[go: up one dir, main page]

JPS60140141A - Optical gas sensor - Google Patents

Optical gas sensor

Info

Publication number
JPS60140141A
JPS60140141A JP24932683A JP24932683A JPS60140141A JP S60140141 A JPS60140141 A JP S60140141A JP 24932683 A JP24932683 A JP 24932683A JP 24932683 A JP24932683 A JP 24932683A JP S60140141 A JPS60140141 A JP S60140141A
Authority
JP
Japan
Prior art keywords
mirrors
optical path
gas sensor
mirror
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24932683A
Other languages
Japanese (ja)
Inventor
Shoichi Kurita
栗田 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24932683A priority Critical patent/JPS60140141A/en
Publication of JPS60140141A publication Critical patent/JPS60140141A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To facilitate not only the change-over but also the correction of sensitivity by perforing spot measurement with high sensitivity, by a small gas sensor wherein a light path reaching a light detector from wavelength variable laser is constituted of a multiple reflective light path formed of a pair of mirrors. CONSTITUTION:A variable wavelength laser 1 and a light detector 3 are mounted to one mirror 4 of mirrors set against each other at an interval (d) in a relatively fixed state. The other mirror 5 has a fixed furclum at one part and an adjusting fulcrum at the other part and is constituted so as to be capable of adjusting an angle theta by a means such as a screw. The matching mirrors 4, 5 are provided so as to be spaced apart to each othr at an interval (l) and, by setting theta, the number of turn-back times at the mirrors set against each other.

Description

【発明の詳細な説明】 本発明は光ガスセンサに係り特にlト型でかつ、小範囲
のガス検出を高感度で行うための改良された光ガスセン
サに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical gas sensor, and more particularly to an improved optical gas sensor that is of the L type and is capable of detecting gas in a small range with high sensitivity.

〈従来技術と背景〉 特定のガス成分が光波長帯の特定の波長成分を選択的に
吸収したり散乱させlこりする現象は物理現象として知
られており、いわゆる光ガスセンサとして例えば空気中
の!!量ガス成分や水分の検出あるいは分析に使用され
ている。これは成分ガスにより夫々固有の吸収あるいは
散乱波長が定まっていることは先にのべたが、その波長
帯における吸収あるいは散乱量が少くとも成分としてあ
まり多くない間は成分量に比例することが知られている
からである。
<Prior art and background> The phenomenon in which a specific gas component selectively absorbs or scatters a specific wavelength component in an optical wavelength band is known as a physical phenomenon, and is used as a so-called optical gas sensor, for example, in the air! ! It is used to detect or analyze volume gas components and moisture. As mentioned earlier, each component gas has a unique absorption or scattering wavelength, but it is also known that the amount of absorption or scattering in that wavelength band is proportional to the amount of the component, at least as long as the amount of the component is not very large. This is because it is

なを、こうした特性吸収あるいは^夕乱波長幅はきわめ
てせまく、こうした成長幅の光のみを検出することは光
検出器では困難でありレーザの方の発光波長幅がきわめ
てせまくエネルギ密度の高い(強くシャープなエネルギ
スペクトル)光源があ一イ>^IJ−tL郁詰tイ西ム
ム夷−イξ4Llぬブムヱー第1図にこうした光ガスセ
ンサの従来構成を示すが、1が光源である可変波長レー
ザ、2が光路、3け光検出器でLが光路長である。
What's more, this characteristic absorption or evening wavelength width is extremely narrow, and it is difficult for a photodetector to detect only light with this growth width. Figure 1 shows the conventional configuration of such an optical gas sensor, where 1 is a tunable wavelength laser as a light source; 2 is the optical path, 3 photodetectors and L is the optical path length.

なを可変波長レーザとしては半導体レーザーの中に励起
縦波によりまた温度により波長域が可変のものが知られ
ており、すでに実用されている。
Among the tunable wavelength lasers, semiconductor lasers whose wavelength range can be varied by excitation longitudinal waves or by temperature are known and are already in practical use.

こうした構成で光路長しの部分に介在するガスを可変波
長レーザ1の光波長を変えながら特定波長に対応する発
光量に対する受光量を測〆し、これと特定のガスが全く
ない場合の受光h+、’I’5定のガスが知られた分だ
け含まれる場合の受光h1、NI?のあらかじめ知られ
た校正用の受光値と比較することにより特定ガスの濃度
を知ることが出来るものである。
With this configuration, while changing the optical wavelength of the tunable wavelength laser 1, the amount of light received relative to the amount of light emitted corresponding to a specific wavelength is measured for the gas present in the long optical path, and the amount of light received relative to the amount of light emitted when there is no specific gas is measured. , 'I' 5When a known amount of constant gas is included, the light reception h1, NI? The concentration of a specific gas can be determined by comparing it with a previously known received light value for calibration.

しかしこうした方法で低濃度のガスを検出しようとする
と感度を上げるには両足用の光路長りを大きくする必要
がちるが、これを大きくしてゆくと光路合せがむつかし
くなる外、校正もむつかしくなり、かつy111定[7
ている領域の中に両度の分布があっても平均1bシか検
出出来ないと太う欠点があり、特に測定領域中にガスの
他にゴミ等の固体粒子が介在すると特定波長帯ではなく
全体の受光量に影響を与えるため校正に無視出来ない影
響を及ぼして分析精度を低下させる。
However, when trying to detect low-concentration gases using this method, it is necessary to increase the optical path length for both legs in order to increase sensitivity, but increasing this length not only makes it difficult to align the optical paths, but also makes calibration difficult. , and y111 constant [7
Even if there is a distribution of both wavelengths in the measurement area, there is a disadvantage that it will be difficult to detect an average of 1b, and especially if there are solid particles such as dust in addition to gas in the measurement area, it will not be possible to detect a specific wavelength band. Since it affects the overall amount of light received, it has a non-negligible effect on calibration and reduces analysis accuracy.

〈目的と特徴〉 本発明は上記にかんがみ測定光路長りを合わせ鏡の多重
反射により実現することによって測定領域をせばめるこ
とにより、スポット測定を可能とし、かつ校正も光路合
せも容易にし、さらには光路長しの選択的切換えも可能
な光ガスセンサを提供することを目的とするものであり
、本発明の特徴は上記目的を実現するため波長可変レー
ザと、光検出器と、一対の鏡を有し波長可変レーザより
光検出器に至る光路を上記一対の鏡により形成した多重
反射光路で構成すること、また、上記一対の鏡の一方に
波長可変レーザと、光検出器とを装尤するとともに他方
の鏡の相対対向角を調整可能に構成し多重反射光路長を
切換え可能に構成することである。
<Purpose and Features> In view of the above, the present invention enables spot measurement by narrowing the measurement area by adjusting the measurement optical path length and realizing multiple reflections of mirrors, and also facilitates calibration and optical path alignment. The purpose of the present invention is to provide an optical gas sensor capable of selectively switching the optical path length.The feature of the present invention is to provide a wavelength tunable laser, a photodetector, and a pair of mirrors in order to realize the above purpose. an optical path from the wavelength tunable laser to the photodetector is constituted by a multiple reflection optical path formed by the pair of mirrors, and one of the pair of mirrors is equipped with the wavelength tunable laser and the photodetector. At the same time, the relative facing angle of the other mirror can be adjusted, and the multiple reflection optical path length can be changed.

〈実施例〉 @2図、第3図、第4図は本発明の一実施例のれ(ε四
囲でsb図中1の可変波長レーザ、3の光検出器、2の
光路は第1図と共通であるまだ、4は一方の合せ鏡、5
は他方の合せ鏡であり、6と7は合せ鏡に設けられたレ
ーザ光の入射口と光検出器3への域り出し口であり、合
せ鏡け4の間かくでlV7少角θだけ平行より傾けて配
置されており、測定用の光路長しは、上記θを設定する
ことにより合せ鏡5での折り返し回数nを設定するとL
中2Inの長さに設定される。
〈Example〉 Figures 2, 3, and 4 are diagrams of one embodiment of the present invention. 4 is one mirror, 5 is common to
is the other mating mirror, and 6 and 7 are the laser beam entrance and exit to the photodetector 3 provided on the mating mirror, and the space between the mating mirror 4 is tilted from parallel by lV7 minor angle θ. The length of the optical path for measurement is L if the number of turns n at the alignment mirror 5 is set by setting θ above.
The length is set to 2 In.

なを可変波長レーザ1、および光検出器3はdの間かく
で合せ鋭の一方4に相対固定状すで装着゛されているし
、他方の合せ鏡5け一方に固定支点、他方に調整支点を
有しネジ等の手段によりθを調整(選択設定)可能に構
成されている。
The tunable wavelength laser 1 and the photodetector 3 are mounted in a relatively fixed manner on one side 4 of the mirror 5 at a distance d, and the other side mirror 5 has a fixed fulcrum on one side and an adjustment fulcrum on the other side. It is configured such that θ can be adjusted (selected and set) using means such as screws.

こうした構成姉おいて、θが小さくnががなり大きな条
件で考えると、本実施例においては測定領域としてはi
−d光路長としてはL=2nl、が実現出来るため、必
要な測定光路長りを充分大きくt皆引!1′8φ5医各
・h払イコソ、り〃糺1y田11ζ;了Q八1にム餓定
することが出来るし、測定光路長を変えて感度をきりか
えることも出来る。
In this configuration, considering the condition that θ is small and n is large, in this example, the measurement area is i
Since L=2nl can be achieved as the -d optical path length, the necessary measurement optical path length can be made sufficiently large! It is possible to set the value to 1'8φ5, and the sensitivity can be changed by changing the measurement optical path length.

なをlとdを設定した時の反射回数としての前記nとこ
れに対応するθnの関係はθが微少の範囲ではtanO
中θであるからd中n2・21θnの関係が成立するは
ずであり、θQt/Cよりnを設定することは原理的に
もかんたんに出来る。
The relationship between n as the number of reflections and the corresponding θn when l and d are set is tanO in the range where θ is small.
Since θ is in the middle, the relationship n2·21θn in d should hold, and it is easy in principle to set n from θQt/C.

なを第3図の8は容器で9は内容物を示し、こうした構
成の光ガスセンサにおりてはガラス等の透明な容器8の
中にガス七は限らず液体等の検体としての内容物9をつ
めたものを測定することも、こうした容器8に25らか
しめ成分と成分濃度を調整して作成した校正法学として
の内容物9をつめたものを介在させて測定することによ
り校正を行うこ之も容易に行い得る。
In FIG. 3, 8 is a container and 9 is a content. In an optical gas sensor with such a configuration, a transparent container 8 made of glass or the like contains not only gas 7 but also the content 9 as a sample such as a liquid. It is also possible to perform calibration by filling the container 8 with the content 9 as a calibration method created by adjusting the caulking component and the component concentration. This can also be done easily.

なを第4図は合せ鏡の別の411成を示し固定側が4′
とe調整側が5′と5″として4枚合せ鏡の構成とした
ものでありさらにコンパクトな光路が設定出来るもので
ある。
Figure 4 shows another 411 configuration of the combined mirror, with the fixed side being 4'.
5' and 5'' are used on the adjustment side and e, so that a more compact optical path can be set.

外を自151シ17)1吊「釦ンσ)づ嵜l汁Sにり千
br I で七・奄八イ1ノ−ザの入射角をθ′傾けた
場合はd中2nlθ′が成立する外は第2図と同43t
にL=2n6が成立する。
If you tilt the angle of incidence of the 151 outside 17) 1 ``button σ) zu 1000 br I and the angle of incidence of the 1 nose at θ', 2nl θ' in d holds true. The outside is the same 43t as in Figure 2.
L=2n6 holds true.

〈効果〉 以上説明した如く、本発明によれば小型で高感度にスポ
ット測定が出来、感度の切換も校正も簡単な光ガスセン
ザが掃供出来る。
<Effects> As explained above, according to the present invention, it is possible to provide an optical gas sensor that is compact and capable of spot measurement with high sensitivity, and whose sensitivity is easily switched and calibrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光カスセンザの説明図、第2図。 第3図、第4図、第5図は本発明の一実施例の説明図を
示す。 図中1は一6J変波長レーザ、2は光路、3は光検出器
、4と5は一対の合せ税、6と7は入射口と」(74出
(口、8け′ヒト器、9は内容物を示す。 なをL(寸光路長、lは合せf’Qの間隔、θは傾き角
、d&士大入射口6取出しロアの間の間かくを示十。 茅 1 図 ? 茅と図 を5図 羊4 図 茅、5 図
FIG. 1 is an explanatory diagram of a conventional optical mass sensor, and FIG. FIG. 3, FIG. 4, and FIG. 5 show explanatory diagrams of one embodiment of the present invention. In the figure, 1 is a 16J variable wavelength laser, 2 is an optical path, 3 is a photodetector, 4 and 5 are a pair of combinations, 6 and 7 are an entrance port. indicates the contents. Na is L (optical path length, l is the total distance of f'Q, θ is the tilt angle, and indicates the space between d and Shi University entrance 6 extraction lower. Kaya 1 Figure? Kaya and figure 5 figure sheep 4 figure kaya, 5 figure

Claims (1)

【特許請求の範囲】 ■)波長可変レーザと、光検出器と、一対の鏡を有し波
長可変レーザ゛より光検出器に至る光路を上記一対の鏡
により形成した多重反射光路で構成することを特徴とす
る光ガスセンサ。 2)上記一対の鋭の一方に波長可変レーザと、光検出器
とを装着するとともに他方の鏡の相対対同角を調整可能
にtrli成し多重反射光路長を切換え可能に4’A成
し/こことを特徴とする特許言肖求の範囲第1項記載の
光ガスセンサ。 3)上記一対の、睨を対面平行して設置し、波長可変レ
ーザの大引角を蟻に対して、所要の角度傾けて構成し、
多重反射光路長を切換え可能と構成しlこことをllk
黴とする特許請求の範囲第1項記載の)“Cガスセンサ
[Scope of Claims] ■) A wavelength tunable laser, a photodetector, and a pair of mirrors, and the optical path from the wavelength tunable laser to the photodetector is configured by a multiple reflection optical path formed by the pair of mirrors. Optical gas sensor featuring: 2) A wavelength tunable laser and a photodetector are attached to one of the pair of sharp mirrors, and a 4'A mirror is formed so that the relative angle of the other mirror can be adjusted and the multiple reflection optical path length can be changed. An optical gas sensor according to item 1 of the patent statement, characterized in that: 3) The above-mentioned pair of eyes are installed facing each other in parallel, and the large pull angle of the wavelength tunable laser is tilted at a required angle with respect to the ant,
The multiple reflection optical path length is configured to be switchable.
``C gas sensor'' according to claim 1, which refers to mold.
JP24932683A 1983-12-27 1983-12-27 Optical gas sensor Pending JPS60140141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24932683A JPS60140141A (en) 1983-12-27 1983-12-27 Optical gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24932683A JPS60140141A (en) 1983-12-27 1983-12-27 Optical gas sensor

Publications (1)

Publication Number Publication Date
JPS60140141A true JPS60140141A (en) 1985-07-25

Family

ID=17191339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24932683A Pending JPS60140141A (en) 1983-12-27 1983-12-27 Optical gas sensor

Country Status (1)

Country Link
JP (1) JPS60140141A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160358U (en) * 1988-04-27 1989-11-07
JPH01309821A (en) * 1988-02-03 1989-12-14 Kanzaki Kokyukoki Mfg Co Ltd Axle driving device
JPH02156574A (en) * 1988-12-08 1990-06-15 Matsushita Electric Ind Co Ltd Moisture condensation detecting element
JPH0295840U (en) * 1989-01-17 1990-07-31
JPH0319933U (en) * 1989-03-30 1991-02-27
WO1991005237A2 (en) * 1989-10-04 1991-04-18 Tsi Incorporated Single particle detector utilizing light extinction
WO1994000750A1 (en) * 1992-06-23 1994-01-06 Hans Martin A light-wave guide serving as a gas and/or liquid sensor and an arrangement for supervising or affecting one peripheral unit among several such units from a central unit
US5485276A (en) * 1994-09-22 1996-01-16 Spectral Sciences Inc. Multi-pass optical cell species concentration measurement system
US5644402A (en) * 1994-10-07 1997-07-01 Hospal Industrie Device for detecting a conduit and for determining at least one characteristic of its content
JP2004500563A (en) * 1999-12-29 2004-01-08 エンバイロンメンタル システムズ プロダクツ,インク. System and method for remote analysis of vehicle exhaust with small engine
JP2010511168A (en) * 2006-11-29 2010-04-08 カスケイド テクノロジーズ リミテッド Portal
CN112067572A (en) * 2020-09-14 2020-12-11 深圳市诺安环境安全股份有限公司 High-stability small infrared gas sensor and manufacturing and implementation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309821A (en) * 1988-02-03 1989-12-14 Kanzaki Kokyukoki Mfg Co Ltd Axle driving device
JPH01160358U (en) * 1988-04-27 1989-11-07
JPH02156574A (en) * 1988-12-08 1990-06-15 Matsushita Electric Ind Co Ltd Moisture condensation detecting element
JPH0295840U (en) * 1989-01-17 1990-07-31
JPH0319933U (en) * 1989-03-30 1991-02-27
US5121988A (en) * 1989-10-04 1992-06-16 Tsi Incorporated Single particle detector method and apparatus utilizing light extinction within a sheet of light
WO1991005237A2 (en) * 1989-10-04 1991-04-18 Tsi Incorporated Single particle detector utilizing light extinction
WO1991005237A3 (en) * 1989-10-04 2004-04-22 Tsi Inc Single particle detector utilizing light extinction
WO1994000750A1 (en) * 1992-06-23 1994-01-06 Hans Martin A light-wave guide serving as a gas and/or liquid sensor and an arrangement for supervising or affecting one peripheral unit among several such units from a central unit
US5485276A (en) * 1994-09-22 1996-01-16 Spectral Sciences Inc. Multi-pass optical cell species concentration measurement system
US5644402A (en) * 1994-10-07 1997-07-01 Hospal Industrie Device for detecting a conduit and for determining at least one characteristic of its content
JP2004500563A (en) * 1999-12-29 2004-01-08 エンバイロンメンタル システムズ プロダクツ,インク. System and method for remote analysis of vehicle exhaust with small engine
JP2010511168A (en) * 2006-11-29 2010-04-08 カスケイド テクノロジーズ リミテッド Portal
CN112067572A (en) * 2020-09-14 2020-12-11 深圳市诺安环境安全股份有限公司 High-stability small infrared gas sensor and manufacturing and implementation method thereof

Similar Documents

Publication Publication Date Title
US5689114A (en) Gas analyzing apparatus
EP0699898B1 (en) A dual beam tunable spectrometer
US7064836B2 (en) Brewster&#39;s angle flow cell for cavity ring-down spectroscopy
JPS60140141A (en) Optical gas sensor
US7113286B2 (en) Apparatus and method for improved analysis of liquids by continuous wave-cavity ring down spectroscopy
US8594143B2 (en) Laser diode structure with integrated temperature-controlled beam shaping element and method for gas detection by means of a laser diode structure
US20120182555A1 (en) Gas detector for atmospheric species detection
US20130275052A1 (en) Method and device of determining a co2 content in a liquid
US7116423B2 (en) Flow cell for optical detection having reduced sensitivity to refractive index variation
US7564032B2 (en) Gas sensor
KR20060120700A (en) Trace Gas Analysis Apparatus and Method Using Cavity Ring-Down Spectroscopy
JP4399126B2 (en) Spectroscopic ellipsometer
Haas et al. Analytical performance of μ-groove silicon attenuated total reflection waveguides
CN102590106A (en) Analyzer
US4082950A (en) Calibration assembly for infrared moisture analyzer
JP4910588B2 (en) Water quality measuring device
JP2002511580A (en) Method for miniaturization of a polarimeter for the analysis of low-concentration components in optically based liquid measuring objects and an apparatus for implementing this method
JPH0232232A (en) Cell for absorptiometer
CN219455938U (en) Multiple reflection absorption tank and carbon dioxide concentration detection system
EP0826957A1 (en) Gas analyzing apparatus
US7852472B1 (en) Systems and methods for spectroscopy using opposing laser beams
JPH06222003A (en) Gas concentration measuring equipment
JPH04232837A (en) Light measuring apparatus having scattered light trap
JPH03287050A (en) Optical refractive index measuring instrument
JPH02195233A (en) Absorbance measuring apparatus