JPS60141044A - Method of frequency modulation of semiconductor laser - Google Patents
Method of frequency modulation of semiconductor laserInfo
- Publication number
- JPS60141044A JPS60141044A JP58247031A JP24703183A JPS60141044A JP S60141044 A JPS60141044 A JP S60141044A JP 58247031 A JP58247031 A JP 58247031A JP 24703183 A JP24703183 A JP 24703183A JP S60141044 A JPS60141044 A JP S60141044A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- semiconductor laser
- modulation
- waveform
- code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 230000006866 deterioration Effects 0.000 abstract description 24
- 230000010355 oscillation Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000006854 communication Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 235000002492 Rungia klossii Nutrition 0.000 description 1
- 244000117054 Rungia klossii Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/10—Frequency-modulated carrier systems, i.e. using frequency-shift keying
- H04L27/14—Demodulator circuits; Receiver circuits
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の属する技術分野)
本発明は半導体レーザの出力光を周波数変調する方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a method for frequency modulating output light of a semiconductor laser.
(従来技術の紹介)
近年、半導体レーザの特性が向上し、単一軸モードで発
振し、かつスペクトル純度の高い半導体レーザが得られ
るようになり、光の周波数や位相の情報を用いるコヒー
レント光伝送方式の実現が可能になってきた。特に周波
数情報を用いるFSKヘテロゲイン光通信方式の場合に
は、半導体レーザの注入電流を微小に変化させることに
より半導体レーザの出力光を直接周波数変調することが
可能であり、簡便に損失の小さいシステムを構成するこ
とができるという特長がある。この半導体レーザの直接
周波数変調は注入電流の変化によりレーザ媒質内のキャ
リア密度が変化し、レーザ媒質の屈折率が変わる効果と
、注入電流の変化に対応してレーザ媒質の温度が変化し
レーザ媒質の屈折率が変わる効果の2つの効果によって
引きおこされる。しかし、以上に述べた2つの効果はと
もに周波数特性を持っており変調周波数によって周波数
偏移の大きさが異なっている。そのためパルス変調時に
は、前記した周波数特性に対応して波形劣化がおこり、
受信感度を悪くするという欠点が6った。(斉藤、白木
、木材、 ”コヒーレント光ファイバ伝送変復鯛技術−
FSKヘテロダイン検波−”、適所実用化報告、第31
巻、第12号)(発明の目的)
本発明の目的は半導体レーザの直接周波数変調時におい
ても、その周波数特性の影響による波形劣化の少ない周
波数変調方法を提供することにある。(Introduction of conventional technology) In recent years, the characteristics of semiconductor lasers have improved, and it has become possible to obtain semiconductor lasers that oscillate in a single-axis mode and have high spectral purity. has become possible. In particular, in the case of the FSK heterogain optical communication method that uses frequency information, it is possible to directly frequency modulate the output light of the semiconductor laser by minutely changing the injection current of the semiconductor laser, making it possible to easily create a system with low loss. It has the advantage of being configurable. This direct frequency modulation of a semiconductor laser has two effects: the carrier density in the laser medium changes due to changes in the injection current, which changes the refractive index of the laser medium, and the temperature of the laser medium changes in response to changes in the injection current. This is caused by two effects: the effect of changing the refractive index of . However, both of the above-mentioned effects have frequency characteristics, and the magnitude of frequency shift differs depending on the modulation frequency. Therefore, during pulse modulation, waveform deterioration occurs in response to the frequency characteristics described above.
There were six drawbacks: poor reception sensitivity. (Saito, Shiraki, Moku, “Coherent optical fiber transmission modification technology -
FSK Heterodyne Detection”, Practical Application Report, No. 31
Volume, No. 12) (Object of the Invention) An object of the present invention is to provide a frequency modulation method that causes less waveform deterioration due to the influence of the frequency characteristics even during direct frequency modulation of a semiconductor laser.
(発明の構成)
本発明は、半導体レーザの注入電流をパルス変調信号で
微小に変化させて、半導体レーザの出力光を周波数変調
する周波数変調方法において、パルス変調信号にmBn
f3符号を用い特にmBルB符号が1≦m≦9.2≦ル
≦10、m<ル
なる条件を満たすようにmおよびルの値を設定するこ゛
とを特徴としている。(Structure of the Invention) The present invention provides a frequency modulation method for frequency modulating the output light of a semiconductor laser by minutely changing the injection current of the semiconductor laser using a pulse modulation signal.
The f3 code is used, and the values of m and le are set so that the mB code satisfies the following conditions: 1≦m≦9.2≦ru≦10 and m<ru.
(発明の原理) 次に図面を用いて本発明の原理を詳しく説明する。(Principle of the invention) Next, the principle of the present invention will be explained in detail using the drawings.
第1図は埋込みへテロストライプ(B H)構造の半導
体レーザの単位電流当υの周波数偏移の変調周波数依存
性を示した図である。また第2図及び第3図はそれぞれ
半導体レーザに低速及び高速で直接周波数変調を行なっ
た場合の波形図である。FIG. 1 is a diagram showing the modulation frequency dependence of the frequency shift of unit current υ of a semiconductor laser having a buried heterostripe (BH) structure. Further, FIGS. 2 and 3 are waveform diagrams when direct frequency modulation is performed on a semiconductor laser at low speed and high speed, respectively.
半導体レーザの注入電流を低い周波数で微小に変えた場
合には注入電流の変化にともなう熱的変動によりレーザ
媒質の屈折率が変化してレーザ出力光に周波数変調がか
かる。この熱の効果は第1図に破線で示されるように変
調周波数が低いほど大きい。従って10 Mb/ S以
下の低速のパルス信号で周波数変調を行なった場合、そ
の出力は低域通過回路を通ったときと同様の作用を受け
ていることになるので出力波形は積分波形となる。When the injection current of a semiconductor laser is slightly changed at a low frequency, the refractive index of the laser medium changes due to thermal fluctuations accompanying the change in the injection current, and the laser output light is frequency modulated. This thermal effect is greater as the modulation frequency is lower, as shown by the broken line in FIG. Therefore, when frequency modulation is performed using a low-speed pulse signal of 10 Mb/s or less, the output is subjected to the same effect as when it passes through a low-pass circuit, so the output waveform becomes an integral waveform.
第2図(a)に変調信号、第2図(b)に低速変調時に
主に熱の効果により周波数変調がかかった場合の出力波
形を示す。FIG. 2(a) shows the modulation signal, and FIG. 2(b) shows the output waveform when frequency modulation is applied mainly due to thermal effects during low-speed modulation.
一方半導体レーザの注入電流を100 MHz〜I G
H,z程度の高い周波数で変化させた場合には、レーザ
媒質内のキャリア密度の変動によりレーザ媒質内の屈折
率が変化してレーザ出力光に周波数変調がかかる。この
キャリアの効果を第1図中に実線で示す。100 MH
zからIGHz程度までの変調周波数範囲では変調周波
数が高いほど周波数偏移が大きい。従って数百Mb/s
の高速パルス信号で周波数変調を行なった場合には、そ
の出力は高域通過回路を通ったときと同様の作用を受け
ていることになるので、出力波形は微分波形を示す。第
3図(a)に変調信号を、第3図((へ)K高速変調時
に主にキャリアの効果により周波数変調がかかった場合
の出力波形を示す。On the other hand, the injection current of the semiconductor laser is 100 MHz ~ IG
When the frequency is changed at a high frequency such as H, z, the refractive index within the laser medium changes due to variations in the carrier density within the laser medium, and the laser output light is subjected to frequency modulation. The effect of this carrier is shown by the solid line in FIG. 100MH
In the modulation frequency range from z to about IGHz, the higher the modulation frequency, the larger the frequency shift. Therefore, several hundred Mb/s
When frequency modulation is performed using a high-speed pulse signal, the output is subjected to the same effect as when it passes through a high-pass circuit, so the output waveform shows a differential waveform. FIG. 3(a) shows a modulated signal, and FIG. 3(f) shows an output waveform when frequency modulation is applied mainly due to carrier effects during K high-speed modulation.
以上に示しだように周波数偏移の大きさに変調周波数依
存性があるため周波数パルス変調時の出力波形に波形劣
化が生じていた。第2図、及び第3図からも明らかなよ
うに信号の”1′連続あるいは”0”連続のときにもっ
とも波形劣化が大きいので″1″連続あるいは″θ″連
続のない、すなわち平均出力変動の小さい符号を用いる
ことにより、前記の波形劣化を小さくすることが可能で
ある。mBtLB符号はmビットの信号をmビットより
大きなルビットの信号に変換することによって得られる
符号でおる。mBrLB符号を用いれば符号変換後の1
”連続あるいは”0“連続をルピット以下におさえるこ
とが可能になり、平均出力変動の小さい信号系列を構成
することが可能である。As shown above, since the magnitude of the frequency shift is dependent on the modulation frequency, waveform deterioration occurs in the output waveform during frequency pulse modulation. As is clear from Figures 2 and 3, the waveform deterioration is greatest when the signal is continuous with ``1'' or ``0'', so if there is no continuous ``1'' or ``θ'', that is, the average output fluctuation. It is possible to reduce the above-mentioned waveform deterioration by using a code with a small value.The mBtLB code is a code obtained by converting an m-bit signal into a rub-bit signal larger than m bits.The mBrLB code is If used, 1 after sign conversion
It is possible to suppress "continuity" or "0" continuity to less than Lupitt, and it is possible to construct a signal sequence with small average output fluctuation.
(Y、Takasaki et al、、”0ptic
al Pu1se Formats forFiber
0ptic Digi tal Communica
tions ” IEFiE Trans。(Y, Takasaki et al., “0ptic
al Pulse Formats for Fiber
0ptic Digi tal Communica
tions” IEFiE Trans.
coM、 Mo1. C0M−24,No 4. Ap
ril、 1976 )この場合、mビットをルビット
に変換することにより必要とする帯域が広くなりそれだ
け受信感度が劣化する。従ってm、BnB符号の〃募及
びルの最適値は、波形劣化の大きさと帯域が広がること
による劣化からめることができる。第4図はBH構造を
もつある半導体レーザをmB(ry++1)B符号によ
り変調した場合の波形劣化、帯域が広がることによる劣
化、両者を合わせた劣化について表わした図である。coM, Mo1. C0M-24, No 4. Ap
Ril, 1976) In this case, by converting m bits to rubits, the required band becomes wider and the reception sensitivity deteriorates accordingly. Therefore, the optimal values of m, BnB code recruitment, and l can be determined from the magnitude of waveform deterioration and the deterioration caused by widening of the band. FIG. 4 is a diagram showing waveform deterioration, deterioration due to widening of the band, and deterioration in combination of both when a certain semiconductor laser having a BH structure is modulated with mB(ry++1)B code.
この例の場合、mが3のときに劣化量が最小になること
がわかる。一般KFM変調時の波形劣化はかなり大きい
ので1≦m≦9の範囲内で最適なmを見出すことができ
る。また、それ以外の場合、すなわち最適のmが10以
上になる場合は、FM変調時の周波数特性が比較的小さ
く波形劣化があまシ生しない。従ってmBnB符号に変
換することによる感度改善はほとんどない。In this example, it can be seen that the amount of deterioration is minimum when m is 3. Since the waveform deterioration during general KFM modulation is quite large, the optimum m can be found within the range of 1≦m≦9. In other cases, that is, when the optimum m is 10 or more, the frequency characteristics during FM modulation are relatively small and waveform deterioration does not occur. Therefore, there is almost no improvement in sensitivity by converting to mBnB code.
まだnの値は帯域のことを考えm−1−1、m+2程度
にするのが一般的である。Still, the value of n is generally set to about m-1-1 or m+2 in consideration of the band.
(実施例1) 次に実施例により本発明の詳細な説明する。(Example 1) Next, the present invention will be explained in detail with reference to Examples.
第5図は本発明の第1の実施例を説明するだめのブロッ
ク図、第6図は本発明の第1の実施例の各部における波
形図である。FIG. 5 is a block diagram for explaining the first embodiment of the present invention, and FIG. 6 is a waveform diagram of each part of the first embodiment of the present invention.
この実施例において半導体レーザ3はバイアス回路1か
らのバイアス電流2によって発振閾値以上の一定レベル
にバイアスされている。一方パルス変調信号4は符号変
換回路5でmBnB符号からなる微小変調信号電流6と
なって半導体レーザ3に加えられ波形劣化の小さい周波
数変調比カフが得られる。この実施例において半導体レ
ーザ3としては第1図に示されるような周波数変調特性
を持つBH型の半導体レーザを用いた。In this embodiment, the semiconductor laser 3 is biased by a bias current 2 from a bias circuit 1 to a constant level above the oscillation threshold. On the other hand, the pulse modulation signal 4 is turned into a minute modulation signal current 6 consisting of mBnB code in the code conversion circuit 5 and is applied to the semiconductor laser 3, thereby obtaining a frequency modulation ratio cuff with little waveform deterioration. In this embodiment, a BH type semiconductor laser having frequency modulation characteristics as shown in FIG. 1 was used as the semiconductor laser 3.
パルス変調信号4は400Mb/SのN几Z信号からな
っているが符号変換回路5によって1″の符号を10”
の符号に0”の符号を′01″の符号に変換することに
よυIB2B符号の一種でらるバイフェーズ符号に変換
される。The pulse modulation signal 4 consists of a 400 Mb/S N-Z signal, and the code conversion circuit 5 converts the code of 1" to 10".
By converting the 0" code into the 01" code, it is converted into a biphase code, which is a type of υIB2B code.
このバイフェーズ符号からなる微小変調信号電流6によ
り、半導体レーザ3の周波数変調を行なった。このとき
のパルス信号4の波形を第6図(atに、バイフェーズ
符号からなる微小変調信号電流の波形を第6図(b)に
示す。これによって半導体レーザを直接変調して得られ
る周波数変調出力波形は変調周波数が高いので微分波形
にはなるが第6図(C)に示されるように比較的波形劣
化は小さくおさえられている。この実施例で用いた半導
体レーザの場合、N几Z信号で直接周波数変調を行なり
だときには波形劣化のため信号復調時に受信感度の劣化
が7 dB以上あシ、しかも符号誤シ率10″以下を実
現することはできなかったがバイフェーズ符号に変換す
ることによシ帯域が2倍に広がったことによる劣化3
dBを含め、理論値から5 dBの受信感度劣化で信号
を10−9以下の符号誤り率で復調できた。The frequency of the semiconductor laser 3 was modulated by the minute modulation signal current 6 consisting of this biphase code. The waveform of the pulse signal 4 at this time is shown in Fig. 6 (at), and the waveform of the minute modulation signal current consisting of a biphase code is shown in Fig. 6 (b). This allows frequency modulation obtained by directly modulating the semiconductor laser. Since the output waveform has a high modulation frequency, it becomes a differential waveform, but as shown in Figure 6(C), the waveform deterioration is kept relatively small.In the case of the semiconductor laser used in this example, When frequency modulation is performed directly on the signal, the reception sensitivity deteriorates by more than 7 dB during signal demodulation due to waveform deterioration, and it was not possible to achieve a code error rate of less than 10'', but converting to biphase code. Deterioration due to the band being doubled by doing so 3
The signal could be demodulated with a code error rate of 10-9 or less with a reception sensitivity degradation of 5 dB from the theoretical value, including dB.
(実施例2)
第7図は本発明の第2の実施例を説明するだめのブロッ
ク図、第8図は本発明の第2の実施例の各部における波
形図である。(Embodiment 2) FIG. 7 is a block diagram for explaining a second embodiment of the present invention, and FIG. 8 is a waveform diagram of each part of the second embodiment of the present invention.
この実施例においては符号変換回路5でm 73 n
B符号に変換された微小変調信号電流6がさらに補償回
路8で波形整形されてから半導体レーザ3に加えられる
ようになっている。ここで補償回路8は、半導体レーザ
の周波数変調時の周波数特性を補償するような周波数特
性をもつ電気回路で構成されている。その他の構成は第
1の実施例と同様である。この実施例においても400
Mb/Sのパルス伝送を行なっだつ補償回路を挿入しな
い場合には400Mb/8という高速の変調のため第1
の実施例に示されるように出力波形は微分波形を示す。In this embodiment, the code conversion circuit 5 m 73 n
The minute modulation signal current 6 converted into the B code is further waveform-shaped by a compensation circuit 8 and then applied to the semiconductor laser 3. Here, the compensation circuit 8 is constituted by an electric circuit having frequency characteristics that compensate for the frequency characteristics during frequency modulation of the semiconductor laser. The other configurations are similar to the first embodiment. In this example as well, 400
If a compensation circuit for Mb/S pulse transmission is not inserted, the first
As shown in the embodiment, the output waveform shows a differential waveform.
そこで補償回路8としては積分回路を用いた。その補償
回路8の出力波形を第8図(clに示す。ここで第8図
(alはパルス信号4の波形第8図(blは符号変換回
路5の出力波形である。第8図(C)に示されるような
積分特性を持つ波形で半導体レーザを周波数変調するこ
とにより第8図fd+に示されるように、波形劣化のほ
とんどない変調出力を得ることができた。このようにf
f1BWB符号と電気的な補償回路を組合せることによ
シ、はとんど波形劣化のない、半導体レーザの直接周波
数変調が実現できる。Therefore, an integrating circuit was used as the compensation circuit 8. The output waveform of the compensation circuit 8 is shown in FIG. 8 (cl). Here, FIG. 8 (al is the waveform of the pulse signal 4. ) By frequency modulating a semiconductor laser with a waveform having an integral characteristic as shown in Fig. 8 fd+, we were able to obtain a modulated output with almost no waveform deterioration.
By combining the f1BWB code and an electrical compensation circuit, direct frequency modulation of a semiconductor laser with almost no waveform deterioration can be realized.
本発明においては以上の実施例の他にもさまざまな変形
が可能である。たとえば半導体レーザ3としてはBH型
のほか各種の半導体レーザの使用が可能である。In addition to the above-described embodiments, various modifications can be made to the present invention. For example, as the semiconductor laser 3, it is possible to use various types of semiconductor lasers in addition to the BH type.
補償回路8としては信号伝速速度に対応して様々な特性
のものを用いることが可能であり、だとえば低速変調時
には出力波形が積分波形を示すので徽分回路を用いるこ
とができる。As the compensation circuit 8, it is possible to use ones with various characteristics depending on the signal transmission speed. For example, during low-speed modulation, since the output waveform shows an integral waveform, a distribution circuit can be used.
(発明の効果)
以上のように本発明によれば半導体レーザの直接周波数
変調時においても波形劣化の少ない周波数変調光通信を
実現することができる。(Effects of the Invention) As described above, according to the present invention, frequency modulation optical communication with less waveform deterioration can be realized even during direct frequency modulation of a semiconductor laser.
第1図はB H構造の半導体レーザの単位電流当りの周
波数偏移の変調周波数依存性を示した図、第2図は半導
体レーザの低速周波数変調時の波形図、第3図は半導体
レーザの高速周波数変調時の波形図、第4図はBHM造
の半導体レーザをmB(m+1)13符号で変調したと
きの劣化について表わした図である。
まだ第5図は本発明の第1の実施例を説明するためのブ
ロック図、第6図は第1の実施例の各部における波形図
、第7図は本発明の第2の実施例を説明するだめのブロ
ック図、第8図は第2の実施例の各部における波形図で
ある。図において1・・・バイアス回路 3・・・半導
体レーザ4−・・パルス変調信号 5・・・符号変換回
路7・・・周波数変調出力 8・・・補供回路 である
。
代理人弁理士 内厚 晋′ ゛ン
゛ニー
′″1−1 図
IK IOK 100K IM IOM 100M I
G IQ変言尚同JL数(Hz )
十 2 図
■
1 才3図
fB−!i−開
一シ↑
′T31間
才 4 図
+ 23456789
才 5 図
オ 6 図
″r7図Figure 1 is a diagram showing the modulation frequency dependence of the frequency deviation per unit current of a semiconductor laser with a BH structure, Figure 2 is a waveform diagram during low-speed frequency modulation of a semiconductor laser, and Figure 3 is a diagram of the waveform of a semiconductor laser during low-speed frequency modulation. FIG. 4, a waveform diagram during high-speed frequency modulation, is a diagram showing deterioration when a BHM semiconductor laser is modulated with mB(m+1)13 code. Fig. 5 is a block diagram for explaining the first embodiment of the present invention, Fig. 6 is a waveform diagram of each part of the first embodiment, and Fig. 7 is a diagram for explaining the second embodiment of the present invention. The block diagram of FIG. 8 is a waveform diagram of each part of the second embodiment. In the figure, 1... bias circuit 3... semiconductor laser 4... pulse modulation signal 5... code conversion circuit 7... frequency modulation output 8... auxiliary circuit. Representative Patent Attorney Susumu Uchi' 1-1 Figure IK IOK 100K IM IOM 100M I
G IQ variation and same JL number (Hz) 10 2 Figure ■ 1 Year old 3 Figure fB-! i-Kaichi ↑ 'T31 years old 4 figure + 23456789 years old 5 figure O 6 figure "r7 figure
Claims (1)
小に変化させて前記半導体レーザの出力光を周波数変調
する方法において、前記ノ(ルス変調信号にff1Br
LB符号を用いることを特徴とする特に前記mBルB符
号が 1≦m≦9.2≦ル≦10、m<ル なる東件を満たすようにm、およびルの値を設定するこ
とを特徴とする半導体レーザの周波数変調方法。(1) In a method of frequency modulating the output light of the semiconductor laser by minutely changing the injection current of the semiconductor laser with a pulse modulation signal, ff1Br is added to the pulse modulation signal.
It is characterized by using an LB code, and in particular, the values of m and ru are set so that the mB code satisfies the following conditions: 1≦m≦9.2≦ru≦10, and m<ru. A frequency modulation method for semiconductor lasers.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58247031A JPS60141044A (en) | 1983-12-28 | 1983-12-28 | Method of frequency modulation of semiconductor laser |
US06/671,364 US4759080A (en) | 1983-11-16 | 1984-11-14 | Coherent optical communication system with FSK heterodyne or homodyne detection and little influence by distortion of a modulated optical signal |
DE8484113840T DE3479374D1 (en) | 1983-11-16 | 1984-11-15 | Coherent optical communication system with fsk heterodyne or homodyne detection and little influence by distortion of a modulated optical signal |
CA000467892A CA1232325A (en) | 1983-11-16 | 1984-11-15 | Coherent optical communication system with fsk heterodyne or homodyne detection and little influence by distortion of a modulated optical signal |
EP84113840A EP0145972B1 (en) | 1983-11-16 | 1984-11-15 | Coherent optical communication system with fsk heterodyne or homodyne detection and little influence by distortion of a modulated optical signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58247031A JPS60141044A (en) | 1983-12-28 | 1983-12-28 | Method of frequency modulation of semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60141044A true JPS60141044A (en) | 1985-07-26 |
Family
ID=17157374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58247031A Pending JPS60141044A (en) | 1983-11-16 | 1983-12-28 | Method of frequency modulation of semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60141044A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6386590A (en) * | 1986-09-30 | 1988-04-16 | Ricoh Co Ltd | Output control equipment of semiconductor laser |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5410708A (en) * | 1977-06-27 | 1979-01-26 | Nippon Telegr & Teleph Corp <Ntt> | Code transforming system |
JPS5574279A (en) * | 1978-11-30 | 1980-06-04 | Sony Corp | Transmission unit of digital video signal |
JPS5873264A (en) * | 1981-10-28 | 1983-05-02 | Fuji Electric Co Ltd | Code pulse waveform adjustment method |
-
1983
- 1983-12-28 JP JP58247031A patent/JPS60141044A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5410708A (en) * | 1977-06-27 | 1979-01-26 | Nippon Telegr & Teleph Corp <Ntt> | Code transforming system |
JPS5574279A (en) * | 1978-11-30 | 1980-06-04 | Sony Corp | Transmission unit of digital video signal |
JPS5873264A (en) * | 1981-10-28 | 1983-05-02 | Fuji Electric Co Ltd | Code pulse waveform adjustment method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6386590A (en) * | 1986-09-30 | 1988-04-16 | Ricoh Co Ltd | Output control equipment of semiconductor laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100481824C (en) | Improvements in optical communications | |
US6473214B1 (en) | Methods of and apparatus for optical signal transmission | |
Yonenaga et al. | A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems | |
JP4194751B2 (en) | Optical transmission system and method | |
Wilson et al. | Pulse time modulation techniques for optical communications: a review | |
JPH0321126A (en) | Frequency direct modulation PSK method | |
US4759080A (en) | Coherent optical communication system with FSK heterodyne or homodyne detection and little influence by distortion of a modulated optical signal | |
Sato et al. | Fiber optic video transmission employing square wave frequency modulation | |
JP4554519B2 (en) | Optical transmitter | |
CN109842448B (en) | Orthogonal Modulation Labeling Method Based on Inverted 4PPM Line Coding | |
JPS60141044A (en) | Method of frequency modulation of semiconductor laser | |
CN116566486A (en) | A high-order mode heterodyne detection free-space laser communication system and communication method | |
JP3510995B2 (en) | Optical transmission method and optical transmission device | |
Alexander et al. | 4-ary FSK coherent optical communication system | |
JPS59117847A (en) | Transmission system for transmitting binary data code | |
Dong et al. | Improving dispersion tolerance of Manchester coding by incorporating duobinary coding | |
Idler et al. | Advantages of frequency shift keying in 10 Gb/s systems | |
Baack et al. | Digital and analog optical broad-band transmission | |
US8170422B2 (en) | Frequency shift keying demodulator | |
JP2000151505A (en) | Optical transceiver | |
Shum et al. | Analysis of a DPSK soliton transmission system | |
Al-Qazwini et al. | Optical RZ transmitter using directly modulated laser driven by NRZ signals | |
CN207184528U (en) | A kind of 80Gbps, PM-16QAM signal transmission system | |
Gross et al. | Performance evaluation of digital and analogue video distribution systems using coherent subcarrier multiplexing | |
Majumder et al. | Effect of nonuniform laser FM response on the performance of multichannel heterodyne FSK systems using optical amplifiers |