JPS6014310B2 - Direction measuring device - Google Patents
Direction measuring deviceInfo
- Publication number
- JPS6014310B2 JPS6014310B2 JP4084980A JP4084980A JPS6014310B2 JP S6014310 B2 JPS6014310 B2 JP S6014310B2 JP 4084980 A JP4084980 A JP 4084980A JP 4084980 A JP4084980 A JP 4084980A JP S6014310 B2 JPS6014310 B2 JP S6014310B2
- Authority
- JP
- Japan
- Prior art keywords
- phase difference
- azimuth
- calculating
- data
- correlation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
- G01S3/46—Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
- G01S3/50—Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being pulse modulated and the time difference of their arrival being measured
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
【発明の詳細な説明】
本発明は空中線が円形に配列されたドツプラ方位測定袋
贋の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a Doppler azimuth measurement bag counterfeit in which antennas are arranged in a circular manner.
特に、方位検出器をディジタル化し、測定精度および応
答速度を向上するとともに、汝山角不能を補正するため
の改良に関する。空中線が円形配列されたドップラ方位
測定装置の代表的な系統図を第1図に示す。In particular, the present invention relates to improvements in digitizing the azimuth detector to improve measurement accuracy and response speed, as well as to correct for angular failure. A typical system diagram of a Doppler azimuth measuring device in which antennas are arranged in a circular manner is shown in FIG.
受信空中線1および方位空中線2により受信された到来
電波は、それぞれ周波数変換器3,4により中間周波数
信号に変換される。5は局部発振器である。Incoming radio waves received by the receiving antenna 1 and the azimuth antenna 2 are converted into intermediate frequency signals by frequency converters 3 and 4, respectively. 5 is a local oscillator.
二つの中間周波数信号は混合器6により方位情報のみを
有する中間周波数信号として敬出され、方位検出器7に
加えられ、検波されて方位情報が表示器8に表示される
。このような構成の装置で、従来装置では、方位検出器
7としてディスクリミネータ等を用いたアナログ方式が
採用されていた。The two intermediate frequency signals are extracted by the mixer 6 as an intermediate frequency signal having only azimuth information, applied to the azimuth detector 7, detected, and the azimuth information is displayed on the display 8. In the conventional apparatus with such a configuration, an analog system using a discriminator or the like as the direction detector 7 was adopted.
第2図は方位空中線2の構成図で、円周上にN本の空中
線素子■〜■が等間隔に配置されて構成される。FIG. 2 is a block diagram of the azimuth antenna 2, which is composed of N antenna elements (1) to (4) arranged at equal intervals on the circumference.
このような従来装置では、検波された信号は第3図ゆに
示すN段の階段波状の正弦波形となり、これを積分し基
本波成分のみを抽出して、第3図{b}の方位信号と第
3図‘c)の方位基準信号とを得て、その位相差ひが到
来方位につれて変化することにより到来方位を求める。In such a conventional device, the detected signal has an N-step staircase waveform sine waveform as shown in Fig. 3, which is integrated to extract only the fundamental wave component, and the azimuth signal shown in Fig. 3 {b} is obtained. and the azimuth reference signal shown in FIG. 3'c) are obtained, and the azimuth of arrival is determined by changing the phase difference according to the azimuth of arrival.
このため、実用上十分な方側精度を得るには、検波後の
帯域幅を狭くすることが必要で、方位検出の応答時間は
遅い。従来装置では、空中線切換周波数は数十Hzで、
方位検出の応答時間は約1秒程度である。従ってこのよ
うなアナログ方式の方位検出器を用いる方位測定装置は
、高速測定を要求される自動測定等には不向きであり、
到来電波の早い断続や変化等には十分に追随できない欠
点がある。さらに、ドップラ方位空中線では、隣接する
空中線素子間の位相差が灯を越えることは原理上できな
い。Therefore, in order to obtain practically sufficient directional accuracy, it is necessary to narrow the bandwidth after detection, and the response time for azimuth detection is slow. In conventional equipment, the antenna switching frequency is several tens of Hz,
The response time for direction detection is about 1 second. Therefore, a direction measuring device using such an analog direction detector is not suitable for automatic measurements that require high-speed measurement.
It has the disadvantage that it cannot adequately follow rapid interruptions and changes in incoming radio waves. Furthermore, in a Doppler azimuth antenna, it is impossible in principle for the phase difference between adjacent antenna elements to exceed the lamp.
しかし、実フィールドでは、建物の反射等種々の外乱に
より到来電波の位相が乱れ、隣接空中線素子間の位相差
が汀を越えることがいましば起る。このとき従釆のアナ
ログ方式の方位検出器では、第4図に示すように検波波
形に異常な切込みが現われ、測定方位は乱れ、時には側
角不能に陥ることがある。これを救うためにフィル夕を
さらに狭帯城化な改善は見られず、ますます方位検出の
応答時間を遅らせる結果となる。本発明は空中線が円形
に配列されたドップラ方位測定装置において、従釆のデ
ィスクリミネータ等のアナログ欄角方式が持つ測定時間
の遅さ、実フィールドにおける種々の外乱に対する弱さ
等を改善し、高速かつ高精度の方位測定装置を提供する
ことを目的とする。However, in the actual field, the phase of incoming radio waves is disturbed by various disturbances such as reflections from buildings, and the phase difference between adjacent antenna elements often exceeds the threshold. At this time, in the analog azimuth detector used as a follow-up, an abnormal notch appears in the detected waveform as shown in FIG. 4, the measured azimuth is disturbed, and sometimes the lateral angle becomes impossible. In order to solve this problem, there is no improvement in making the filter even narrower, and the result is that the response time for direction detection is further delayed. The present invention is a Doppler azimuth measurement device in which antennas are arranged in a circle, and improves the slow measurement time and weakness against various disturbances in the actual field, which are inherent in analog field angle methods such as secondary discriminators. The purpose is to provide a high-speed and highly accurate direction measuring device.
本発明は、中間周波数に周波数変換された到来信号をデ
ィジタル形式により処理し、位相検出、位相平均、隣接
空中線素子間の位相差検出、相関計算および方位演算を
高速に実行して瞬時方位を算出し、さらに所定の計測時
間にわたり加算して平均値をめて到釆方位を決定すると
ともに、演算処理する過程の隣接空中線素子間の位相差
を記憶装置に記憶させることにより、各検出器よりの到
来信号の断情報、隣接空中線素子間の位相差の異常情報
および空中線素子の故障情報を照合して、位相差の補正
を行い、高速かつ高精度の方位測定装置を提供する。The present invention processes an incoming signal whose frequency has been converted to an intermediate frequency in a digital format, and performs phase detection, phase averaging, phase difference detection between adjacent antenna elements, correlation calculation, and azimuth calculation at high speed to calculate instantaneous azimuth. Then, the arrival direction is determined by adding the average value over a predetermined measurement time, and the phase difference between adjacent antenna elements in the process of calculation is stored in a storage device. A high-speed and highly accurate azimuth measurement device is provided by collating incoming signal interruption information, abnormal phase difference information between adjacent antenna elements, and antenna element failure information to correct the phase difference.
本発明は、複数の空中線素子を走査して得られる信号の
間の位相差に基づき、受信電波の到来方向を検出する方
位測定装置において、各空中線素子の誘起電圧の基準信
号に対する位相差をディジタル信号として検出する位相
差検出手段と、この位相差検出手段の検出出力を記憶す
るメモリ手段と、このメモリ手段の記憶内容と上記位相
差検出手段の出力との相関を計算する相関計算手段と、
この相関計算手段の出力から受信電波の到来方向を演算
する方位演算手段とを備えたことを特徴とする。The present invention provides a direction measuring device that detects the direction of arrival of received radio waves based on the phase difference between signals obtained by scanning a plurality of antenna elements. a phase difference detection means for detecting as a signal; a memory means for storing the detection output of the phase difference detection means; a correlation calculation means for calculating the correlation between the stored contents of the memory means and the output of the phase difference detection means;
The present invention is characterized by comprising azimuth calculation means for calculating the direction of arrival of the received radio waves from the output of the correlation calculation means.
さらに第二の発明は、上記構成に加えて、前記各手段の
いずれかにおいて得られたデータが異常であるときこの
データを棄却してこのデー外こ代えて、一走査前のデー
タ、当該空中線素子の隣接空中線素子のデータ、過去の
データから予測されるデータ、のうちの少なくとも一を
基礎とするデータを出力する補正手段を備えたことを特
徴とする。Furthermore, in addition to the above-mentioned configuration, a second invention provides that when the data obtained by any of the above-mentioned means is abnormal, this data is rejected and the outside of this data is replaced. The present invention is characterized by comprising a correction means for outputting data based on at least one of data of antenna elements adjacent to the element and data predicted from past data.
次に本発明のディジタル側角万式を採用した実施例につ
いて図面を参照して説明する。Next, an embodiment of the present invention employing the digital side kakumanshiki will be described with reference to the drawings.
装置全体の系統図は従来例装置として示した第1図と同
等であり、方位空中線2の構成は第2図に示すものと同
等である。The system diagram of the entire device is the same as that shown in FIG. 1 as a conventional device, and the configuration of the azimuth antenna 2 is the same as that shown in FIG. 2.
このドツプラ方位測定装置は、二つの空中線を備える。
その第一は受信空中線1であって、平面上の全方向に対
して無指向性であり、電波の到来方向によって受信位相
が変化することはない。その第二は方位空中線であって
、第2図に示すように円周上に等間隔に配置されたN個
(一例としてNは8または16がいましば用いられる。
)の空中線■〜■を電子的に順次切換えて受信装橿に接
続する。これにより到来する電波受信位置が円形に変化
することになり、N個の空中線素子ひとまわりの切換周
期に従って、受信電波に位相変調が施されることになる
。受信装置でこの受信電波を位相差検波すると、その検
波出力は基準とする空中線素子■からひとまわりの切換
え位相差に対して、電波の到来方向に従って異なる位相
角が得られる。これが第3図に示す位相角8であり、こ
れが基準とした空中線素子(例えば■)からの電波到来
方位である。第3図で、aは空中線素子の切換えに伴っ
て受信信号の位相がステップ状に変化する様子を示し、
同図bはこのaに示す信号の基本成分を抽出した波形で
ある。This Doppler direction measuring device is equipped with two antennas.
The first one is the reception antenna 1, which is omnidirectional in all directions on a plane, and the reception phase does not change depending on the arrival direction of radio waves. The second type is the azimuth antenna, and as shown in FIG. 2, N antennas are arranged at equal intervals on the circumference (for example, N is often 8 or 16).
) antennas ■ to ■ are electronically switched in sequence and connected to the receiver. As a result, the receiving position of the incoming radio wave changes in a circular manner, and the received radio wave is subjected to phase modulation according to the switching period around the N antenna elements. When this received radio wave is phase-difference-detected by the receiving device, the detected output has a phase angle that differs depending on the direction of arrival of the radio wave, with respect to the switching phase difference of one turn from the reference antenna element (2). This is the phase angle 8 shown in FIG. 3, and this is the direction in which the radio waves arrive from the reference antenna element (for example, ■). In Fig. 3, a shows how the phase of the received signal changes stepwise as the antenna element is switched;
Figure b is a waveform obtained by extracting the fundamental component of the signal shown in figure a.
同図cは切換えの周期信号であり、切換えの基準を例え
ば空中線素子■を絶対方位の北に設定し、北を00とし
て北→東→南→西→北の方向に36ぴを割りつけると、
第3図に示す角度のま絶対方位を示すことになる。第1
図に示す装置はこの方位角度8を正確に求めるための装
置であり、この動作は第1図に示す装置のうち方位検出
器7が分担する。Figure c is a periodic signal for switching. For example, if the standard for switching is set to the north of the absolute direction of the antenna element, and 00 is the north, 36 pins are assigned in the direction of north → east → south → west → north. ,
The angle shown in FIG. 3 indicates the absolute direction. 1st
The device shown in the figure is a device for accurately determining the azimuth angle 8, and this operation is performed by the azimuth detector 7 of the devices shown in FIG.
この求められた角度のま表示器8に表示される。ところ
で、剣釆する電波信号それ自体が位相変調成分を含まな
い信号であれば、上述のように方位角度aを求めること
ができるが、到来電波信号自体が位相変調されていると
きには、この位相変調成分を除かなけれならない。The obtained angle is displayed on the display 8. By the way, if the arriving radio signal itself is a signal that does not include a phase modulation component, the azimuth angle a can be determined as described above. However, when the incoming radio signal itself is phase modulated, this phase modulation component ingredients must be removed.
一般に、振幅変調され位相変調されずに送信された電波
あるいは無変調の電波であっても、ある距離を伝播して
受信されると、伝播経路が多数になりその受信電波には
位相変調成分が含まれる。第1図の装置で方位検出器7
の前段に設けられた二系統の回路およびその混合器6は
、この位相変調成分を除くための回路である。すなわち
、上述の受信空中線1および方位空中線2で受信された
電波信号は、ひとつの局部発振器5の出力により、それ
ぞれ同等の特性の周波数変換器3,4により中間周波信
号に変換される。In general, even if a radio wave is amplitude modulated but not phase modulated, or is unmodulated, if it propagates over a certain distance and is received, there will be many propagation paths, and the received radio wave will contain a phase modulated component. included. Direction detector 7 with the device shown in Figure 1
The two systems of circuits and their mixer 6 provided in the front stage are circuits for removing this phase modulation component. That is, the radio signals received by the above-mentioned receiving antenna 1 and azimuth antenna 2 are converted into intermediate frequency signals by the output of one local oscillator 5 by frequency converters 3 and 4 having the same characteristics, respectively.
この中間周波信号は、その位相成分が互いに反対になる
ようにしてひとつの混合器6で混合される。これにより
、到来電波それ自体の位相変調成分は打消され、方位検
出器7には方位空中線2の切換えより生じた位相変調成
分のみが入力することになる。ここで本発明の特徴とす
るところは方位検出器7の構成である。These intermediate frequency signals are mixed in one mixer 6 such that their phase components are opposite to each other. As a result, the phase modulation component of the incoming radio wave itself is canceled out, and only the phase modulation component generated by switching the orientation antenna 2 is input to the azimuth detector 7. Here, the feature of the present invention is the configuration of the direction detector 7.
方位検出器7の詳細を第5図にフロック図で示す。第5
図の構成で、入力信号はパルス変換器11を介して、位
相検出器12に与えられる。Details of the direction detector 7 are shown in a block diagram in FIG. Fifth
In the configuration shown in the figure, an input signal is applied to a phase detector 12 via a pulse converter 11.
ここで基準発生器13の出力と比較され、位相平均器1
4に与えられる。この世力は位相差検出器15、相関計
算器16、方位演算器17、方位処理器18に順次与え
られる。各ェレメント15〜18は全てメモリ19と結
合されている。このように構成された装置の動作を第6
図に示す波形図を参照して説明する。Here, it is compared with the output of the reference generator 13, and the phase averager 1
given to 4. This world power is sequentially applied to a phase difference detector 15, a correlation calculator 16, an azimuth calculator 17, and an azimuth processor 18. Each element 15-18 is all coupled with memory 19. The operation of the device configured in this way is explained in the sixth section.
This will be explained with reference to the waveform diagram shown in the figure.
第6図でaは空中線素子の制御信号、bは入力中間周波
数信号、cはパルス変換器11の出力波形、dは基準位
相信号である。第6図a〜dはそれぞれ第5図に示すa
〜dの点の波形図である。第6図bに示す中間周波数信
号は、パルス変換器11により第6図cに示すパルスに
変換され、位相検出器12により第6図dに示す基準位
相信号と位相が比較される。In FIG. 6, a is a control signal for the antenna element, b is an input intermediate frequency signal, c is an output waveform of the pulse converter 11, and d is a reference phase signal. Figures 6 a to d are shown in Figure 5, respectively.
It is a waveform diagram of points ~d. The intermediate frequency signal shown in FIG. 6b is converted by the pulse converter 11 into the pulse shown in FIG. 6c, and the phase is compared with the reference phase signal shown in FIG. 6d by the phase detector 12.
ここではディジタル的に基準位相に対する中間周波数信
号の位相差が計数される。次いで位相平均器14により
第6図aに示す空中線素子の制御信号を参照して、空中
線素子切襖時の平均位相が算出される。ここで、位相差
検出器15、位相計算器16、方位演算器17および方
位処理器18は「機能的に第5図のように図示すること
ができるが、物理的には1個のマイクロプロセッサによ
り構成され、各ェレメント15〜18はそのソフトウェ
アにより実現される。Here, the phase difference of the intermediate frequency signal with respect to the reference phase is counted digitally. Next, the phase averager 14 calculates the average phase when the antenna element is closed by referring to the control signal for the antenna element shown in FIG. 6a. Here, the phase difference detector 15, phase calculator 16, azimuth calculator 17, and azimuth processor 18 can be functionally illustrated as shown in FIG. Each of the elements 15 to 18 is realized by its software.
メモリ19はこのマイクロプロセッサに接続されたメモ
リである。このマイクロプロセッサにより実行する処理
内容を明確にするために、各ブロック毎にその処理もし
くは演算の内容を説明する。Memory 19 is a memory connected to this microprocessor. In order to clarify the contents of the processing executed by this microprocessor, the contents of the processing or calculation will be explained for each block.
いま、i番目の空中線素子の平均位相を8iとすると、
位相差検出器15ではi番目とi−1番目の位相差△8
iは、△ai=01‐公‐1 ………‘1)
でこれが算出メモリ19に記憶される。Now, if the average phase of the i-th antenna element is 8i, then
In the phase difference detector 15, the phase difference between the i-th and i-1th is △8
i is △ai=01-Ko-1......'1)
This is then stored in the calculation memory 19.
方位空中線2の素子数をN本とすると、隣接空中線素子
間の位相差は、第3図aに示すように階段波状三角関数
になるから、前述の説明のとおり、方位空中線2の基準
となる空中線の方位からの到釆電波の方位角8は基準と
なる空中線切換周波数を周期とする三角関数との相関関
数を計算すれば求まる。したがってメモリ19より適宜
位相差データを論出し、相関計算器16により、RX=
母△8i●Sin2帯i ……■iコ1N
Ry:i≧,△8,.COS奪i .・・.・・【
31なる演算を実行し方位演算器17により。When the number of elements of the azimuth antenna 2 is N, the phase difference between adjacent antenna elements becomes a step-wave trigonometric function as shown in Fig. 3a, so as explained above, it becomes the reference for the azimuth antenna 2. The azimuth angle 8 of the arriving radio wave from the azimuth of the antenna can be found by calculating the correlation function with a trigonometric function whose period is the reference antenna switching frequency. Therefore, the phase difference data is appropriately calculated from the memory 19, and the correlation calculator 16 calculates that RX=
Mother △8i●Sin2 band i ……■iko1N Ry:i≧,△8,. COS usurpation i.・・・.・・【
31 is executed by the direction calculator 17.
れn‐・麓 .・・‐・‐‘4)を演算するこ
とにより、一空中線切換時の瞬時の方位8が得られる。
次に方位処理器18により、この瞬時方位81こついて
与えられた計測時間にわたり平均処理を行い、最終的な
方位■@:三,j斗j……■
が出力される。At the foot of the mountain. ...--'4), the instantaneous bearing 8 at the time of switching one antenna can be obtained.
Next, the azimuth processor 18 averages the instantaneous azimuth 81 over a given measurement time, and outputs the final azimuth ■@:3,j斗j...■.
ここで、nは計測時間内の瞬時方位データの数である。
ここで上記■式により方位が求められる理由について定
量的に説明する。Here, n is the number of instantaneous orientation data within the measurement time.
Here, the reason why the orientation is determined by the above equation (2) will be quantitatively explained.
方位空中線2により得られる信号をf。The signal obtained by the azimuth antenna 2 is f.
=松in(のt+0) ……【6’(ただし、
8‘ま到釆信号の基準空中線素子に対する方位角)
基準信号を
fR=SinのtおよびfR=COSのt ……{
71とし、二つの信号の相関を計算するとRX;主′さ
f。= pine in (t+0) ...[6' (however,
8' Azimuth angle of the arrival signal with respect to the reference antenna element) The reference signal is fR = t of Sin and fR = t of COS...{
71, and calculate the correlation between the two signals, RX; main's f.
・Sinのtdt ……‘8’:手′吉ASin
くのt+8)‐Sinのtdt=舎。S8
‐‐‐‐‐‐‘9’となる。同様に、Ry=会ino
肌o0が得られるから、【9ー式およ
び00式から方位角のま8=柵1礎として求めることが
できる。・Sin's tdt...'8': Te'kichi ASin
Kunot+8)-Sin's tdt=sha. S8
‐‐‐‐‐‐It becomes '9'. Similarly, Ry=kai ino
Since the skin o0 is obtained, the azimuth angle can be obtained from formulas 9 and 00 as 8 = fence 1 foundation.
このようにこの方位検出器7では、方位情報を有する中
間周波数信号をディジタル的に処理し、位相検出、位相
平均、位相差検出、相関計算および方位演算を高速に実
行し、瞬時の到来方位を算出するとともに、所定の計測
時間毎に平均処理された平均方位を算出することができ
る。In this way, this azimuth detector 7 digitally processes the intermediate frequency signal having azimuth information, executes phase detection, phase averaging, phase difference detection, correlation calculation, and azimuth calculation at high speed, and calculates the instantaneous direction of arrival. At the same time, it is possible to calculate an average direction that is averaged every predetermined measurement time.
本発明の装置では、ディジタル的に処理を行うので、信
号が狭帯域フルタを通過することにより応答遅延を招く
ことはなく、必要な精度と応答時間を配慮して、演算処
理の規模および速度を設定することができる。Since the device of the present invention performs processing digitally, there is no response delay caused by the signal passing through a narrow band filter, and the scale and speed of arithmetic processing are reduced by taking into account the necessary precision and response time. Can be set.
次に、演算処理がディジタル的に行われることによるも
う一つの特徴は、各過程における結果をメモ川こ記憶し
、各種の補正が高速に実行できることである。Another feature of digitally performing arithmetic processing is that the results of each process can be memorized and various corrections can be executed at high speed.
これは実フィールドの種々の外乱に対して有効であり、
ここでは実施例として‘1’信号に瞬断がある場合、
■ 隣接ェレメント間の位相差が180度を越える場合
、‘3’ェレメントに故障が発生した場合、の補正につ
いて説明する。This is effective against various disturbances in the real field,
Here, as an example, correction will be described in the case where there is a momentary interruption in the '1' signal, (2) where the phase difference between adjacent elements exceeds 180 degrees, and where a failure occurs in the '3' element.
上記【1他受信機等よりの信号有無検出情報に基づくも
の、■は方位検出器自身での隣接空中線素子陥の位相差
が汀をオーバーしたことの情報に基づくもの、‘31は
方位空中線よりの空中線素子の故障情報に基づくもので
ある。Above [1] is based on signal presence/absence detection information from other receivers, etc., ■ is based on information that the phase difference between adjacent antenna elements in the azimuth detector itself exceeds the threshold, '31 is based on the azimuth antenna This is based on the failure information of the antenna elements.
到来信号のないとき、隣接空中線素子間位相差が汀をオ
ーバーしたときおよび空中線素子が故障したときは、第
5図の位相差検出器12には、異常な値が出力され、方
位誤婁葦が増大し、場合によっては側角不能に陥る。こ
のようなときには、それぞれの異常の検出情報に基づき
、該当する異常な値を示している位相差データを棄却し
、これに代えて一走査前の当該空中線素子間の値、ある
いは当該空中線素子間の直前の値を挿入する、もしくは
過去の一連の空中線素子間の値から予測される値を挿入
することにより、常に安定かつ正確な方位測定を実現す
ることができる。When there is no incoming signal, when the phase difference between adjacent antenna elements exceeds the threshold, or when an antenna element malfunctions, an abnormal value is output to the phase difference detector 12 in FIG. increases, and in some cases, lateral angle loss may occur. In such a case, based on the detection information of each abnormality, phase difference data showing the corresponding abnormal value is rejected, and instead of this, the value between the antenna elements one scan ago or the value between the antenna elements is used. By inserting the immediately preceding value or inserting a value predicted from values between a series of past antenna elements, stable and accurate azimuth measurement can always be achieved.
これにより実フィールドでの到来電波の早い断続、変化
、また建物の反射等種々の外乱による位相の乱れ等が発
生しても、直ちに測定表示に影響が現われず、無用な誓
殻送出などを避けることができる。また瞬時方位ひも記
憶されるので標準偏差の算出等の種々の統計的な処理も
可能になる。以上述べたように、本発明によれば、従来
のアナログ棚角方式による方位測定装置に比べ、測定応
答時間および測定精度が改善されるとともに、短時間に
発生して回復する測定異常についても、補正処理を可能
とする優れた特長がある。As a result, even if phase disturbances occur due to rapid interruptions or changes in incoming radio waves in the actual field, or various disturbances such as reflections from buildings, the measurement display will not be affected immediately, and unnecessary transmission of signals will be avoided. be able to. Furthermore, since the instantaneous direction string is stored, various statistical processing such as calculation of standard deviation is also possible. As described above, according to the present invention, the measurement response time and measurement accuracy are improved compared to the conventional analog shelf angle method azimuth measurement device, and measurement abnormalities that occur and recover in a short period of time can be resolved. It has an excellent feature that enables correction processing.
第1図は本発明が実施される円形配列ドップラ方位測定
装置の系統図。
第2図は円周上に等間隔に配置されたN本の空中線素子
にて構成される方位空中線の構成図。第3図は方位検出
器の各検波波形、a検波直後の方位信号、b積分された
方位信号、c方位基準信号。第4図は隣接する空中線素
子間の位相差が汀を越えたときの検波波形の一例を示す
図。第5図は本発明のディジタル側角方式の方位検出器
の系統図。第6図は本発明のディジタル側角方式の方位
検出器の動作波形図。a空中線素子の制御信号。b入力
中間周波数信号、cパルス変換器出力波形、d基準位相
信号。1・・・受信空中線、2・・・方位空中線、3,
4・・・周波数変換器、5・・・局部発振器、11・・
・パルス変換器、12・・・位相検出器、13・・・基
準位相発生器、14・・・位相平均器、15・・・位相
差検出器、16・・・相関計算器、17・・・方位演算
器、18・・・方位処理器、19…メモリ。
XI図
稀2図
桁3図
稀4図
舟5図
兼6図FIG. 1 is a system diagram of a circular array Doppler azimuth measuring device in which the present invention is implemented. FIG. 2 is a configuration diagram of an azimuth antenna made up of N antenna elements arranged at equal intervals on the circumference. FIG. 3 shows each detected waveform of the azimuth detector, a azimuth signal immediately after detection, b integrated azimuth signal, and c azimuth reference signal. FIG. 4 is a diagram showing an example of a detected waveform when the phase difference between adjacent antenna elements exceeds a threshold. FIG. 5 is a system diagram of the digital side angle type azimuth detector of the present invention. FIG. 6 is an operational waveform diagram of the digital side angle type azimuth detector of the present invention. a Control signal for the antenna element. b input intermediate frequency signal, c pulse converter output waveform, d reference phase signal. 1... Receiving antenna, 2... Direction antenna, 3,
4... Frequency converter, 5... Local oscillator, 11...
- Pulse converter, 12... Phase detector, 13... Reference phase generator, 14... Phase averager, 15... Phase difference detector, 16... Correlation calculator, 17... - Direction calculator, 18...Direction processor, 19...Memory. XI figure rare 2 figure girder 3 figure rare 4 figure boat 5 figure and 6 figure
Claims (1)
相差に基づき、受信電波の到来方向を検出する方位測定
装置において、各空中線素子の誘起電圧の基準信号に対
する位相差をデイジタル信号として検出する位相差検出
手段と、この位相差検出手段の検出出力を記憶するメモ
リ手段と、このメモリ手段の記憶内容と上記位相差検出
手段の出力との相関を計算する相関計算手段と、この相
関計算手段の出力から受信電波の到来方向を演算する方
位演算手段とを備えたことを特徴とする方位測定装置。 2 複数の空中線素子を走査して得られる信号の間の位
相差に基づき、受信電波の到来方向を検出する方位測定
装置において、各空中線素子の誘起電圧の基準信号に対
する位相差をデイジタル信号として検出する位相差検出
手段と、この位相差検出手段の検出出力を記憶するメモ
リ手段と、このメモリ手段の記憶内容と上記位相差検出
手段の出力との相関を計算する計算手段と、この相関計
算手段の出力から受信電波の到来方向を演算する方位演
算手段と、前記各手段のいずれかにおいて得られたデー
タが異常であるときこのデータを棄却してこのデータに
代えて、 一走査前のデータ、 当該空中線素子の隣接空中線素子のデータ、過去のデ
ータから予測されるデータのうちの少なくとも一を基礎
とするデータを出力する補正手段とを備えたことを特徴
とする方位測定装置。[Claims] 1. In an azimuth measuring device that detects the arrival direction of received radio waves based on the phase difference between signals obtained by scanning a plurality of antenna elements, the position of the induced voltage of each antenna element relative to a reference signal is determined. A phase difference detection means for detecting the phase difference as a digital signal, a memory means for storing the detection output of the phase difference detection means, and a correlation calculation for calculating the correlation between the contents stored in the memory means and the output of the phase difference detection means. 1. An azimuth measuring device comprising: a means for calculating a correlation; and an azimuth calculating means for calculating the direction of arrival of a received radio wave from the output of the correlation calculating means. 2. In an azimuth measurement device that detects the arrival direction of received radio waves based on the phase difference between signals obtained by scanning multiple antenna elements, the phase difference of the induced voltage of each antenna element with respect to a reference signal is detected as a digital signal. a phase difference detecting means for detecting a phase difference, a memory means for storing a detection output of the phase difference detecting means, a calculating means for calculating a correlation between the stored content of the memory means and an output of the phase difference detecting means, and a correlation calculating means for azimuth calculating means for calculating the direction of arrival of the received radio waves from the output of; and when the data obtained by any of the above means is abnormal, this data is rejected and replaced with this data, the data from one scan ago, An azimuth measuring device comprising: correction means for outputting data based on at least one of data of an antenna element adjacent to the antenna element and data predicted from past data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4084980A JPS6014310B2 (en) | 1980-03-28 | 1980-03-28 | Direction measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4084980A JPS6014310B2 (en) | 1980-03-28 | 1980-03-28 | Direction measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56137169A JPS56137169A (en) | 1981-10-26 |
JPS6014310B2 true JPS6014310B2 (en) | 1985-04-12 |
Family
ID=12592018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4084980A Expired JPS6014310B2 (en) | 1980-03-28 | 1980-03-28 | Direction measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6014310B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58180967A (en) * | 1982-04-16 | 1983-10-22 | Toshiba Corp | Bearing measuring apparatus |
JPS59206786A (en) * | 1983-05-11 | 1984-11-22 | Koden Electronics Co Ltd | Radio direction finder |
JPS60135876A (en) * | 1983-12-26 | 1985-07-19 | Koden Electronics Co Ltd | Display device of direction finder |
-
1980
- 1980-03-28 JP JP4084980A patent/JPS6014310B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56137169A (en) | 1981-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6169519B1 (en) | TCAS bearing measurement receiver apparatus with phase error compensation method | |
EP0125838B1 (en) | Direction finding | |
KR880701382A (en) | Precision Differential Positioning System | |
JPH0146034B2 (en) | ||
US6240366B1 (en) | GPS reception ratio detecting apparatus and portable type distance/speed meter capable of indicating GPS signal receiving condition | |
JP3808431B2 (en) | Direction finding device | |
JPS6014310B2 (en) | Direction measuring device | |
US4035802A (en) | Method and apparatus for wind measurement | |
JP2005134215A (en) | System for measuring difference of signal arrival time | |
EP0367487B1 (en) | RF signal direction finding apparatus | |
JPH02304384A (en) | Azimuth measuring system | |
JP2816586B2 (en) | How to determine the direction of arrival of radio waves | |
US6778922B2 (en) | Decoder for three phase signal | |
SU987829A2 (en) | Method and apparatus for checking phase-shift keying and relative phase-shift keying signals distortions | |
JP2574770B2 (en) | Pulse search altitude radar | |
JPH06201742A (en) | Correction method for frequency discrimination circuit of receiving signal | |
JPH0349075B2 (en) | ||
JP3444705B2 (en) | Heading measurement device and onboard receiver of Takan navigation system | |
JPS60135876A (en) | Display device of direction finder | |
JPH0799408A (en) | Cross polarized wave adjustment device for satellite communication earth station antenna | |
JPH0549122B2 (en) | ||
JPH0249672B2 (en) | ||
JPS63221274A (en) | Target azimuth detecting circuit | |
JPH10160813A (en) | Apparatus for monitoring bearing of tacan antenna | |
JPH10111350A (en) | Radio wave detector |