a gas diffusion electrode provided in close contact with one surface of the proton ion conductor 6, 7 is a gas diffusion electrode provided in close contact with the other surface, and a gas chamber 8° is provided on the back of each of these electrodes. 9 is the setting.

10.11はケース1,2と一体に設けた熱交換器を構
成するひれであり、ここには金属水素化物12.13が
収納されている。
Reference numeral 10.11 denotes a fin constituting a heat exchanger provided integrally with the cases 1 and 2, and a metal hydride 12.13 is housed here.

この装置を図のように、熱せられた金属板14上に載せ
ると、装置の下半分が高圧側(負極側)。
When this device is placed on a heated metal plate 14 as shown in the figure, the lower half of the device is on the high pressure side (negative electrode side).

上半分が低圧側(正極側)となり、水素ガスは下部から
上部へ移動しながら電力が得られる。放電6ベ・−ン が終了したら、この装置の上下を逆にすると、水素の移
動方向が逆となり再び電力が得られる。
The upper half becomes the low-pressure side (positive electrode side), and electricity is obtained while hydrogen gas moves from the bottom to the top. When the six discharge vanes are completed, the device is turned upside down, the direction of hydrogen movement is reversed, and electric power can be obtained again.

第2図の例は、ひれ1oの代わりに油などの熱媒を流し
て金属水素化物と熱交換させるだめの熱交換器10’を
設けるとともに、両ガス室間にバイパス管16を設け、
ここに逆止弁またはバルブ16を設けたものである。そ
して、下半分を加熱し、上半分を冷却することによって
、第1図と同様に電力を取出した後、今度は逆に上半分
を加熱し、下半分を冷却することによって、水素圧力は
上部が高くなる。このとき逆止弁またはパルプ16を通
って水素は下部へ移動する。移動終了後、再び下半分を
加熱すると電力が取れることになり、このサイクルをく
りかえす。
In the example shown in FIG. 2, a heat exchanger 10' is provided instead of the fin 1o to exchange heat with the metal hydride by flowing a heat medium such as oil, and a bypass pipe 16 is provided between both gas chambers.
A check valve or valve 16 is provided here. Then, by heating the lower half and cooling the upper half, electricity is extracted in the same way as in Figure 1.Then, by heating the upper half and cooling the lower half, the hydrogen pressure in the upper half is reduced. becomes higher. At this time, hydrogen moves to the lower part through the check valve or pulp 16. After the movement is complete, the lower half is heated again, which generates electricity, and the cycle repeats.

次に、第1図において、Mq−MqH2系金属水素化物
を上方および下方にそれぞれ100gずつ入れ1.下方
を400 ℃(10atm ) 、上方は77℃(0,
0001a tm )とすると、その時の両電極の開路
電圧は約300 mVとなった。この値は、10倍の圧
力差当り約60m Vの理論値(aomV X 5 :
71・−ン 3oomV)と一致する。
Next, in FIG. 1, 100 g of Mq-MqH2 metal hydride is placed in each of the upper and lower portions. The temperature below is 400℃ (10 atm), and the temperature above is 77℃ (0,
0001a tm ), the open circuit voltage of both electrodes at that time was about 300 mV. This value is the theoretical value of about 60 mV per 10 times pressure difference (aomV x 5:
71・-n3oomV).

第3図は各種金属水素化物の温度と千才新水素圧の関係
を示す。まだ第4図には、この電池の電流−電圧特性を
示し、上記の実験結果を曲線Aに示す。この曲線より、
性能はイオン伝導体の電気抵抗が律則になっていると推
察できる。また1回の放電可能電気容量は100mA/
crAの条件で約e 0Ah(理論値11oAh)とな
り、熱入力に対する変換効率は約43%(カルノーサイ
クル効率48%)が得られ、いずれもすぐれた値といえ
る。前記の放電が終了後装置の上下を逆にすると、再び
上記の特性で電力が得られた。
Figure 3 shows the relationship between the temperature of various metal hydrides and the Chisai new hydrogen pressure. FIG. 4 shows the current-voltage characteristics of this battery, and curve A shows the above experimental results. From this curve,
It can be inferred that the performance is determined by the electrical resistance of the ionic conductor. Also, the electric capacity that can be discharged once is 100mA/
Under the condition of crA, it is about e 0Ah (theoretical value 11oAh), and the conversion efficiency with respect to heat input is about 43% (Carnot cycle efficiency 48%), both of which can be said to be excellent values. When the device was turned upside down after the discharge was completed, power was again obtained with the above characteristics.

また別の例として、第2図の下方にはMg−MgH2、
上方にはこれより平衡圧の低いNa −NaHをそれぞ
れ入れた場合について示す。絢MIJH2を400℃に
加熱し、Na−NaHを77℃に冷却すると、画室間は
108の圧力比となり、開路電圧は450 mVと高く
なった。また、電流−電圧曲線を第4図の曲線Bに示す
。この場合には再生時には電流が得られないが、放電時
には曲線への場合よりも高い電圧が得られた。
As another example, Mg-MgH2,
The upper part shows the case where Na--NaH, which has a lower equilibrium pressure than this, is added. When Aya MIJH2 was heated to 400°C and Na-NaH was cooled to 77°C, a pressure ratio of 108 was obtained between the compartments, and the open circuit voltage was as high as 450 mV. Further, the current-voltage curve is shown as curve B in FIG. In this case, no current was obtained during regeneration, but a higher voltage was obtained during discharge than in the case of the curve.

さらに一層の高電圧を一つの装置から得るために、両極
とも2つづつに分割し、しかもこれらを互いに直列に結
線した以外は曲線Aの装置と全く同一の装置を組立てた
。開路電圧は2倍の600mVとなった。第4図の曲線
Cはこの放電特性を示す。曲線AおよびBに比べ高電圧
である。
In order to obtain an even higher voltage from one device, we assembled a device that was exactly the same as the device of curve A, except that both poles were divided into two and these were connected in series with each other. The open circuit voltage was doubled to 600 mV. Curve C in FIG. 4 shows this discharge characteristic. The voltage is higher than curves A and B.

なお、使用可能な金属水素化物として、上記のほかに、
Ca−CaH2,Ti−TiH2,に−KH,V−VH
3゜La−LaH2々どがあり、作動温度により適当な
平衡圧力を有するものを選択することができる。また2
種以上を必要により混合したり、熱伝導を向上させるた
めに金属片などを加えてもよい。
In addition to the above, usable metal hydrides include:
Ca-CaH2, Ti-TiH2, Ni-KH, V-VH
There are 3°La-LaH2, etc., and one with an appropriate equilibrium pressure can be selected depending on the operating temperature. Also 2
More than one species may be mixed as necessary, or metal pieces may be added to improve heat conduction.

プロトンイオン伝導体には、高い伝導度を示し、耐熱性
、耐圧性などが要求される。機械的強度を補うためには
金属メツシュ、セラミック多孔体などを用いてもよい、
また耐熱性を補う手段として金属水素化物と膜の間の距
離を大きくすることもできる。
Proton ion conductors are required to exhibit high conductivity, heat resistance, pressure resistance, etc. Metal mesh, ceramic porous bodies, etc. may be used to supplement mechanical strength.
It is also possible to increase the distance between the metal hydride and the film as a means of supplementing heat resistance.

また、装置の容器ガどを伝って熱の伝導損失が9・\−
ン あり、これを抑制するために容器の一部を金属以外の熱
伝導度の低い材料で構成するとか、または同容器間に断
熱材をはさんで固定す′るなどの工夫をするのは望まし
い。
In addition, the conduction loss of heat through the container gutter of the device is 9.
In order to suppress this, it is possible to take measures such as constructing a part of the container with a material other than metal that has low thermal conductivity, or fixing the container with a heat insulating material between the containers. desirable.

ガス拡散電極は、性能を高めるだめの白金、パラジウム
などの触媒や、炭素粉末を加えてもよい。
A catalyst such as platinum or palladium or carbon powder may be added to the gas diffusion electrode to improve performance.

また出力特性を高めるために、イオン伝導体や電極をあ
る程度温度を上げた状態で作動させてもよい。
Further, in order to improve the output characteristics, the ion conductor and the electrodes may be operated with the temperature raised to some extent.

発明の効果 以上のように、本発明によれば、比較的簡単な構成で効
率よく、熱エネルギーを電気エネルギーに変換すること
ができ、作動音が静かで、小型化が可能であるなどの特
徴を有する。
Effects of the Invention As described above, according to the present invention, thermal energy can be efficiently converted into electrical energy with a relatively simple configuration, the operation noise is quiet, and miniaturization is possible. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明によるエネルギー変換装置の
構成例を示す縦断面図、第3図は代表的な金属水素化物
の平衡圧力特性図、第4図は本発明による装置の特性図
である。 1・・・・・・上ケース、2・・・・・・下ケース、4
・・・・・・グロ10’・−ンン トンイオン伝導体、6,7・・・・・・ガス拡散電極、
8゜9・・・・・・ガス室、10.10’、11.11
 ’・川・・熱交換器、12.13・・・・・・金属水
素化物、16・旧・・管、16・・φ・・・バルブ。
FIGS. 1 and 2 are longitudinal cross-sectional views showing an example of the configuration of an energy conversion device according to the present invention, FIG. 3 is an equilibrium pressure characteristic diagram of a typical metal hydride, and FIG. 4 is a characteristic diagram of the device according to the present invention. It is. 1...Top case, 2...Bottom case, 4
...Glo 10' - Nton ion conductor, 6,7... Gas diffusion electrode,
8゜9...gas chamber, 10.10', 11.11
'・River...Heat exchanger, 12.13...Metal hydride, 16.Old...Pipe, 16...φ...Valve.

Claims (3)

【特許請求の範囲】[Claims] (1)プロトンイオン伝導体の両面にそれぞれ独立した
ガス拡散電極を設けるとともに、各々のガス拡散電極と
連通ずるガス室を設け、これらのガス室の少なくとも一
方に、外部と熱交換が可能な熱交換器と接触した金属水
素化物を内蔵させたことを特徴とする熱を電気に変換す
る装置。
(1) In addition to providing independent gas diffusion electrodes on both sides of the proton ion conductor, a gas chamber communicating with each gas diffusion electrode is provided, and at least one of these gas chambers has a heat source that can exchange heat with the outside. A device for converting heat into electricity, characterized by having a built-in metal hydride in contact with an exchanger.
(2)前記の各ガス室間を逆止弁またはバルブを介して
連結した特許請求の範囲第1項記載の熱を電気に変換す
る装置。
(2) The apparatus for converting heat into electricity according to claim 1, wherein each of the gas chambers is connected via a check valve or a valve.
(3)前記の各ガス拡散電極を複数個に分離し、これら
を直列に結合した特許請求の範囲第1項または第2項記
載の熱を電気に変換する装置。
(3) An apparatus for converting heat into electricity according to claim 1 or 2, wherein each of the gas diffusion electrodes is separated into a plurality of parts and these are connected in series.
JP58250809A 1983-12-28 1983-12-28 Conversion device of heat to electricity Granted JPS60143575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250809A JPS60143575A (en) 1983-12-28 1983-12-28 Conversion device of heat to electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250809A JPS60143575A (en) 1983-12-28 1983-12-28 Conversion device of heat to electricity

Publications (2)

Publication Number Publication Date
JPS60143575A true JPS60143575A (en) 1985-07-29
JPH0423387B2 JPH0423387B2 (en) 1992-04-22

Family

ID=17213366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250809A Granted JPS60143575A (en) 1983-12-28 1983-12-28 Conversion device of heat to electricity

Country Status (1)

Country Link
JP (1) JPS60143575A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300483B1 (en) * 1996-08-28 2002-06-20 이.씨.알.-일렉트로-케미컬 리서치 리미티드 Non-liquid proton conductors for use in electrochemical systems under ambient conditions
WO2003058748A2 (en) * 2001-12-31 2003-07-17 Johnson Electro Mechanical Systems, Llc Electrochemical conversion system
JP2008206863A (en) * 2007-02-27 2008-09-11 Kawashima Selkon Textiles Co Ltd Sewn product and sewing tool for sewing machine
JP2017532718A (en) * 2014-08-11 2017-11-02 ジョンソン・アイピー・ホールディング・エルエルシー Thermo-electrochemical converter
JP2018514175A (en) * 2015-03-09 2018-05-31 ジョンソン・アイピー・ホールディング・エルエルシー Thermoelectrochemical converter with integrated energy storage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300483B1 (en) * 1996-08-28 2002-06-20 이.씨.알.-일렉트로-케미컬 리서치 리미티드 Non-liquid proton conductors for use in electrochemical systems under ambient conditions
WO2003058748A2 (en) * 2001-12-31 2003-07-17 Johnson Electro Mechanical Systems, Llc Electrochemical conversion system
WO2003058748A3 (en) * 2001-12-31 2007-11-01 Johnson Electro Mechanical Sys Electrochemical conversion system
JP2008206863A (en) * 2007-02-27 2008-09-11 Kawashima Selkon Textiles Co Ltd Sewn product and sewing tool for sewing machine
JP2017532718A (en) * 2014-08-11 2017-11-02 ジョンソン・アイピー・ホールディング・エルエルシー Thermo-electrochemical converter
US10522862B2 (en) 2014-08-11 2019-12-31 Johnson Ip Holding, Llc Thermo-electrochemical converter
US10938053B2 (en) 2014-08-11 2021-03-02 Johnson Ip Holding, Llc Thermo-electrochemical converter
JP2018514175A (en) * 2015-03-09 2018-05-31 ジョンソン・アイピー・ホールディング・エルエルシー Thermoelectrochemical converter with integrated energy storage

Also Published As

Publication number Publication date
JPH0423387B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US11870050B2 (en) Thermo-electrochemical convertor with integrated energy storage
US6737180B2 (en) Electrochemical conversion system
CN101237061A (en) A cascade composite power generation device of thermoelectric battery and fuel cell
US6899967B2 (en) Electrochemical conversion system
US9236627B1 (en) Solid oxide redox flow battery
JPH04280484A (en) Solid electrolytic type fuel cell
CN110247087B (en) An alkaline fuel cell-thermoelectric refrigeration hybrid device
US3953239A (en) Al-AgO primary battery
CN201156571Y (en) Cascade composite power generation device of thermoelectric battery and fuel cell
WO2012070487A1 (en) Secondary battery type fuel cell system
JPS60143575A (en) Conversion device of heat to electricity
US6949303B1 (en) Electromechanical conversion system
US11631877B2 (en) Method of bonding acid-doped membranes and a bonded polybenzimidazole membrane structure
JP2012084366A (en) Fuel cell device and secondary fuel cell system
JP6903127B2 (en) Johnson thermoelectrochemical transducer
US3445292A (en) Thermally regenerable hydrogen halide fuel cell
JPH05225990A (en) Fuel cell system
Weissbart Fuel cells—Electrochemical converters of chemical to electrical energy
JP2004349029A (en) Fuel cell system
Sharma et al. Solid oxide fuel cell connected to load
JPH0412460A (en) high temperature fuel cell
JPS5923423B2 (en) Heat-renewable batteries
RU2158048C1 (en) Solar-to-electric energy converter
Kalra et al. Design of a High Temperature Solid Oxide Fuel Cell: A Review
Partsch et al. LTCC-based micro-scale PEM fuel cell