JPS60133366A - Measurement of unburned portion in coal ash - Google Patents
Measurement of unburned portion in coal ashInfo
- Publication number
- JPS60133366A JPS60133366A JP24262783A JP24262783A JPS60133366A JP S60133366 A JPS60133366 A JP S60133366A JP 24262783 A JP24262783 A JP 24262783A JP 24262783 A JP24262783 A JP 24262783A JP S60133366 A JPS60133366 A JP S60133366A
- Authority
- JP
- Japan
- Prior art keywords
- coal ash
- infrared
- tube
- coal
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/22—Fuels; Explosives
- G01N33/222—Solid fuels, e.g. coal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/12—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、電気炉で発生する生石炭、フライアッシュ、
クリンカー等の石炭灰中に存在する未然分量蜜測足する
ための石炭灰中未然分測定方法に関する。[Detailed description of the invention] The present invention provides raw coal, fly ash,
This invention relates to a method for measuring the amount of unresolved substances such as clinker present in coal ash.
石炭焚きボイラにおいては、その燃焼状態を把握するた
2f)に未燃分の測定尋が特に重要である。そのため、
現在は電、スケによって石炭灰を加熱、燃焼させ1日本
工業規格J I 8M8815F石炭灰およびコークス
灰の分析試験方法」に準じて石炭灰を815℃に加熱し
た後の重置減少を減量パーセントとしてめている。In coal-fired boilers, measurement of unburned content is particularly important in order to understand the combustion state. Therefore,
Currently, coal ash is heated and combusted using electricity and scales, and the weight loss after heating the coal ash to 815°C in accordance with 1 Japanese Industrial Standard J I 8M8815F Analysis Test Method for Coal Ash and Coke Ash is defined as weight loss percentage. I'm looking forward to it.
しかし、このような方法では、
■ 電気炉はその重量が大であシ、この電気ftボイラ
設備の近傍まで運搬するのに手間がη為かる。However, in such a method, (1) the electric furnace is heavy and it takes a lot of effort to transport it to the vicinity of the electric ft boiler equipment;
■ 試験前後の試料量の測定に時間がかかる。■ It takes time to measure the sample amount before and after the test.
■ 加熱中に定期的に石炭灰のtfR’に測定し、この
電量変化から未燃分が完全に燃焼したか否かt確認する
必要がsb、そのために放冷・秤量等の操作を要し時間
がかかる。■ It is necessary to periodically measure the tfR' of the coal ash during heating and check from the change in the amount of electricity whether the unburned content has been completely burned, and for this purpose operations such as cooling and weighing are required. it takes time.
■ 電気炉の昇温に時間がかかる。■ It takes time for the electric furnace to heat up.
■ 未燃分倣を確認したうえで燃焼条件を選足する必要
がるるか、上記■〜■の点で時間がかかるため、燃焼試
験が終了するまでに、長時曲′ff:要する。等の不具
合がある。このような不具合を解消するため、可搬式で
未燃分の迅速測定が可能な熱天秤を用いて未燃分を測定
する方法が開発された。(2) It is necessary to select the combustion conditions after confirming the unburned content, or it takes a long time to complete the combustion test because the above points (1) to (3) take time. There are other problems. In order to solve these problems, a method was developed to measure unburned content using a portable thermobalance that can rapidly measure unburned content.
以下、この熱天秤の構成を第1図2参照して説明する。The configuration of this thermobalance will be explained below with reference to FIG. 1.
図中、lは皿電子天秤の天秤部であって、上端に試料保
持部2を有する支持管3が載置されている。上記試料保
持部2には、試料4が入れられており、それら試料保持
部2および支持管3には保護管5が被せられ、更にその
外側にタングステンランプ6を倚する赤外線加熱炉2が
配置される。試料4の近傍には熱電対8が挿入されてい
る。上皿電子天秤部lは秤量回路9に接続され、頁に秤
量回路9は記録ユニット10に接続されている。熱電対
8は記録ユニットlOおよびプログラム温度制御ユニツ
)JZに接続され、プログラム温度制御ユニットttは
更にタングステンランプ6に接続されている。In the figure, l is a balance part of a dish electronic balance, and a support tube 3 having a sample holding part 2 at its upper end is placed. A sample 4 is placed in the sample holder 2, a protection tube 5 is placed over the sample holder 2 and the support tube 3, and an infrared heating furnace 2 containing a tungsten lamp 6 is arranged outside the protection tube 5. be done. A thermocouple 8 is inserted near the sample 4. The top electronic balance unit 1 is connected to a weighing circuit 9, and the page weighing circuit 9 is connected to a recording unit 10. The thermocouple 8 is connected to a recording unit lO and a program temperature control unit) JZ, which in turn is connected to a tungsten lamp 6.
このような熱天秤では加熱系として赤外線加熱炉2、秤
量系として電子天秤ケ採用しているため、未燃分の迅速
測定が可能であシ、更に試料量の秤量操作から解放され
る利点がめった。This type of thermobalance uses an infrared heating furnace 2 as the heating system and an electronic balance as the weighing system, so it is possible to quickly measure unburned matter, and it also has the advantage of being freed from the need to weigh the sample amount. Rarely.
しかしながら、このように改良された熱天秤r用いても
次のような欠点がある。However, even when such an improved thermobalance is used, there are the following drawbacks.
(7)電子天秤とはいえ、検出部に天秤方式を採用して
いるため、現地輸送時の梱包に注意を要する。また、梱
包が不充分な場合は、機器の損傷tもたらす場合もある
。(7) Although it is an electronic balance, it uses a balance system in its detection section, so care must be taken when packaging it during local transportation. In addition, insufficient packaging may result in damage to the equipment.
(イ)天秤方式には、機械的強度の弱い部分があるため
、取扱いに慎重さを要する。例えば、天秤上に載置され
た支持管3は非常に細く折れやすい。このため支持管3
を太いものにすると、逆に天秤精度が悪くなる。(b) The balance system has parts with weak mechanical strength, so care must be taken when handling it. For example, the support tube 3 placed on the balance is very thin and easily breaks. For this reason, the support tube 3
If it is made thicker, the accuracy of the balance will deteriorate.
本発明は以上の事情に基づいてなされたもので、石炭灰
を赤外線加熱炉で急速加熱して石炭灰中に存在する未燃
分を完全燃焼する工程と、前記燃焼によって生じる炭酸
ガスを下流側に配設された赤外線ガス分析計で検出し、
この赤外線ガス分析計の検出信号を記録する工程とを具
備したことを要旨とし、石炭灰中の未燃分の量を容易か
つ短時間に測定することができ、また熱天秤の如き運搬
取扱いの面倒な装kt必要としない石炭灰中未燃分測知
方法を提供することを目的とする。The present invention has been made based on the above circumstances, and includes a step of rapidly heating coal ash in an infrared heating furnace to completely burn the unburned content present in the coal ash, and a process of discharging carbon dioxide gas generated by the combustion to a downstream side. Detected by an infrared gas analyzer installed in
The main feature is that the process of recording the detection signal of this infrared gas analyzer makes it possible to measure the amount of unburned content in coal ash easily and quickly, and also to be able to handle transportation such as a thermobalance. An object of the present invention is to provide a method for measuring unburned content in coal ash that does not require troublesome kt loading.
本発明の方法は、石炭灰會加熱して石炭灰中の未燃分を
完全に燃焼させ、この燃焼の際に生じるCO,濃度を赤
外線ガス分n計で測定する。In the method of the present invention, coal ash is heated to completely burn off the unburned content in the coal ash, and the concentration of CO produced during this combustion is measured using an infrared gas meter.
ただし、赤外線ガス分析計は通常足常的なガス流(−足
摂度のガスが連続的に流れている状態)の中で用いられ
るが、ここでは燃焼の隙一時的に00□が発生するだけ
なので、C0,による赤外線の吸収能の積算値忙評価す
る必要かめる。However, infrared gas analyzers are usually used in a constant gas flow (a state in which gas at a certain temperature is continuously flowing), but in this case, 00□ temporarily occurs during the combustion gap. Therefore, it is necessary to evaluate the integrated value of the infrared absorption capacity by C0.
なお、この場合、赤外線吸収量の積分値と未燃分量との
関係についてはあらかじめ関係面Jk求めておき、この
関係的fRk用いて未燃分i?j求めることもできる。In this case, the relationship between the integral value of the amount of infrared absorption and the amount of unburned matter is determined in advance by the relational surface Jk, and using this relational fRk, the unburned matter i? You can also find j.
したがって、石炭灰の加熱燃焼中に頻繁に石炭灰の電胤
測足を行なう必要はなく、また加熱燃焼の終了と同時に
測定も終了するので未燃分量の測定を容易かつ短時間に
行なうことができる。また、測定に際しては石炭灰を加
熱して発生するCO,濃度を測定するだけでおるので、
熱天秤の如く取扱いの面倒な装置2必要としないも、の
である。Therefore, there is no need to frequently conduct electric measurements of coal ash during heating and combustion of coal ash, and since the measurement ends at the same time as heating and combustion ends, it is possible to measure the amount of unburned matter easily and in a short time. can. In addition, when measuring, we only need to measure the concentration of CO generated by heating the coal ash.
There is no need for a device 2 that is difficult to handle, such as a thermobalance.
以下、本発明の一実施例を説明する。本発明に用いる測
定装駄の構成を第2図を参照して説明する。An embodiment of the present invention will be described below. The configuration of the measuring device used in the present invention will be explained with reference to FIG.
図中、20は石英管であシ、この石英管20の両端20
a、20bにはゴム栓21.22が取シ付けられ、更に
それらのゴム栓21.22にはガラス管23.24が取
シ付けられている。In the figure, 20 is a quartz tube, and both ends 20 of this quartz tube 20 are
Rubber stoppers 21.22 are attached to a and 20b, and glass tubes 23.24 are attached to these rubber stoppers 21.22.
一方のガラス管24は更にゴム管25を介して赤外線ガ
ス分析計26に接続されている。石英管20の内部には
、試料22が@賑された磁製ボード2Bが挿入されてい
る。石英管2θの周囲には赤外線加熱炉29が配置され
、その赤外線加熱炉29は温度制御ユニット30に接続
されている。また、石英管2Oの中の試料22付近には
熱電対31が挿入され、更に熱電対3tは上記温朋制御
ユニット5ovc接続されている。One glass tube 24 is further connected to an infrared gas analyzer 26 via a rubber tube 25. A porcelain board 2B on which a sample 22 is placed is inserted into the quartz tube 20. An infrared heating furnace 29 is arranged around the quartz tube 2θ, and the infrared heating furnace 29 is connected to a temperature control unit 30. Further, a thermocouple 31 is inserted into the quartz tube 2O near the sample 22, and the thermocouple 3t is further connected to the warm control unit 5ovc.
赤外線ガス分析計26および温度制御ユニット30は記
録ユニット32に接続されている。また、赤外線ガス分
析計26にはゴム管33が接続されている。An infrared gas analyzer 26 and a temperature control unit 30 are connected to a recording unit 32. Further, a rubber tube 33 is connected to the infrared gas analyzer 26.
次に、このような装置を用いて行なう本発明の方法の一
実施例を過程類に説明する。Next, one embodiment of the method of the present invention using such an apparatus will be explained in terms of steps.
■ 試料2rを一定量秤シ取シ、磁製ボード28に入れ
る。■ Take a certain amount of sample 2r on a scale and place it on the porcelain board 28.
■ 磁製ボー)28に石英管20の内部に挿入したらと
、両端にゴム栓2 j 、22およびガラス管23.2
4等を取シ付け、第2図のような構成にする。■ After inserting the quartz tube 20 into the porcelain bow) 28, insert the rubber plugs 2j, 22 and the glass tube 23.2 at both ends.
Attach the 4th etc. and make the configuration as shown in Figure 2.
■ ガラス管23を通じてキャリアガス(通常Cot
k除去した空気)を流しながら、赤外線加熱炉29内の
温度ケ上げて所定の温度(通常815士10℃)に保持
する。■ Carrier gas (usually Cot) is passed through the glass tube 23.
The temperature inside the infrared heating furnace 29 is raised and maintained at a predetermined temperature (usually 815° C. and 10° C.) while flowing the removed air).
■ 試料22が加熱され、その中の未燃分が燃洸すると
、CO,が発生し、その下流側に配設された赤外線がヌ
分析計26f通って排出される。この際、CO8は特定
の波長(2350α−ゝ 、670crn−’等)の赤
外線2造択的に吸収するため、この赤外線の吸収量を測
定することによってGo、lをめる。尚、通常赤外線ガ
ス分析計26は定常的な流れの中のガス渓#(ここでは
C0,濃度)を測定するために用いられるが、ここでは
燃焼に伴なって発生する全Co、fiをめる必要がある
ため、赤外線ガス分析計26の出力信号の積分値を測定
することになる。尚、実際の赤外線ガス分析計では、こ
の出力信号は通常0〜1vの直流゛電圧として得られる
。(2) When the sample 22 is heated and the unburned matter therein is combusted, CO is generated, and the infrared rays disposed on the downstream side of CO are emitted through the Nu analyzer 26f. At this time, since CO8 selectively absorbs infrared rays of specific wavelengths (2350α-', 670 crn-', etc.), Go and l can be determined by measuring the amount of absorption of this infrared ray. Note that the infrared gas analyzer 26 is normally used to measure the gas concentration in a steady flow (here, C0, concentration), but here we aim to measure the total Co, fi generated due to combustion. Therefore, the integral value of the output signal of the infrared gas analyzer 26 is measured. In an actual infrared gas analyzer, this output signal is usually obtained as a DC voltage of 0 to 1V.
■ 上記出力信号の積分値から、あらかじめ作成してお
いた検量線(出力信号の積分値と未燃分量の関係曲m)
k用いて未熟分量をめる。尚、この検量線は同一の試料
について前述した日本工業規格に規定する方法と上記本
発明の方法とによって未燃分量全測定し、これらの測定
結果の関係をめることによって得られる。この検量線は
あらかじめめておけば、測定毎に作成する必要はない。■ A calibration curve created in advance from the integral value of the above output signal (relationship curve m between the integral value of the output signal and the amount of unburned material)
Measure the unripe volume using k. This calibration curve is obtained by measuring the total amount of unburned matter on the same sample using the method specified in the Japanese Industrial Standards and the method of the present invention described above, and determining the relationship between these measurement results. If this calibration curve is prepared in advance, there is no need to create it for each measurement.
なお、本発明の方法について、その精度等を確認するた
めに実施した実験の例r以下に示す。The following is an example of an experiment conducted to confirm the accuracy of the method of the present invention.
■ 石炭燃焼試験炉において、A炭、石炭。■ Coal A, coal in a coal combustion test furnace.
C炭、D炭、石炭、石炭を各種条件下で燃焼させ、それ
ぞれ未燃分量の異なる石炭灰(フライアッシュ)を作製
する。C charcoal, D charcoal, coal, and coal are burned under various conditions to produce coal ash (fly ash) each having a different amount of unburned content.
■ 得られた石炭灰500qlFIJ取シ、前述した測
定装置に装填する。■ Take 500 ql of the obtained coal ash and load it into the measuring device described above.
■ キャリアガスを流しながら、赤外線加熱炉を急速に
所定の温度(通常815℃)に昇温する。■ Rapidly raise the temperature of the infrared heating furnace to a predetermined temperature (usually 815°C) while flowing carrier gas.
■ 未燃分の燃焼とともに発生するCo11赤外綜ガス
分析計2e24し−その際の赤外線ガス分析計26の出
力信号(直流電圧の変化)を記録ユニット32において
記録していく。(2) The Co11 infrared gas analyzer 2e24 generated with the combustion of unburned matter - the output signal (change in DC voltage) of the infrared gas analyzer 26 at that time is recorded in the recording unit 32.
■ 得られた測定チャート全第3図に示す。ここで出力
信号の圧化に基づくピークは、石炭灰中未燃分の燃焼に
よるものであるη為ら、このピーク面積8は未燃分の量
に比例する。そこで、各試料毎にこのピーク餅様B〔斜
綴で示す部分の面積〕をめる。■ The entire measurement chart obtained is shown in Figure 3. Here, since the peak of the output signal due to pressure is due to the combustion of unburned matter in the coal ash, the peak area 8 is proportional to the amount of unburned matter. Therefore, this peak mochi-like B (area of the portion shown in diagonal letters) is calculated for each sample.
■ 上記と同様の試料について別法(この場合JIS法
)で未燃分t’にめる。この別法で測定された未燃分量
と前述のピーク面積とt対応させた図γv、4図に示す
。この結果、ビーり面私と未燃分量は良好な直線関係を
示している。■ Contain the same sample as above and add it to the unburned content t' using a different method (in this case, the JIS method). Figure 4 shows a diagram γv in which the amount of unburned matter measured by this alternative method corresponds to the aforementioned peak area and t. As a result, there is a good linear relationship between the bevel surface I and the amount of unburned matter.
上述の如く、本発明は石炭灰を赤外線加熱炉で急速に加
熱して、石炭灰中に存在する未燃分を完全に燃焼させ、
この燃焼の際に発生するco、1赤外線ガス分析計の出
力とじて記録していく。その後、この出力信号の積分値
から、石炭灰中の未燃分の量?算定するものである。As mentioned above, the present invention rapidly heats coal ash in an infrared heating furnace to completely burn the unburned content present in the coal ash,
The CO generated during this combustion is recorded as the output of an infrared gas analyzer. Then, from the integral value of this output signal, calculate the amount of unburned content in the coal ash? It is calculated.
したがって、石炭灰の加熱に際しては、赤外線加熱炉を
用いるので短時間に加熱炉の昇降温が可能であシ、ひい
ては測定時間の短縮につながる。また、石炭灰の加熱燃
焼中に頻繁に石炭灰の直置測定をおこなう必要はなく、
また加熱燃焼の終了と同時に測定も終了するので未燃分
量のh+ll定を容易かつ短時間におこなうことができ
る。更に、測定に際しては、発生するCO。Therefore, when heating coal ash, since an infrared heating furnace is used, it is possible to raise and lower the temperature of the heating furnace in a short time, which in turn leads to a reduction in measurement time. In addition, there is no need to frequently perform direct measurements of coal ash during heating and combustion.
Furthermore, since the measurement ends at the same time as the heating combustion ends, the amount of unburned matter h+ll can be determined easily and in a short time. Furthermore, during the measurement, CO generated.
坦(実際にはこれと等価な赤外線ガス分析計の出力信号
)を測定するだけであるので、熱天秤の如く取扱いの面
倒な装置k必要としない等その効果は大である。Since it only measures the output signal of an infrared gas analyzer (actually equivalent to this), it has great effects, such as eliminating the need for equipment that is difficult to handle, such as a thermobalance.
ピ主の・ように本発明によれば、石炭灰中の未燃分の量
を容易かつ短時間に測定することができ、また運搬、取
扱いの面倒な装mk必要としない石炭灰中未燃分測定方
法を提供できる。According to the present invention, the amount of unburned content in coal ash can be measured easily and in a short time, and the amount of unburned content in coal ash can be measured easily and in a short time. We can provide a minute measurement method.
第1図は従来の熱天秤の構成図、諸2図は本発明の一実
施例に係る測定装置の構成図、第3図は加熱時間に対す
る上記装置の出力信号の変化を示す特性図、鮪4図は石
炭灰中の未燃分量とピーク面積との関係を示す特性図で
おる。
2O・・・石英管、26・・・赤外線ガス分析計、22
・・・試料、28・・・磁製ボート、29・・・赤外線
加熱炉、30・・・温度制御ユニット、31・・・熱電
対、32・・・記録ユニット。
出願人復代理人 弁理士 鈴 江 武 彦第1図Fig. 1 is a block diagram of a conventional thermobalance, Figures 2 and 2 are block diagrams of a measuring device according to an embodiment of the present invention, and Fig. 3 is a characteristic diagram showing changes in the output signal of the above device with respect to heating time. Figure 4 is a characteristic diagram showing the relationship between the amount of unburned content in coal ash and the peak area. 2O...Quartz tube, 26...Infrared gas analyzer, 22
... Sample, 28 ... Porcelain boat, 29 ... Infrared heating furnace, 30 ... Temperature control unit, 31 ... Thermocouple, 32 ... Recording unit. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1
Claims (1)
る未然分を完全燃焼する工程と、前記燃焼によって生じ
る炭酸ガスr下流側に配設された赤外線ガス分析計で検
出し、この赤外線ガス分析計の検出信号を記録する工程
とを具備したことを特徴とする石炭灰中未然分測定方法
。There is a process in which coal ash is rapidly heated in an infrared heating furnace to completely burn out the unresolved components present in the coal ash, and carbon dioxide produced by the combustion is detected by an infrared gas analyzer installed downstream. 1. A method for measuring unresolved matter in coal ash, comprising the step of recording a detection signal of a gas analyzer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24262783A JPS60133366A (en) | 1983-12-22 | 1983-12-22 | Measurement of unburned portion in coal ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24262783A JPS60133366A (en) | 1983-12-22 | 1983-12-22 | Measurement of unburned portion in coal ash |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60133366A true JPS60133366A (en) | 1985-07-16 |
Family
ID=17091863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24262783A Pending JPS60133366A (en) | 1983-12-22 | 1983-12-22 | Measurement of unburned portion in coal ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60133366A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997007904A1 (en) * | 1995-08-29 | 1997-03-06 | Jean Couturier | Method for upgrading and reusing fly ash from coal-fired thermal power plants |
CN104919308A (en) * | 2013-02-18 | 2015-09-16 | 川崎重工业株式会社 | Fuel-oil analyzer |
-
1983
- 1983-12-22 JP JP24262783A patent/JPS60133366A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997007904A1 (en) * | 1995-08-29 | 1997-03-06 | Jean Couturier | Method for upgrading and reusing fly ash from coal-fired thermal power plants |
FR2738169A1 (en) * | 1995-08-29 | 1997-03-07 | Couturier Jean | PROCESS FOR THE RECOVERY AND RE-USE OF FLY ASH FROM THERMAL POWER PLANTS USING COAL |
CN104919308A (en) * | 2013-02-18 | 2015-09-16 | 川崎重工业株式会社 | Fuel-oil analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4323777A (en) | Hydrocarbon gas analyzer | |
US3866460A (en) | Gas detector for fluid-filled electrical apparatus | |
US2916358A (en) | Apparatus for detecting carbon monoxide | |
CN206671193U (en) | A kind of high frequency infrared ray carbon sulphur analyser | |
CN106770455A (en) | A kind of new combustion heat determination method | |
US3519391A (en) | Method of and apparatus for measuring combustible constituents of gas samples | |
JPS60133366A (en) | Measurement of unburned portion in coal ash | |
JPS55142244A (en) | Inspecting device for moisture meter for grain | |
US5363199A (en) | Smoke opacity detector | |
US6129895A (en) | Fuel additive analyzer system and process | |
US3738808A (en) | Octane monitoring | |
JPH05119006A (en) | Device for measuring concentration of hydrogen carbide | |
CN110036292A (en) | Atomic Absorption SpectrophotometerICP and elemental analysis method | |
US2829032A (en) | Apparatus for continuously determining small amounts of one gas in another | |
McCarter | A new technique for thermal analysis of vapor‐producing reactions | |
CN106959318A (en) | A kind of method for determining full content of Sulphur in coal | |
JPH01312460A (en) | Apparatus for measuring unburned component in coal ash | |
US3172732A (en) | Analytical method and apparatus | |
JPS59183354A (en) | Measurement of unburnt component in coal ash | |
CN115753294B (en) | Method for measuring nitrogen content in low-nitrogen carburant | |
JP7458253B2 (en) | Calibration method for elemental analyzer, elemental analyzer, and program for elemental analyzer | |
US3745810A (en) | Apparatus for measuring the rate at which vapors are evolved from materials during thermal degradation | |
CN109444068B (en) | Fuzzy predictive control analysis system of infrared carbon and sulfur analyzer | |
US3032402A (en) | Apparatus for the analysis of flue gas and protective gas | |
CN218995137U (en) | Dual-mode full-range oxygen-nitrogen-hydrogen analyzer |