JPS60137086A - Semiconductor laser device and manufacture thereof - Google Patents
Semiconductor laser device and manufacture thereofInfo
- Publication number
- JPS60137086A JPS60137086A JP24615083A JP24615083A JPS60137086A JP S60137086 A JPS60137086 A JP S60137086A JP 24615083 A JP24615083 A JP 24615083A JP 24615083 A JP24615083 A JP 24615083A JP S60137086 A JPS60137086 A JP S60137086A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- laser
- substrate
- face
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000013078 crystal Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000003776 cleavage reaction Methods 0.000 claims description 9
- 230000007017 scission Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 abstract description 60
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 8
- 230000000903 blocking effect Effects 0.000 abstract description 4
- 238000005452 bending Methods 0.000 abstract description 2
- 239000011247 coating layer Substances 0.000 abstract description 2
- 125000005842 heteroatom Chemical group 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 27
- 238000000034 method Methods 0.000 description 18
- 238000005253 cladding Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/16—Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、半導体レーザ装置及びその製造方法に係わり
、特に光取り出し端面の光破壊を抑制し高出力動作を可
能とした半導体レーザ装置及びその製造方法に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor laser device and a method for manufacturing the same, and particularly to a semiconductor laser device that suppresses optical destruction at the light extraction end face and enables high output operation, and the manufacturing thereof. Regarding the method.
[発明の技術的背景とその問題点]
近年ディジタル・オーディオ・ディスクやビデオ・ディ
スクといった光ディスク・プレーヤのレーザ光源として
、半導体レーザ特にGa AJlAsレーザがとみに用
いられるようになってきた。これらへの応用の場合、必
要とされるレーザ光出力は、単に光デイスク面上からの
反射光の強度を検出するためだけであるため、それ程大
きい必要はなく通常得られる半導体レーザを実用に供づ
ることができる。[Technical background of the invention and its problems] In recent years, semiconductor lasers, particularly Ga AJlAs lasers, have come to be used as laser light sources for optical disc players such as digital audio discs and video discs. In the case of these applications, the required laser light output is simply for detecting the intensity of the reflected light from the optical disk surface, so it does not need to be so large, and it is not necessary to use a commonly available semiconductor laser for practical use. can be written.
一方、光デイスク装置ではあるが、信号が記録されてい
ない光ディスクに信号を記録し再び再生することをも可
能とする、所謂白き込み可能光ディスク装置の場合には
、書き込み時のために大きなレーザ光出力が要求されて
いる。この光ディスクの書き込みプロセスは一種のレー
ザ加工、すなわち物質に吸収された熱によって物質が蒸
発し加工されるプロセスによっているため、高感度とい
われる光ディスクの場合でも光学系により絞り込んだビ
ームの光ディク盤面上の光出力で表現した場合で大略5
〜10[mW’]の光出力が必要とされている。この要
求光出力を満たすレーザ光出力は、半導体レーザ出射端
面では更に大きなものとなる。半導体レーザから出射さ
れるレーザ光の放射ビームパターン或いはビームの非点
収差といった値によって大きく異なるが、この値は大雑
把にいって20〜3.0[rrLWコである。On the other hand, in the case of so-called white-writable optical disk devices, which are capable of recording signals on an optical disk on which no signals have been recorded and reproducing them again, a large laser beam is used for writing. Output is requested. The writing process for this optical disc is a type of laser processing, that is, a process in which the material is evaporated and processed by the heat absorbed by the material, so even in the case of optical discs that are said to be highly sensitive, the beam focused by the optical system is applied to the surface of the optical disc. Approximately 5 when expressed as a light output of
A light output of ~10 [mW'] is required. The laser light output that satisfies this required light output becomes even greater at the semiconductor laser emission end face. This value varies greatly depending on values such as the radiation beam pattern of the laser light emitted from the semiconductor laser or the astigmatism of the beam, but roughly speaking, this value is 20 to 3.0[rrLW].
ところで、半導体レーザの場合レーザ光が出射される共
振器の同口はレーザ光の波長程度に小さい寸法であり、
その大きさは用途として供せられるところの光デイスク
上へ絞り込まれ゛るレーザ光のスポラ]・サイズと殆ど
同じ大きさである。このことから容易に理解されるよう
に、通常の半導体レーザを用いた場合には光デイスク感
光体にレーザ加工を行い信号を書き込むことが可能とな
る前に、半導体レーザ自身が大きな光出力のためにし一
ザ加工されるという事態が発生する。こうした回能はあ
るものの、比較的大出力が得られる半導体レーザを用い
て書き込み可能な光デイスク装置が文書ファイルとして
実用に供せられるようになってきた。このように一応実
用に酎えうる半導体レーザは存在するものの、いわばか
ろうじて実用化されているにすぎず、低感度の光ディス
ク、言い換えれば信頼性の点で優れた光ディスクには書
き込みができなくなる問題等もあり、動画の記録や高速
の光ディクメモリの応用等を考えた場合にも、更に高出
力が要求されている。By the way, in the case of a semiconductor laser, the opening of the resonator from which the laser beam is emitted is as small as the wavelength of the laser beam.
Its size is almost the same as the size of the laser beam (spora) that is focused onto the optical disk to be used. As can be easily understood from this, when using a normal semiconductor laser, the semiconductor laser itself has a large optical output, A situation occurs in which the material is processed one by one. Despite these capabilities, optical disk devices capable of writing using semiconductor lasers that can obtain relatively high output power have come into practical use as document files. Although there are semiconductor lasers that can be put to practical use, they are barely put into practical use, and there are problems such as the inability to write on low-sensitivity optical discs, or in other words, optical discs that are superior in terms of reliability. Even higher output is required when considering applications such as video recording and high-speed optical disc memory.
半導体レーザの一応の高出力を達成するためには、前述
したところの半導体レーザそれ自身が自らのレーザ光に
よりレーザ加工されるという問題を解決することが必要
である。これは、半導体レーザの光出力を次第に増して
ゆくとある光出力値で突発的に破壊に至り光出力値が低
下するという現象となって観測されるた′め、キャタス
トOフィック・オプティカル・タメージ(Catast
ropl+1cQpNcal Damaoe : CO
D、突発的光学的破損)と呼ばれる。ところで、このC
ODを起こす部位は殆どの場合半導体レーザの共振器端
面である。In order to achieve a reasonably high output of a semiconductor laser, it is necessary to solve the above-mentioned problem that the semiconductor laser itself is laser-processed by its own laser light. This is observed as a phenomenon in which when the optical output of a semiconductor laser is gradually increased, it suddenly breaks down at a certain optical output value and the optical output value decreases. (Catast
ropl+1cQpNcal Damaoe: CO
D, sudden optical damage). By the way, this C
In most cases, the site where OD occurs is the cavity end face of the semiconductor laser.
これは、CODを発生するメカニズムと密接に関係する
ものであるが、第一に共振器の軸方向についてみるとき
端面において光密度が最大となる事情があること、第2
に共振器端面には欠陥が多く光生し易く、そうした欠陥
が引き金となってレーザ光を吸収し熱破壊し易い状態が
あるためである。This is closely related to the mechanism that generates COD; firstly, when looking at the axial direction of the resonator, there are circumstances in which the optical density is maximum at the end facets;
This is because there are many defects on the resonator end face, which makes it easy for photogeneration to occur, and these defects become a trigger to absorb laser light and cause thermal destruction.
レーザ共振器端面のCODを抑制づる良い方法は、レー
ザ共振器端面をレーず光に対して透明な物質で1呆護し
た構造とすることである。特に有効なのは、レーザ共振
器端面をレーザ光に対して透明な半導体層で構成する方
法であり、これは窓構造と呼ばれる。もともとレーザ光
が吸収しにくい材料で端面を1j成した場合゛には、た
またま欠陥が端面に生じても、その欠陥による光の吸収
は非常に起こりにくいからCODに至ることは殆どなく
なる。A good way to suppress COD at the laser resonator end face is to protect the laser resonator end face with a material that is transparent to laser light. Particularly effective is a method in which the laser resonator end face is made of a semiconductor layer that is transparent to laser light, and this is called a window structure. If the end face is made of a material that is inherently difficult to absorb laser light, even if a defect happens to occur on the end face, absorption of light by the defect is extremely unlikely, and COD will hardly occur.
窓構造を取り入れた典型的な半導体レーザは第1図に示
すようなものである。第1図のレーザは、活性層を含む
ダブルへテロ構造が1ツヂングにょリメサ状に残された
のち、バンドギャップの広い半導体層で埋め込まれたも
ので、所謂埋め込みレーザの一種であるが、メサ側面だ
けでなく、レーザ共振器軸方向に関しても両端がバンド
ギャップの広い半導体層によって埋め込まれた構造とな
っている。なお、図中11はn−GaAs基板、12は
n−GaAJlAsクラッド層、13はGaA−1!、
A’S活性層、14はp−GaAJlAsクラッド層、
15はD−Ga As :]ンタクト層、16は1l−
GaAs基板埋め込み層、17は共振器端面、18は窓
領域を示している。このレーザで極めて効果的にCOD
が解消され、I C)O[mW]以上もの高出力が1り
られるようになったことが報告されている。ところでこ
の構造の半導体レーザは液相エピタキシャル成長技術を
もとに製作された技術である。液相成長法では、結晶成
長速度が結晶の面に大きく依存するという面異方性が極
めて大きいため、(100)面という成長の遅い面方位
を基板結晶の主面として用いるとメサエツヂングプロセ
ス後の第2回目の埋め込み層を形成覆るところの第2回
目の結晶成長プロセスにおいてメナの側面に結晶成長が
選択的に行われ、基板表面には凹凸があつ−Cも結晶成
長表面には平坦面が形成されるという特徴を生かしCい
る。A typical semiconductor laser incorporating a window structure is shown in FIG. The laser shown in Figure 1 is a type of so-called buried laser, in which a double heterostructure including an active layer is left in the form of a mesa and then buried with a semiconductor layer with a wide bandgap. It has a structure in which not only the side surfaces but also both ends in the axial direction of the laser resonator are buried with a wide bandgap semiconductor layer. In the figure, 11 is an n-GaAs substrate, 12 is an n-GaAJlAs cladding layer, and 13 is a GaA-1! ,
A'S active layer, 14 is a p-GaAJlAs cladding layer,
15 is D-GaAs: ] contact layer, 16 is 1l-
A GaAs substrate buried layer, 17 a resonator end face, and 18 a window region. COD is extremely effective with this laser.
It has been reported that the problem has been resolved and a high output of more than I C) O [mW] can now be achieved. By the way, the semiconductor laser having this structure is manufactured based on liquid phase epitaxial growth technology. In the liquid phase growth method, the crystal growth rate is highly dependent on the plane of the crystal, which is an extremely large plane anisotropy. Therefore, if the (100) plane, which is a slow-growing plane, is used as the main plane of the substrate crystal, the mesa etching process will not be possible. In the second crystal growth process that covers the formation of the second buried layer, crystal growth is selectively performed on the side surfaces of the mena, and the substrate surface has unevenness -C also has a flat crystal growth surface. C takes advantage of the feature that a surface is formed.
ところで、第1図に示(端面埋め込みレーザの場合、共
振器端面17まて、光導波路が延長していない。このた
め、メサストライブ状の先導波銘部分で導波されてきた
光は、端面近傍の埋め込み層部分では大きく広がりなが
らも端面17で反射されて再びメサストライプ部分に導
波されることになるが、この広がりのためにほんの一部
の光しか導波されない結果となる。端面近傍の埋め込み
部分、すなわち窓領[18で光が回折効果による広がり
を起こさないと仮定した時に比べてどれだけ光量が減少
するかを結合効率として表現したとすると、この結合効
率は窓領域18の長さに強く依存し、ある値以下では殆
ど影響しないが、ある値以上となると急激に影響を受け
小さくなるような傾向を示す。このことを示したのが第
2図で、これは光導波路の断面が1[μm]、x2[μ
m]の場合の計綽結果を示したものであるが、実験的に
も成り立つことが確かめられている。第2図からも明ら
かなように、窓領域18の長さを5[μTrL]以下に
すれば結合効率の低下はあまり問題にならないといえる
。By the way, as shown in FIG. 1 (in the case of an end-face buried laser, the optical waveguide does not extend beyond the cavity end face 17. Therefore, the light that has been guided by the mesa stripe-shaped leading wave part is located near the end face. Although it spreads greatly in the buried layer part, it is reflected by the end face 17 and is guided again to the mesa stripe part, but because of this spread, only a small portion of the light is guided. If the coupling efficiency is expressed as how much the amount of light is reduced compared to when it is assumed that the light does not spread due to the diffraction effect in the embedded part, that is, the window region [18], then this coupling efficiency is calculated by the length of the window region 18. It strongly depends on is 1 [μm], x2 [μm]
The calculation results are shown for the case of [m], and it has been confirmed experimentally that it also holds true. As is clear from FIG. 2, it can be said that if the length of the window region 18 is set to 5 [μTrL] or less, the decrease in coupling efficiency will not be much of a problem.
しかしながら、窓領域の長さを5[μrn ]以下とす
ることは、実際には非常に難しい。通常半導体レーザは
、基板結晶上に成長形成したものを結晶のへき開性を用
いて所定形状に切り出くことによって製作されるが、へ
き開面を形成するプロセスの制御性が現状では充分でな
い。このため、上述の窓領域の長さを5[μm]以下に
制御して切り出すことは可能であっても、極めて歩留り
の悪いプロセスにならざるを得ないのが現状であった。However, it is actually very difficult to make the length of the window region 5 [μrn] or less. Semiconductor lasers are normally manufactured by growing a substrate crystal and cutting it into a predetermined shape using the cleavage properties of the crystal, but the controllability of the process of forming cleavage planes is currently insufficient. For this reason, even if it is possible to control and cut out the length of the above-mentioned window region to 5 [μm] or less, the current situation is that the process has no choice but to have an extremely low yield.
[本発明の目的コ
本発明の目的は、狭い窓領域を有する高出力の半導体レ
ーザ装置を提供することにあり、また本発明の他の目的
は上記狭い窓領域を歩留り良く実現することができ、製
造の容易化及びO−ロスト化をはかり得る半導体レーザ
装置の製造方法を提供することにある。[Object of the present invention] An object of the present invention is to provide a high-output semiconductor laser device having a narrow window region, and another object of the present invention is to provide a semiconductor laser device that can realize the narrow window region with high yield. Another object of the present invention is to provide a method for manufacturing a semiconductor laser device that facilitates manufacturing and reduces O-loss.
[光量の概要]
本発明の骨子は、レーザ共振器端面に埋め込み層を形成
】る代りに、共振器軸方向の光取出し端面の近傍におい
て活性−を含むヘテロエピタキシャル結晶層を折曲した
(R造とし、端面近傍のクラッド層等に上記埋め込み層
と同様な作用を持たせることにある。[Summary of light intensity] The gist of the present invention is that instead of forming a buried layer on the end face of a laser resonator, a heteroepitaxial crystal layer containing an active layer is bent near the light extraction end face in the direction of the cavity axis (R The objective is to make the cladding layer near the end face have the same effect as the buried layer.
すなわち本発明は、半導体基板上に成長形成された少な
くとも活性層を含むヘテロエピタキシャル結晶層と、上
記基板及び結晶層をへき開して形成されたレーザ共振器
軸方向の光取出し端面とを具備した半導体レーザ装置に
おいて、上記端面近傍で的記結晶層を折曲させ、該端面
近傍のクラッド層やコンタク1一層等を従来の埋め込み
層の代りとして用いるようにしたものである。That is, the present invention provides a semiconductor comprising a heteroepitaxial crystal layer including at least an active layer grown on a semiconductor substrate, and a light extraction end face in the laser resonator axis direction formed by cleaving the substrate and the crystal layer. In the laser device, the target crystal layer is bent near the end face, and the cladding layer, contact layer 1, etc. near the end face are used in place of the conventional buried layer.
また本発明は、上記構造の半導体レーザ装置を製造する
に際し、半導体基板上にへき開用溝部を形成したのち、
上記基板上に少なくとも活性層を含むヘテロエピタキシ
ャル結晶層を上記溝部に対応した溝部が残存する如く成
長形成し、しかるのち前記基板及び結晶層を前記溝部に
沿ってへき間しレーザ共振器軸方向の光取出し端面を形
成づるようにした方法である。Further, in the present invention, when manufacturing a semiconductor laser device having the above structure, after forming a cleavage groove on a semiconductor substrate,
A heteroepitaxial crystal layer including at least an active layer is grown on the substrate so that grooves corresponding to the grooves remain, and then the substrate and the crystal layer are separated along the grooves so that the crystal layer is aligned in the axial direction of the laser resonator. This is a method in which a light extraction end face is formed.
[光量の効果]
本発明においては、基板結晶として溝を有する基板上に
結晶成長を行うが、この場合の結晶成長法としては成長
層表面に溝が残り易い成長法を用いるのが適当である。[Effect of light amount] In the present invention, crystal growth is performed on a substrate having grooves as a substrate crystal, and in this case, it is appropriate to use a crystal growth method that tends to leave grooves on the surface of the growth layer. .
たとえば、MOCVD(有態金属気相エピタキシャル成
長)法やMBE(分子線エピタキシャル成長)法が良く
、成長結晶表面が平坦化し易い液相成長法は必ずしも良
い方法とはいいがたい。For example, the MOCVD (organic metal vapor phase epitaxial growth) method and the MBE (molecular beam epitaxial growth) method are good, but the liquid phase growth method, which tends to flatten the surface of the growing crystal, is not necessarily a good method.
上記成長結晶に溝が延在する方向と垂直方向にスI・ラ
イブ電極をつくり込むか形成する一方、上記溝に沿って
結晶をへき開し、レーザ光取り出し面を形成する。この
ように形成した時、レーザ共振器軸は溝に対して垂直に
形成されレーザ共振器両端の活性層は、基板結晶側に折
れ曲る形となる。While a sliver electrode is built or formed in the direction perpendicular to the direction in which the groove extends in the grown crystal, the crystal is cleaved along the groove to form a laser beam extraction surface. When formed in this manner, the laser resonator axis is formed perpendicular to the groove, and the active layers at both ends of the laser resonator are bent toward the substrate crystal side.
レーザ光は共振器内部で活性層に導波され、溝に対し、
垂直方向に増幅され進行するが共振器端面では活性層が
折れ曲っているため、そのまま直進し、クラッド層を突
き抜けて、結晶端面に至り、反射され、戻ってくること
になる。クラッド層は活性層の発光波長に対し透明であ
るため、結果としてこのレーザは共振器端面が透明な結
晶で覆われるため、所謂窓?11ji!Iどなっている
。したがって、このレーザに高電流注入を行ない、高光
出力動作された場合でも端面が破壊されることがなくな
り、良く横モード制御された上で100 [rrLW]
以上もの高出力が1qられることか確認できた。The laser light is guided to the active layer inside the resonator, and is directed against the groove.
The light is amplified and travels in the vertical direction, but since the active layer is bent at the resonator end face, it goes straight, passes through the cladding layer, reaches the crystal end face, is reflected, and returns. Since the cladding layer is transparent to the emission wavelength of the active layer, as a result, the cavity end face of this laser is covered with a transparent crystal, creating a so-called window? 11ji! I'm yelling. Therefore, even if a high current is injected into this laser and the laser is operated at a high optical output, the end face will not be destroyed, and the transverse mode will be well controlled and the laser beam will be 100 [rrLW].
I was able to confirm that a high output of 1q can be produced.
ところで、このレーザではへき同前の基板の状態におい
て、へき開されるべき窓領域の中央部が潜の存在として
明りように認識できるようになっている貞が大きな特徴
である。この溝を利用すると、極めて位置精度良くへき
開を行うことができる。例えば、溝の両側に曲げ応力を
加えた時溝部分に応力が集中することを利用しても良い
し、或いは溝を位置の目印として認識し、溝位置にへき
開用刃を当てることによってへき開位置を決めるように
しても良い。By the way, a major feature of this laser is that the central part of the window region to be cleaved can be clearly recognized as the presence of a cavity when the substrate is in the same state as before cleavage. By using this groove, cleavage can be performed with extremely high positional accuracy. For example, when bending stress is applied to both sides of the groove, the stress concentrates on the groove part. Alternatively, the groove can be recognized as a position mark and the cleavage position can be determined by applying a cleavage blade to the groove position. You may also decide.
以上のように、へき関すべき窓領域位置を正確に決める
ことができるために、レーザ共振器軸方向の窓領域の長
さを非常番ご小さくすることができる。このため、大出
力のレーザを容易に作成することができる。すなわち、
従来のこの種の窓構造のレーザは窓領域の幅を5[μr
rL]以下に設定するのに比べると、極めて有効な効果
である。なお、従来でも5[μTrL]以下のレーザを
得ることはできたが、それは極めて歩留りの悪いものに
なるため、窓領域の幅を望ましい鎖とすることができな
かったのである。As described above, since the position of the window region to be separated can be accurately determined, the length of the window region in the axial direction of the laser resonator can be made extremely small. Therefore, a high output laser can be easily created. That is,
Conventional lasers with this type of window structure have a window region width of 5 μr.
rL] This is an extremely effective effect compared to setting it below. Although it has been possible to obtain a laser of 5 [μTrL] or less in the past, the yield would be extremely poor, and it was not possible to make the width of the window region a desirable chain.
[発明の実施例]
第3図は本発明の一実施例に係わる半導体レーザの概略
構造を一部切欠して示す斜視図であり、第4図(a )
〜(d )は上記レーザの製造工程を示す斜視図である
。まず、第4図(a )に示すようにn−GaAs基板
21にレーザ共振器端面に相当した位置に深さ1[μm
]の溝22を共振器長さ間隔に合わせC形成する。この
場合基板の面方位は(001)面であり、溝22はいわ
ゆる順メリ方向に形成した。この満22を形成した基板
上に、第4図(b)に示す如く厚さ 0.3 [μrn
コのII−QaAS ・バラフッ’層’2−4’ (S
e ト−72X 10”8cm−3)0.06 [μ#
L]のG an、9 A −(lo、+ A S活性層
25、厚さ1 [μm]のl+ −、G a、)、65
A 11.55A sクララド層2G (l l+ドー
プ2x 10 cm” ) 、厚さ 0.8[μm ]
のn−GaAs電流阻止層27 (Se ト−75x1
0”CM−’)を順次成長けしめた。この第1回目の結
晶成長にはMO−CVD法を用い、成長条件は基板温度
150ビCコ、 V /’ m −20,キj+ +)
7ガス(+2)の流量〜10置し/1n ] 、原F
31はl・リメチルガリウム(TMG : (CH)3
Ga )、hリメチルアルミニウム(T〜IA:(C
I〜13 )3 Af)アルシン(Asト13)、p−
ドーバント:ジエヂル亜Wa (DEZ : (C21
−15)2 Zll > 、+1−ト−t<ント:セレ
ン化水素(+2 Se )で、成長速度は0.25[μ
m/a+in ]であった。なお、第1回目の結晶成長
では必ずしもM O−CV D法を用いる必要はないが
、大面積で均一性の良い結晶成長が可能なMO−CVD
法を用いることは、量産化を考えた場合LPE法に比べ
て有利である。[Embodiment of the Invention] FIG. 3 is a partially cutaway perspective view showing a schematic structure of a semiconductor laser according to an embodiment of the present invention, and FIG. 4(a)
-(d) are perspective views showing the manufacturing process of the above laser. First, as shown in FIG. 4(a), a laser beam is placed on the n-GaAs substrate 21 to a depth of 1 [μm] at a position corresponding to the end face of the laser resonator.
] grooves 22 are formed to match the length intervals of the resonators. In this case, the plane orientation of the substrate was the (001) plane, and the grooves 22 were formed in the so-called normal meridian direction. As shown in FIG. 4(b), a thickness of 0.3 [μrn
II-QaAS ・Barafu' layer '2-4' (S
e To-72X 10”8cm-3) 0.06 [μ#
L] G an, 9 A − (lo, + A S active layer 25, thickness 1 [μm] l + −, G a,), 65
A 11.55A s Clarado layer 2G (l l+doped 2x 10 cm"), thickness 0.8 [μm]
n-GaAs current blocking layer 27 (Se 75x1
0"CM-') was successively grown. MO-CVD method was used for this first crystal growth, and the growth conditions were: substrate temperature 150V, V/'m-20, Kij+ +)
7 Gas (+2) flow rate ~ 10 increments/1n], Hara F
31 is l-limethyl gallium (TMG: (CH)3
Ga), hlymethylaluminum (T~IA: (C
I~13)3 Af) Arsine (Ast 13), p-
Dorvant: Diejiru Wa (DEZ: (C21
-15) 2 Zll > , +1-t < nt: Hydrogen selenide (+2 Se ), the growth rate is 0.25 [μ
m/a+in]. Although it is not necessarily necessary to use the MO-CVD method for the first crystal growth, MO-CVD allows for crystal growth with good uniformity over a large area.
Using the method is more advantageous than the LPE method when considering mass production.
次に、電流阻止1!27上に図示しないフ第1〜レジス
I〜を塗布し、該レジストに幅2[μm]のストライプ
状窓を形成し、これをマスクとして電流阻止層27を選
択エツチングし、第4図(C)に示す如くストライプ状
の溝28を形成した。その後、レジストを除去し表面洗
浄処理を施した。Next, a resist I (not shown) is applied on the current blocking layer 1!27, a striped window with a width of 2 [μm] is formed in the resist, and the current blocking layer 27 is selectively etched using this as a mask. Then, striped grooves 28 were formed as shown in FIG. 4(C). Thereafter, the resist was removed and surface cleaning treatment was performed.
次いで、第2回目の結晶成長をやはりMO−CVD法で
行い、第4図(d )に示す如く全面に厚す1.5 [
II m ]のll−G ao、6s A fo、3s
A s被覆層29(Zl)ドープ3X10”Cm“3
)とp−Ga As :]ンタクト@30 (Znドー
プlXl0”Cm−’)を順次形成した。これ以降は通
常の電極付は工程によりコンタクト層30上にCr−A
ulil層31を基板21下面にA u−Q e電tl
l!32を被着して第4図(d )に示す構造を得た。Next, a second crystal growth is performed by the MO-CVD method, and as shown in FIG. 4(d), the entire surface is grown to a thickness of 1.5 [
II m]'s ll-G ao, 6s A fo, 3s
As coating layer 29 (Zl) doped 3X10"Cm"3
) and p-GaAs : ] contact@30 (Zn-doped lXl0"Cm-') were formed in sequence. From this point on, normal electrode attachment was performed by depositing Cr-A on the contact layer 30.
The ulil layer 31 is applied to the bottom surface of the substrate 21.
l! 32 was deposited to obtain the structure shown in FIG. 4(d).
かくして冑られたウェハのp電極表面には、V状の溝が
残されており、このV溝を目印として所定のウェハ位置
でへき開し、第3図に示す如く端面に活性層25の折れ
曲り部分をもった所望の構造の半導体レーザを得ること
ができた。得られたレーザはCW動作で100[1rL
W]の光出力まで端面酸IRすることがなく、光出力の
最大値が温度上昇による光出力飽和現象によって制限さ
れることが確認できた。また、光振しきい値電流も50
[mA1前後と、通常の窓構造をもたない点を除いては
全く同じ構造のレーザの光振しきい値電流45[mA]
にくらべ、僅かに高くなったにすぎないものであった。A V-shaped groove is left on the surface of the p-electrode of the wafer thus removed, and the wafer is cleaved at a predetermined position using this V-groove as a mark, and the active layer 25 is bent at the end surface as shown in FIG. It was possible to obtain a semiconductor laser having a desired structure. The obtained laser has a power of 100[1rL] in CW operation.
It was confirmed that there was no edge acid IR up to the optical output of [W], and that the maximum value of the optical output was limited by the optical output saturation phenomenon due to temperature rise. In addition, the optical vibration threshold current is also 50
[The optical oscillation threshold current of a laser with the same structure except that it does not have a normal window structure is around 1 mA and 45 [mA]
The price was only slightly higher than that of the previous year.
このように本実施例によれば、従来再現性良く得ること
が困難であった窓領域の長さが5[μm]以下と短かい
窓構造レーザを極めて歩留り良く作成することができる
ようになった。その結果として低しきい値で、横モード
特性にも乱れがなく、かつ高出力であるという橘めて高
性能な高出力レーザが歩留り良く得られるようになった
。こG)点で本発明の工業的価値は極めて高い。As described above, according to this embodiment, it is now possible to fabricate a window structure laser with a short window region length of 5 [μm] or less, which has traditionally been difficult to obtain with good reproducibility, at an extremely high yield. Ta. As a result, it has become possible to obtain high-performance, high-output lasers with a low threshold, no disturbance in transverse mode characteristics, and high output with a good yield. In this G) point, the industrial value of the present invention is extremely high.
なお、本発明は上述した本実施例に限定されものではな
く、その要旨を逸脱しない範囲で種々変形して実施する
ことができる。例えば、横モード制御構造も本発明の場
合だけでなく、利得ガイド構造の場合でも、その他のつ
−くりつけガイド構造の場合にも適用できる。また、半
導体レーザもGa AfAsだけでなく、その他の材料
例えばAfGa In PやIn Ga As P等の
レーザにも適用できることは明らかである。Note that the present invention is not limited to the present embodiment described above, and can be implemented with various modifications without departing from the gist thereof. For example, the transverse mode control structure can be applied not only to the present invention, but also to gain guide structures and other fixed guide structures. Furthermore, it is clear that the semiconductor laser can be applied not only to Ga AfAs but also to lasers made of other materials such as AfGa In P and In Ga As P.
第1図は従来の窓構造半導体レーザの概略構造を一部切
欠して示す斜視図、第2図は上記レーザの問題点を説明
するための特性図、第3図は本発明の一実施例に係わる
半導体レーザの概略構造を一部切欠して示す斜視図、第
4図(a )〜(d )は上記実施例レーザの製造工程
を示す斜視図である。
21・・・n −Qa As基板、22・・・へき開用
溝、23・n −Ga Asバフ77’層、24 ・n
−G ao、65A−eo、55ASクラッド層、2
5− G aO,9A −Co、I A s活性層、2
6 ・−1) −G ao、65 A 、1.(325
A sクラッド層、27−n −Ga As電流狭窄層
、
28・・・電流狭窄用溝、
29−p −G a、、65A −1to、4 A s
被引L30・p −Ga As mlンタク1一層、3
1.32・・・電極。
出願人代理人 弁理士 鈴江武彦
/TS x LO+rs −す r−
代ユ −I −ノ
/++11−Fig. 1 is a partially cutaway perspective view showing the schematic structure of a conventional window structure semiconductor laser, Fig. 2 is a characteristic diagram for explaining the problems of the above laser, and Fig. 3 is an embodiment of the present invention. FIGS. 4(a) to 4(d) are perspective views showing a schematic structure of the semiconductor laser according to the embodiment, with a portion cut away, and FIGS. 21...n -Qa As substrate, 22... Cleavage groove, 23.n -Ga As buff 77' layer, 24.n
-G ao, 65A-eo, 55AS cladding layer, 2
5-GaO, 9A-Co, IAs active layer, 2
6 ・-1) -G ao, 65 A, 1. (325
As cladding layer, 27-n-GaAs current confinement layer, 28... current confinement groove, 29-p-Ga, 65A-1to, 4 As
Attracted L30・p-Ga As ml unit 1 layer, 3
1.32...electrode. Applicant's agent Patent attorney Takehiko Suzue/TS x LO+rs -su r- representative -I -ノ/++11-
Claims (2)
層を含むl\テロエピタキシVル結晶層と、上記基板及
び結晶層をへき開して形成されたレーザ共振器軸方向の
光取出し端面とを具備し、上記端面近傍で前記結晶層が
折曲されていることを特徴とりる半導体レーザ装置。(1) Comprising a teloepitaxy crystal layer including at least an active layer grown on a semiconductor substrate, and a light extraction end face in the laser resonator axis direction formed by cleaving the substrate and crystal layer. A semiconductor laser device characterized in that the crystal layer is bent near the end face.
次いで上記基板上に少なくとも活性層を含むヘテロエピ
タキシャル結晶層を上記溝部の形状に対応した溝部が残
存するよう成長形成する工程と、次いで前記基板及び結
晶層を前記溝部に沿ってへき開しレーザ共振器軸方向の
光取出し端面を形成する工程とを含むことを特徴とする
半導体レーザ装置の製造方法。(2) forming a cleavage groove on the semiconductor substrate;
Next, a step of growing a heteroepitaxial crystal layer including at least an active layer on the substrate so that a groove corresponding to the shape of the groove remains, and then cleaving the substrate and crystal layer along the groove to form a laser resonator. 1. A method of manufacturing a semiconductor laser device, comprising the step of forming an axial light extraction end face.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24615083A JPS60137086A (en) | 1983-12-26 | 1983-12-26 | Semiconductor laser device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24615083A JPS60137086A (en) | 1983-12-26 | 1983-12-26 | Semiconductor laser device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60137086A true JPS60137086A (en) | 1985-07-20 |
Family
ID=17144227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24615083A Pending JPS60137086A (en) | 1983-12-26 | 1983-12-26 | Semiconductor laser device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60137086A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6388886A (en) * | 1986-10-01 | 1988-04-19 | Mitsubishi Electric Corp | Semiconductor laser device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS586191A (en) * | 1981-07-03 | 1983-01-13 | Hitachi Ltd | semiconductor laser equipment |
JPS5839085A (en) * | 1981-08-31 | 1983-03-07 | Mitsubishi Electric Corp | Semiconductor laser device |
JPS5861694A (en) * | 1981-10-09 | 1983-04-12 | Hitachi Ltd | optical element |
JPS58142588A (en) * | 1982-02-19 | 1983-08-24 | Hitachi Ltd | semiconductor laser equipment |
-
1983
- 1983-12-26 JP JP24615083A patent/JPS60137086A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS586191A (en) * | 1981-07-03 | 1983-01-13 | Hitachi Ltd | semiconductor laser equipment |
JPS5839085A (en) * | 1981-08-31 | 1983-03-07 | Mitsubishi Electric Corp | Semiconductor laser device |
JPS5861694A (en) * | 1981-10-09 | 1983-04-12 | Hitachi Ltd | optical element |
JPS58142588A (en) * | 1982-02-19 | 1983-08-24 | Hitachi Ltd | semiconductor laser equipment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6388886A (en) * | 1986-10-01 | 1988-04-19 | Mitsubishi Electric Corp | Semiconductor laser device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6009112A (en) | Semiconductor laser and manufacturing method therefor | |
WO1997032376A1 (en) | Semiconductor laser and cleaving method | |
US20030043875A1 (en) | Semiconductor laser and method of manufacturing the same | |
US20020136255A1 (en) | Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element | |
JPS60137085A (en) | Semiconductor laser device | |
JPS60137086A (en) | Semiconductor laser device and manufacture thereof | |
JPH0728102B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH02199889A (en) | Semiconductor laser device and manufacture thereof | |
JPS603181A (en) | Semiconductor laser device | |
JPH04103187A (en) | Semiconductor laser and manufacture thereof | |
JP4100792B2 (en) | Semiconductor laser device with spot size converter and manufacturing method thereof | |
JPS61272987A (en) | Semiconductor laser element | |
JPH10154843A (en) | Semiconductor laser device and optical disk device using the same | |
WO2020255183A1 (en) | Semiconductor light source element and method of manufacturing optical semiconductor waveguide window structure | |
JPS641952B2 (en) | ||
JPH06260715A (en) | Semiconductor laser and manufacture thereof | |
JPS6351556B2 (en) | ||
JPH0644661B2 (en) | Semiconductor laser device | |
JPH09246662A (en) | Semiconductor laser | |
JP2954358B2 (en) | Semiconductor laser and cleavage method | |
JPS60164383A (en) | Manufacture of semiconductor laser | |
JP2922010B2 (en) | Semiconductor laser device | |
JPH0568873B2 (en) | ||
JPS6234473Y2 (en) | ||
JPS60132381A (en) | Semiconductor laser device |