[go: up one dir, main page]

JPS60136264A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS60136264A
JPS60136264A JP58243318A JP24331883A JPS60136264A JP S60136264 A JPS60136264 A JP S60136264A JP 58243318 A JP58243318 A JP 58243318A JP 24331883 A JP24331883 A JP 24331883A JP S60136264 A JPS60136264 A JP S60136264A
Authority
JP
Japan
Prior art keywords
gate
source
drain
carrier concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58243318A
Other languages
Japanese (ja)
Other versions
JPH0216008B2 (en
Inventor
Masahiro Kamiya
神谷 政宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58243318A priority Critical patent/JPS60136264A/en
Publication of JPS60136264A publication Critical patent/JPS60136264A/en
Publication of JPH0216008B2 publication Critical patent/JPH0216008B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/80FETs having rectifying junction gate electrodes

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a GaAs MES FET of good controllability of threshold voltage, good uniformity in a wafer, and good controllability of electrode voltages by a method wherein a high carrier concentration layer for source and drain contact is formed to epitaxial growth after a gate electrode is formed on an active layer. CONSTITUTION:The part except the gate part and source and drain regions where a high carrier concentration contact layer is to be formed is covered with an SiO2 film 5. At this time, the size of the SiO2 in the periphery of the gate is adjusted so that desired withstand voltages can be obtained between the gate and source and between the gate and drain. Thereafter, the selective epitaxial growth of contact layers 6 is carried out. A method of the selective epitaxial growth is the use of thermal decomposition of an organic metal and arsine. However, hydrogen chloride is introduced at the time of growth in order to epitaxially grow selectively only at the GaAs exposure part. Then, high carrier concentration epitaxial layers can be obtained selectively only at the regions of forming source and drain electrodes by adjusting the amount of introduction of the organic metal and the hydrogen chloride. Finally, ohmic electrodes 7 are formed at the source and drain regions by Au-Ge evaporation.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置、特に化合物半導体を用いたショッ
トキーゲート電界効果トランジスタ(FET)の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a semiconductor device, particularly a Schottky gate field effect transistor (FET) using a compound semiconductor.

〔発明の背景〕[Background of the invention]

従来、GaAs MES FETの製造方法としては、
半絶縁性基板上にキャリア濃度1×1017crfL−
3程度の活性層をエピタキシャル成長法を用いてつくり
、この活性1−上にA[#を蒸着してショットキーメタ
ルゲートを形成し、その後、Au−Ge等のオーミック
メタルを蒸着してソース1ドレイン領域を形成するもの
である。この方法の場合、FETのしきい値電圧は活性
層のキャリア濃度と厚さで決定されるため、ゲート電極
形成前に活性層厚を調整することで所望のしきい値電圧
が得られ、またウェハー内の均一化も容易でろる。しか
しオーミックコンタクトを形成するソース・ドレイン領
域の酸度が低く、良好なオーミックコンタクトを形成す
るには不利であり、FET1性としても好ましいもので
はない。
Conventionally, the manufacturing method of GaAs MES FET is as follows:
Carrier concentration 1×1017crfL− on a semi-insulating substrate
3 active layer is made using epitaxial growth method, A[# is evaporated on this active layer to form a Schottky metal gate, and then an ohmic metal such as Au-Ge is evaporated to form source 1 drain. It forms a region. In this method, the threshold voltage of the FET is determined by the carrier concentration and thickness of the active layer, so the desired threshold voltage can be obtained by adjusting the active layer thickness before forming the gate electrode. Uniformity within the wafer can also be easily achieved. However, the acidity of the source/drain regions forming the ohmic contact is low, which is disadvantageous for forming a good ohmic contact, and is not preferable as a FET characteristic.

良好なオーミックコンタクトを得る方法として、前記の
活性層上に、よシ高キャリア線度(1〜3XIO”cm
−りの層をエピタキシャル成長する方法がある。この場
合には、ソース−ドレイン領域のみ高キヤリア濃度コン
タクト層を残して活性I−が現われるまで、この高キャ
リア濃度層を除去し、そして現われた活性層上にショッ
トキーゲートを形成し、さらにソース・ドレイン領域に
オーミック電極を形成するものである。この方法では、
コンタクト1−が高磯就であるため、オーミックコンタ
クトは非常に良好なものが可能でるる。しがし、FET
のしきい値電圧の点でみると、制御性よくコンタクト層
および活性層の一部をエツチング除去してやらねばなら
ない。また、ウェハー内のしきい値電圧の均一性からす
れば、エツチング量の均一性に加えて、コンタクト層の
厚さ、活性層の厚さとキャリア濃度の均一性が要求され
る。さらに、コンタクト層を除いた四部にゲートを形成
するため、目合せ等の加工において困難性を生じ、ゲー
トとンースードレイン間隔を/J’sさくすることは難
かしい。
As a method of obtaining good ohmic contact, a high carrier linearity (1 to 3XIO"cm) is added on the active layer.
- There is a method of epitaxially growing additional layers. In this case, the high carrier concentration contact layer is removed only in the source-drain region until the active I- appears, a Schottky gate is formed on the active layer, and the source - An ohmic electrode is formed in the drain region. in this way,
Since the contact 1- has a high resistance, a very good ohmic contact can be made. Shigashi, FET
From the point of view of the threshold voltage, the contact layer and part of the active layer must be etched away with good controllability. Furthermore, in view of the uniformity of the threshold voltage within the wafer, in addition to the uniformity of the etching amount, the thickness of the contact layer, the thickness of the active layer, and the uniformity of the carrier concentration are required. Furthermore, since the gate is formed on all four parts except for the contact layer, processing such as alignment is difficult, and it is difficult to reduce the distance between the gate and the drain by /J's.

さらに、半絶縁性基板にイオン注入法を用いて、活性層
、:コンタクト層を形成する方法もある。特に、コンタ
クト層形成時のイオン注入を、ゲートメタルをマスクと
して行なわれる方法が簡便でめる。しかし、注入イオン
の横方向の拡がりを考える必要があり、ゲートと、ソー
スドレイン間の耐圧の減少を招くおそれがある。
Furthermore, there is also a method of forming an active layer and a contact layer using an ion implantation method in a semi-insulating substrate. In particular, a method in which ion implantation during formation of the contact layer is performed using the gate metal as a mask is convenient. However, it is necessary to consider the lateral spread of implanted ions, which may lead to a decrease in breakdown voltage between the gate and source/drain.

〔発明の目的〕[Purpose of the invention]

本発明は、ソース、ドレインに良好なオーミックコンタ
クトが形成でき、しきい値電圧の制御性、およびウェハ
内の均一性がよく、電極間電圧の制御性のよいGaAs
 MB2 FETの製造方法を提供することにるる。
The present invention uses GaAs, which can form good ohmic contacts at the source and drain, has good controllability of threshold voltage and uniformity within the wafer, and has good controllability of interelectrode voltage.
The present invention provides a method for manufacturing an MB2 FET.

〔発明の構成〕[Structure of the invention]

本発明は活性層上にゲート電極を形成し、この後、ノー
ス。ドレインのコンタクトのための高キャリア濃度層を
エピタキシャル成長に形成することを特徴とし、このエ
ピタキシャル成長に選択エピタキシャル法を用いるのが
好ましい。
In the present invention, a gate electrode is formed on the active layer, and then a gate electrode is formed on the active layer. A high carrier concentration layer for a drain contact is formed by epitaxial growth, and it is preferable to use a selective epitaxial method for this epitaxial growth.

〔実施例〕〔Example〕

以下、図面を参照しながら、本発明の実施例を詳細に説
明する。まず、第1図に示すようにキャリア濃度1 x
 10 ’?clrL−1程度の活性層3を高抵抗バッ
ファ層2t−有する半絶縁性基板l上にエピタキシャル
成長法で形成する。そして、新規のしきい値電圧が得ら
れるように活性層3をエツチング除去することで調整し
、シ習ットキーメタルゲート4を形成する。ゲートメタ
ル4としてはTi−W。
Embodiments of the present invention will be described in detail below with reference to the drawings. First, as shown in Fig. 1, the carrier concentration is 1 x
10'? An active layer 3 of approximately clrL-1 is formed by epitaxial growth on a semi-insulating substrate l having a high resistance buffer layer 2t-. Then, adjustment is made by etching away the active layer 3 to obtain a new threshold voltage, and a sit key metal gate 4 is formed. Gate metal 4 is Ti-W.

W−8t等のように700℃60分間程度の熱処理をう
けてもショットキー接合に劣化を生じない耐熱性金属を
用いる。次に、ゲート部等、高キヤリア濃度コンタクト
層が形成されるノース。ドレイン領域を除いて5i01
膜5でカバーする。この際、ゲートンース間、ゲートー
ドレイン間は、所望の耐圧が得られるようにゲート周辺
部の8i02(第1図5の横方向)の大きさを調整する
A heat-resistant metal such as W-8t, which does not cause deterioration of the Schottky junction even when subjected to heat treatment at 700° C. for about 60 minutes, is used. Next, there is a north region where a high carrier concentration contact layer such as a gate region is formed. 5i01 excluding drain region
Cover with membrane 5. At this time, the size of 8i02 (horizontal direction in FIG. 1, FIG. 5) around the gate is adjusted between the gate and the drain and between the gate and the drain so that a desired breakdown voltage can be obtained.

その後、キャリア濃度2〜4 x 101’ff1−3
 、厚さ0.2〜03μm程度のコンタクト層6の選択
エピタキシャル成長を行なう。選択エピタキシャル成長
の方法は、有機金属(トリメチルカリウムまたはトリエ
チルガリウム)とアルシンの熱分解法(通常、MO−C
VD法)を用いる。ただし、G a A sの蕗出部分
にのみ選択的にエピタキシャル成長を行なうために成長
時に塩化水素(HCl)を導入する。有機金属と塩化水
素の導入量を調整することで、ソース。ドレイン電極形
成領域にのみ選択的に高キヤリア濃度エピタキシャル層
が得られる。
After that, carrier concentration 2~4 x 101'ff1-3
, a contact layer 6 having a thickness of approximately 0.2 to 0.3 μm is selectively epitaxially grown. The method of selective epitaxial growth is the thermal decomposition of organic metals (trimethylpotassium or triethylgallium) and arsine (usually MO-C
VD method) is used. However, hydrogen chloride (HCl) is introduced during the growth in order to selectively perform epitaxial growth only on the protruding portion of GaAs. source by adjusting the amount of organic metal and hydrogen chloride introduced. A high carrier concentration epitaxial layer is selectively obtained only in the drain electrode formation region.

最後に、第2図のように、ソース、ドレイン領域にAu
 Geの蒸着によりオーミック電極7を形成する。また
、ゲート部の8302膜5t−除去し、ゲートメタル4
上1c A u等の電極を形成する。
Finally, as shown in Figure 2, Au is applied to the source and drain regions.
The ohmic electrode 7 is formed by vapor deposition of Ge. In addition, the 8302 film 5t in the gate area is removed, and the gate metal 4
Form electrodes such as upper 1c A u.

MO−CVD法を用いることで650〜700℃程度比
較的低温で選択エピタキシャル成長が可能である。この
ためコンタクト層形成前後においてもそのショットキー
特性に大きな差は認められない。
By using the MO-CVD method, selective epitaxial growth is possible at a relatively low temperature of about 650 to 700°C. Therefore, there is no significant difference in the Schottky characteristics before and after forming the contact layer.

なお、本発明は例としてエピタキシャル成長によって形
成された活性層3を用いた方法を示したが、その活性層
3をイオン注入法で形成する場合にも適用でき、さらに
はIC等への応用も考えられる。
Although the present invention has shown a method using the active layer 3 formed by epitaxial growth as an example, it can also be applied to a case where the active layer 3 is formed by ion implantation, and furthermore, application to ICs etc. is also considered. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例による製造工程
を示す断面図である。 1・・・・・・半絶縁性G a A s基板、2・・・
・・・高抵抗バッファエピタキシャル層、3・・・・・
・活性層、4・・・・・・耐熱性ゲートメタル、5・・
団・510g1l(,6・・印・選択性コンタクトエビ
タ千シャル層、7・・川・オーミックコンタクト用メタ
ル、8・・・・・・ゲート電極メタル。
FIGS. 1 and 2 are cross-sectional views showing manufacturing steps according to an embodiment of the present invention. 1...Semi-insulating GaAs substrate, 2...
...High resistance buffer epitaxial layer, 3...
・Active layer, 4...Heat-resistant gate metal, 5...
group・510g1l (,6・・mark・selective contact evita 1,000-shall layer, 7・・river・metal for ohmic contact, 8・・・・gate electrode metal.

Claims (2)

【特許請求の範囲】[Claims] (1)活性層上にショットキー電極を形成した後に高キ
ャリア濃度のエピタキシャル層を形成し、ソース・ドレ
インのオーミック電極を形成することを特徴とする半導
体装置の製造方法。
(1) A method for manufacturing a semiconductor device, which comprises forming a Schottky electrode on an active layer, then forming an epitaxial layer with a high carrier concentration, and forming source/drain ohmic electrodes.
(2)上記高キャリア濃度層を選択エピタキシャル成長
技術により形成することを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the high carrier concentration layer is formed by a selective epitaxial growth technique.
JP58243318A 1983-12-23 1983-12-23 Manufacturing method of semiconductor device Granted JPS60136264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243318A JPS60136264A (en) 1983-12-23 1983-12-23 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243318A JPS60136264A (en) 1983-12-23 1983-12-23 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60136264A true JPS60136264A (en) 1985-07-19
JPH0216008B2 JPH0216008B2 (en) 1990-04-13

Family

ID=17102047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243318A Granted JPS60136264A (en) 1983-12-23 1983-12-23 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60136264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025437A (en) * 1988-06-23 1990-01-10 Toshiba Corp Field-effect transistor and manufacture thereof
JPH07273318A (en) * 1994-03-29 1995-10-20 Nec Corp Compound semiconductor device and manufacture of it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857752A (en) * 1981-09-30 1983-04-06 Nec Corp Preparation of semiconductor device
JPS5898982A (en) * 1981-12-07 1983-06-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of producing gallium ardenide mesfet element
JPS5979576A (en) * 1982-10-29 1984-05-08 Fujitsu Ltd Field effect semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857752A (en) * 1981-09-30 1983-04-06 Nec Corp Preparation of semiconductor device
JPS5898982A (en) * 1981-12-07 1983-06-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of producing gallium ardenide mesfet element
JPS5979576A (en) * 1982-10-29 1984-05-08 Fujitsu Ltd Field effect semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025437A (en) * 1988-06-23 1990-01-10 Toshiba Corp Field-effect transistor and manufacture thereof
JPH07273318A (en) * 1994-03-29 1995-10-20 Nec Corp Compound semiconductor device and manufacture of it

Also Published As

Publication number Publication date
JPH0216008B2 (en) 1990-04-13

Similar Documents

Publication Publication Date Title
JPS60136264A (en) Manufacturing method of semiconductor device
JPS6184869A (en) Semiconductor device and its manufacturing method
JP2541230B2 (en) Method for manufacturing field effect transistor
JPS62204578A (en) Manufacture of field-effect transistor
JP2682032B2 (en) Method for manufacturing semiconductor device
JP2728427B2 (en) Field effect transistor and its manufacturing method
KR910004319B1 (en) Manufacturing method of high electron mobility transistor
JP2707436B2 (en) Method for manufacturing field effect transistor
JPS6332273B2 (en)
JPS59127875A (en) Manufacture of schottky barrier gate type field effect transistor
JPH0521467A (en) Method for manufacturing field effect transistor
JPH0563946B2 (en)
JPH0618217B2 (en) Method for manufacturing semiconductor device
JPS6143443A (en) Manufacture of semiconductor device
JPS6394688A (en) Method for manufacturing field effect transistors
JPH0758717B2 (en) Method for manufacturing field effect transistor
JPH0352238A (en) Manufacture of compound semiconductor device
JPS59193070A (en) Manufacturing method of shot-gate field effect transistor
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPS58147168A (en) Manufacturing method of semiconductor device
JPH04122033A (en) Method for manufacturing field effect transistors
JPS6234156B2 (en)
JPS6240782A (en) Manufacture of semiconductor device
JPS6260268A (en) Manufacture of field effect transistor
JPS63161675A (en) Semiconductor device