JPS6013186B2 - Image forming device - Google Patents
Image forming deviceInfo
- Publication number
- JPS6013186B2 JPS6013186B2 JP13711676A JP13711676A JPS6013186B2 JP S6013186 B2 JPS6013186 B2 JP S6013186B2 JP 13711676 A JP13711676 A JP 13711676A JP 13711676 A JP13711676 A JP 13711676A JP S6013186 B2 JPS6013186 B2 JP S6013186B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- latent image
- image
- light
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 47
- 239000000696 magnetic material Substances 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 12
- 230000008859 change Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 9
- 230000003068 static effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 2
- 229910016629 MnBi Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- APQXWKHOGQFGTB-UHFFFAOYSA-N 1-ethenyl-9h-carbazole Chemical class C12=CC=CC=C2NC2=C1C=CC=C2C=C APQXWKHOGQFGTB-UHFFFAOYSA-N 0.000 description 1
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 241000282373 Panthera pardus Species 0.000 description 1
- 229910000629 Rh alloy Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- KYAZRUPZRJALEP-UHFFFAOYSA-N bismuth manganese Chemical compound [Mn].[Bi] KYAZRUPZRJALEP-UHFFFAOYSA-N 0.000 description 1
- 125000005626 carbonium group Chemical group 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- ZSOJHTHUCUGDHS-UHFFFAOYSA-N gadolinium iron Chemical compound [Fe].[Gd] ZSOJHTHUCUGDHS-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- OMEXLMPRODBZCG-UHFFFAOYSA-N iron rhodium Chemical compound [Fe].[Rh] OMEXLMPRODBZCG-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Exposure Or Original Feeding In Electrophotography (AREA)
Description
【発明の詳細な説明】
本発明は磁気光学効果を有する材料を用いて磁気潜像に
応じた画像を形成する装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for forming an image according to a magnetic latent image using a material having a magneto-optical effect.
従来磁気溶像から可視像を形成する装置としては公開特
許昭和5位手第90342号公報にある如きもの即ち磁
気材料において磁気ヘッドで書き込んだ磁気潜像に磁性
トナーをふりかけて可視化する装置が知られている。こ
れは光学像から可視像を形成するいわゆる複写はできな
い。又他の装置として米国特許第3717460号公報
にある如きもの、即ち磁気材料と光導電材料を用い光像
に応じて光導電材を異なる導電率パターンを形成しこの
導電率パターンを通して電気的に磁気材料を加熱して磁
気潜像を形成しこれにトナーをふりかけて可視化する菱
魔が知られている。これは電気的加熱による為装置が複
雑となる。又公知の電子複写装置は光導電層を有する感
光体に前帯電、原画露光して静露潜像を形成し、現像を
行ない可視像を複写紙に転写、定着して複写物を得ると
ともに感光体をクリーニングして繰り返し使用できる様
にしていた。Conventionally, as a device for forming a visible image from a magnetic molten image, there is a device as disclosed in Japanese Patent Publication No. 90342, ie, a device that visualizes a magnetic latent image written on a magnetic material by sprinkling magnetic toner on it with a magnetic head. Are known. This cannot be used to create a visible image from an optical image, so-called copying. Another device is the one described in U.S. Pat. No. 3,717,460, in which a magnetic material and a photoconductive material are used to form a pattern of different conductivity on the photoconductive material according to an optical image, and the magnetic material is electrically connected to the photoconductive material through the conductivity pattern. A known technique is to heat the magnetic latent image to form a magnetic latent image, which is then visualized by sprinkling toner on it. This requires electrical heating, which makes the device complicated. In addition, a known electronic copying device pre-charges a photoreceptor having a photoconductive layer, exposes the original image to form a static latent image, develops the image, transfers and fixes the visible image onto copy paper, and obtains a copy. The photoreceptor was cleaned so that it could be used repeatedly.
しかし同一複写物を多数枚得る場合も上記一運のプロセ
スを繰り返すことから複写速度を高めることが困難であ
った。However, it has been difficult to increase the copying speed because the above-mentioned one-shot process is repeated even when a large number of identical copies are obtained.
本発明は磁気光学効果を有する磁気材料を用い上記の欠
点を除去した画像形成装置を提供するものである。The present invention provides an image forming apparatus that uses a magnetic material having a magneto-optic effect and eliminates the above-mentioned drawbacks.
即ち予め磁気潜像を磁気的なフアラデイ効果もしくはカ
ー効果等の磁気光学効果を有する材料に形成させ、この
磁気潜像を光学濃淡像として生じさせこれを光導電材料
に投影転写して光導電材料に静電潜像を形成させ、この
潜像を現像して画像形成するものである。又ドラム状こ
れらの材料を形成することにより1つの滋気潜像から多
数放のコピーを作製するものである。磁気光学材料にこ
の磁気糟像を形成する方法は、周知の記録用磁気ヘッド
により材料上を走査して電気信号を磁気港像に変換する
ものと、光パターン像を材料に照射し光の作用により磁
気的性質を変化せしめて光パターンに応じた潜像を形成
するものと、光ビームを輝度変調、偏向しつつ材料上を
走査して光ビームの作用により磁気的性質を変化せしめ
て磁気港像を形成するもの等がある。That is, a magnetic latent image is formed in advance on a material having a magneto-optical effect such as the magnetic Faraday effect or Kerr effect, and this magnetic latent image is generated as an optical density image, which is then projected and transferred onto a photoconductive material. An electrostatic latent image is formed on the image forming apparatus, and this latent image is developed to form an image. By forming these materials into a drum, multiple copies can be made from a single latent image. There are two methods for forming a magnetic image on a magneto-optical material: one is to scan the material with a well-known recording magnetic head and convert the electrical signal into a magnetic port image, and the other is to irradiate a light pattern image onto the material and use the action of light. There are those that change the magnetic properties to form a latent image according to the optical pattern, and those that scan the material while modulating the brightness and deflecting the light beam to change the magnetic properties by the action of the light beam. There are some that form images.
磁気光学材料は材料の光学的性質を材料に与えられる磁
界や光等の影響により変えられるもので、仇IG、Mn
AI礎、MnBiなどの透磁率変化の大きい常温動作可
能なものである。ここでいう磁気潜像はこの磁界や光等
の変化に応じたその光学的性質の変化パターンをさす。
この光学的性質の変化は材料により異なるが透過光の偏
向面が回転するフアディ効果の変化、反射光の偏向面が
回転するカー効果の変化として与えられる。この光学的
性質の変化を光学的濃淡の変化として読取るために材料
への光の全面照射もしくは光ビームの走査をさせそれに
より得られる透過光、もしくは反射光を偏光板を介して
観察する。Magneto-optical materials are materials whose optical properties can be changed by the influence of magnetic fields, light, etc. applied to the materials.
It is made of materials such as AI foundation and MnBi, which have a large change in magnetic permeability and can operate at room temperature. The magnetic latent image referred to here refers to a pattern of changes in optical properties in response to changes in the magnetic field, light, etc.
This change in optical properties varies depending on the material, but is given as a change in the Fuadi effect, in which the plane of deflection of transmitted light rotates, and a change in the Kerr effect, in which the plane of deflection of reflected light rotates. In order to read this change in optical properties as a change in optical density, the entire surface of the material is irradiated with light or a light beam is scanned, and the resulting transmitted or reflected light is observed through a polarizing plate.
この場合材料への人射光と直角に材料に磁界を印加する
ことが必要で、印加される磁場の大きさは1000ェル
ステッドまでの範囲であり、磁気光学材料の組成膜厚に
よって異なるがほとんどのものは、500ェルステッド
の磁場が附与される。この磁場の印加は議取り用光ビー
ムスポットと同じ位置にさせる必要になる。但し前述の
如き磁気港像形成動作により磁気材料がそれ自身で磁場
を生ずるものとなれば光学的性質の変化を謙取る際の磁
場は必要ではない。本発明はこの様にして読出した濃淡
像を磁気材料に近接した感光材料に転写し感光材料に今
度は濃淡に応じた潜像としてこれを形成する。In this case, it is necessary to apply a magnetic field to the material at right angles to the incident light on the material, and the magnitude of the applied magnetic field ranges up to 1000 Oersteds, which varies depending on the composition and thickness of the magneto-optical material, but in most cases. is given a magnetic field of 500 oersteds. This magnetic field needs to be applied at the same position as the discussion light beam spot. However, if the magnetic material itself generates a magnetic field through the above-mentioned magnetic port image forming operation, a magnetic field is not necessary when observing changes in optical properties. In the present invention, the gradation image thus read out is transferred to a photosensitive material close to the magnetic material, and a latent image corresponding to the gradation is formed on the photosensitive material.
感光材料か光導電材料であれば議出し像に応じた静電潜
像を形成する。If the material is a photosensitive material or a photoconductive material, an electrostatic latent image corresponding to the projected image is formed.
この静電港像にトナーをかけて現像し、必要に応じこの
可視像を他の複写材に転写し複写物を得るものである。
光導電村に濃淡像を転写した後のプロセスは周知のカー
ルソンもしくはNP方式の電子写真プロセスによってさ
れる。磁気材料は一般にその性質変化を保持することが
できるので形成された磁気潜像は消滅しない。This electrostatic port image is developed by applying toner, and if necessary, this visible image is transferred to other copying material to obtain a copy.
The process after transferring the grayscale image to the photoconductive layer is performed by the well-known Carlson or NP type electrophotographic process. Magnetic materials are generally capable of retaining changes in their properties, so the formed latent magnetic image does not disappear.
従って同じ磁気潜像からくり返し静電港像を形成できる
。磁気材料、光導電材料をドラム状に形成し第1図イの
如く互に接する構成もしくは第1図口の如く同D環状に
重ねた構成にすると同じ磁気潜像から多数の複写物が得
られる。Therefore, electrostatic images can be repeatedly formed from the same magnetic latent image. If a magnetic material or a photoconductive material is formed into a drum shape and made into a structure in which they touch each other as shown in Figure 1A, or a structure in which they are stacked in a ring shape as shown in Figure 1, a large number of copies can be obtained from the same magnetic latent image. .
図中1は静電港像形成部で1次コロナ帯電器を含む、2
は現像部、3は転写用帯電器、4は残余トナーのクリ一
ニングするローラである。In the figure, 1 is an electrostatic port image forming section including a primary corona charger, 2
3 is a developing section, 3 is a transfer charger, and 4 is a roller for cleaning residual toner.
又磁気材料に新たな磁気溶像を形成する為に滋気潜像を
感光材料に転写後消滋手段9により磁気潜像を消すこと
ができる。Further, in order to form a new magnetic image on the magnetic material, the magnetic latent image can be erased by the erasing means 9 after being transferred to the photosensitive material.
消磁手段は直流消滋、交流消磁、キャリー点制御等のい
ずれかを用いる。5は磁気光学材料、6は偏光材料、7
は光導蟹材料、8は導電性基体である。As the demagnetization means, one of DC demagnetization, AC demagnetization, carry point control, etc. is used. 5 is a magneto-optical material, 6 is a polarizing material, 7
8 is a photoconductive material, and 8 is a conductive substrate.
磁気光学材料は、MnBi、六方晶フェライト、希±類
オルソフェラィト、希士類ガーネット、希±額ガドリニ
ウム、希士類オーソクロマィト、具体的 に M〜Ti
2Bi、MはQ3 、MnAI後 、MmGaW、Eu
0、Eu0(Fe)、E船、E嫌e、CoCr2S、G
GCo、Gdl○、C。Magneto-optical materials include MnBi, hexagonal ferrite, rare orthoferrite, rare garnet, rare gadolinium, rare orthochromite, specifically M to Ti.
2Bi, M is Q3, after MnAI, MmGaW, Eu
0,Eu0(Fe),Eship,Enae,CoCr2S,G
GCo, Gdl○, C.
一P−(Ni−Fe)、NeFe−PdCo−Co、C
【02、Ero.ぶmo.7Fe03、YFe03:C
02十、その他鉄−。ジウム合金、Y3Fe5‐xSi
幻,2:(YIG)、(xくび伍)、Yに(Si)があ
る。特に常温動作による書き込み消去可能な磁気光学材
料は希土類オルソフェラィト、希士類オルソクロマイト
、マンガンビスマス系合金、ガドリニウム鉄ガーネット
合金、鉄ロジウム合金が有効である。1P-(Ni-Fe), NeFe-PdCo-Co, C
02, Ero. Bumo. 7Fe03, YFe03:C
020, other iron. Dium alloy, Y3Fe5-xSi
Illusion, 2: (YIG), (x neck 5), Y has (Si). In particular, rare earth orthoferrite, rare orthochromite, manganese bismuth alloy, gadolinium iron garnet alloy, and iron rhodium alloy are effective as magneto-optical materials that can be written and erased by operation at room temperature.
又光導電材料は、酸化亜鉛、硫化カドミウム、セレン、
酸化チタン、等の無機光導電物質、及びトリニトロ、フ
ルオレィンを増感材としたポリビニルカルバゾール、臭
素化ビニルカルバゾール重合体及びトリアリルカルボニ
ゥム塩、ベンゾビリリゥム塩を感光性成分としたもの等
の有機光導電物質が用いられる。Photoconductive materials include zinc oxide, cadmium sulfide, selenium,
Inorganic photoconductive substances such as titanium oxide, and organic light such as polyvinylcarbazole with trinitro or fluorene as a sensitizer, brominated vinylcarbazole polymers, triallyl carbonium salt, benzobylylium salt as a photosensitive component, etc. A conductive material is used.
口の場合には、光導電物質が透明であることが必要にな
るので、上記各種光導電物質の内硫化カドミウム、ポリ
ピニルカルバゾール等が特に有効である。材料も書き込
み光の特性を第4図に示す。In the case of the mouth, since the photoconductive material must be transparent, the various photoconductive materials mentioned above, such as cadmium sulfide and polypynylcarbazole, are particularly effective. Figure 4 shows the characteristics of the material and the writing light.
以下第2図の方式による実施例を説明する。An embodiment based on the method shown in FIG. 2 will be described below.
第3図は第1図0を具体化した装置の例で、10はオリ
ジナル像を有する原綾戦層台、11はその像を磁気材料
5に露光する為のランプ、12はその為の光学系、1一
1は光導電材7に一次帯電する為のコロナ放電器、1一
2は磁気材料5を全面蟹光する為のランプ、13は転写
紙14を給紙するためのローラ、15は定着用ヒータ、
他は第1図に同じものである。光導霧層7は偏光板6上
に塗布蒸着くスパッタリング)により形成され、その上
に必要に応じマィラ等の絶縁層を被覆している。動作説
明すると、まず原稿台10の往動とランプ11によりオ
リジナル光学像を磁気材料5に照射せしめて、磁気材料
5の磁気性質を変えそれによって光学的性質を変化させ
る。FIG. 3 shows an example of the apparatus embodying the apparatus shown in FIG. 1-1 is a corona discharger for primary charging the photoconductive material 7, 1-2 is a lamp for illuminating the entire surface of the magnetic material 5, 13 is a roller for feeding the transfer paper 14, and 15 is a corona discharger. Fixing heater,
The other parts are the same as in FIG. The light guide layer 7 is formed on the polarizing plate 6 by coating (coating, vapor deposition, sputtering), and is coated with an insulating layer such as Mylar if necessary. To explain the operation, first, an original optical image is irradiated onto the magnetic material 5 by the forward movement of the document table 10 and the lamp 11, thereby changing the magnetic properties of the magnetic material 5 and thereby changing the optical properties.
このとき照期光は光導電材料7を透過し磁気材料5に吸
収される波長のものであることを条件とする。レーザ光
等の光ビームによる照射光によりスキャニングすると磁
気材料に及ぼす熱ェネルギや、それによるキュリ温度へ
の温度の変化により磁気材料の磁気性質及び光学性質を
変化させることができる。オリジナル像に応じた磁気潜
像がドラム1周して形成されると、一次帯電器1一1を
作動して光導亀層7表面を一様帯電する。更に回転し帯
電面が全面露光用ランプ1−2に達すると、ランプ1一
2を作動して磁性材料を光射照する。それによって磁性
材料に形成された磁気性質の変化に伴う光学的性質の変
化(フアラディ効果の大小)に応じ偏光板6を介して光
導軍層7へ投影される濃淡像が得られ、この濃淡光に応
じ一次帯電された光導函層の電荷を除去する。偏向板6
を導電性にしておくと除電器はこれにより逃がすことが
でき、又ネサガラス等の導電層を光導電層7と偏光板と
の間に設けることにより除去できる。電荷パターンは現
像器2の液体現像剤により可視化され、トナー像は給紙
ローラ13で給紙された転写紙141こ転写され定着器
5を通過することにより熱定着される。ドラムを更に回
転し残留トナーをクリニングブレード4で除去し再び帯
電器1一1ランプ1−2を′点灯して静露潜像を形成す
るプロセスにはいる。これをくり返して原稿台を往復動
させることなく連続して多数枚のコピーを得る。静電像
を形成する際、必要に応じランプ1−2の光の中で磁性
材料に均一に磁場を付与する磁気ヘッドを用いてフアラ
ディ効果による透過光パターンを得ることも可能である
。このヘッドは感光ドラムに対し適当な間隔を有して設
けるので、ヘッド、ドラムの摩耗による寿命低下はない
。所望枚数のコピーが済むと、交流磁場を付与する消去
ヘッド9を作動させ、磁性材の滋気潜像を消去せしめる
。そして新たな磁気港像をオリジナル光照射と必要に応
じた一様磁場付与とにより磁性材料に形成して、再びコ
ピープロセスを実行する。以上の様にドラムを回転しつ
つ磁気潜像形成と静蟹潜像形成をさせるので多数枚のコ
ピーを一つの磁気潜像から得ることができる。尚オリジ
ナル光、均一照射光を磁界中で行なう場合は、ドラムの
照射城(スリット域、ビームポイント城)において磁界
方向と直角に光照射するために磁気ヘッドを介して光照
射するのが好ましい。従って磁気ヘッドの屋根部を透光
性にするとヘッド構造が簡単になる。オリジナル光をド
ラムの内側から磁気材料5に付与し他の処理手段をその
ままとすると(第4図)、同時磁界をドラムの外側から
付与することも可能となる。20‘ま光ビームをスキャ
ンするガルバノミラー、21‘ま磁気ヘッドである。At this time, the condition is that the irradiation light has a wavelength that is transmitted through the photoconductive material 7 and absorbed by the magnetic material 5. Scanning with irradiation light from a light beam such as a laser beam can change the magnetic properties and optical properties of the magnetic material due to the thermal energy exerted on the magnetic material and the resulting change in temperature to the Curie temperature. When a magnetic latent image corresponding to the original image is formed by making one revolution of the drum, the primary charger 1-1 is activated to uniformly charge the surface of the photoconductive layer 7. When the charged surface further rotates and reaches the lamp 1-2 for full-surface exposure, the lamp 1-2 is activated to irradiate the magnetic material with light. As a result, a gradation image is obtained which is projected onto the light guide layer 7 via the polarizing plate 6 according to the change in optical properties (the magnitude of the Faraday effect) caused by the change in the magnetic properties formed in the magnetic material, and this gradation light The charges on the photoconducting box layer, which has been primarily charged, are removed in accordance with the above. Deflection plate 6
By making the photoconductive layer 7 conductive, the static eliminator can release the static electricity, and by providing a conductive layer such as Nesa glass between the photoconductive layer 7 and the polarizing plate. The charge pattern is visualized by a liquid developer in the developing device 2, and the toner image is transferred onto a transfer paper 141 fed by a paper feeding roller 13 and thermally fixed by passing through a fixing device 5. The drum is further rotated, residual toner is removed by the cleaning blade 4, and the charger 1-1 lamp 1-2 is turned on again to begin the process of forming a static latent image. This process is repeated to obtain a large number of copies in succession without reciprocating the document table. When forming an electrostatic image, it is also possible to obtain a transmitted light pattern due to the Faraday effect by using a magnetic head that uniformly applies a magnetic field to the magnetic material in the light of the lamp 1-2, if necessary. Since this head is provided at an appropriate distance from the photosensitive drum, there is no reduction in the life of the head or drum due to wear. After the desired number of copies have been made, the erasing head 9 that applies an alternating magnetic field is operated to erase the latent image on the magnetic material. Then, a new magnetic port image is formed on the magnetic material by irradiating the original light and applying a uniform magnetic field as required, and the copying process is performed again. As described above, since the magnetic latent image and the static latent image are formed while rotating the drum, a large number of copies can be obtained from one magnetic latent image. When applying the original light or uniform irradiation light in a magnetic field, it is preferable to irradiate the light through a magnetic head in order to irradiate the irradiation area (slit area, beam point area) of the drum perpendicularly to the direction of the magnetic field. Therefore, the head structure can be simplified by making the roof of the magnetic head transparent. If the original light is applied to the magnetic material 5 from inside the drum and the other processing means remain in place (FIG. 4), it is also possible to apply the simultaneous magnetic field from outside the drum. 20' is a galvanometer mirror that scans the light beam, and 21' is a magnetic head.
尚第3図のドラムにおいて磁性材料5を外側に光導電材
料7の光導電層を内側にし磁性材料をフェライト等の絶
縁性のものにすると、均一光源1−2をドラムの外側に
設けることが可能となり各プロセス処理手段をドラム周
上に配置できる。In the drum of FIG. 3, if the magnetic material 5 is placed on the outside and the photoconductive layer of the photoconductive material 7 is placed on the inside, and the magnetic material is made of an insulating material such as ferrite, it is possible to provide the uniform light source 1-2 on the outside of the drum. This makes it possible to arrange each processing means on the circumference of the drum.
又磁気潜像形成の際、光照射に磁場を付与する場合もし
くは磁場そのもので潜像形成する場合以下の如くして像
のエッジ効果を減少し感度増加を得ることができる。即
ち磁気を用いて記録した磁気簿像を形成する際、磁気ヘ
ッドの構造、磁気ヘッドと記録媒体との距離、磁性材料
の性質により磁力線の記録媒体への入射角度と磁力線強
度が、ヘッド端面に於て著しく変化する煩向があり磁場
が必ずしも均一に与えられない。その結果、磁気潜像の
付与されるべき磁化面積全面に均質な磁気が付与されず
周辺部に片寄る。従って磁気潜像を用いて形成された静
霞潜像をトナ−により現像すると現像後のイメージは周
辺が濃く、中心が薄い、いわゆるエッジ効果が現われ画
像品質を悪くする。Further, when forming a magnetic latent image, when a magnetic field is applied to the light irradiation or when the latent image is formed by the magnetic field itself, the edge effect of the image can be reduced and the sensitivity can be increased in the following manner. In other words, when forming a magnetic book image recorded using magnetism, the angle of incidence of the magnetic field lines on the recording medium and the strength of the magnetic field lines vary depending on the structure of the magnetic head, the distance between the magnetic head and the recording medium, and the properties of the magnetic material. The magnetic field is not necessarily applied uniformly because the magnetic field tends to change significantly. As a result, homogeneous magnetism is not applied to the entire magnetized area where the magnetic latent image is to be applied, but rather is biased towards the periphery. Therefore, when a static latent image formed using a magnetic latent image is developed with toner, the image after development is dark at the periphery and thin at the center, a so-called edge effect, which deteriorates the image quality.
そこで第5,6図の如くまず第1の磁気ヘッドによって
強力な磁気を磁気記録媒体に付与する。Therefore, as shown in FIGS. 5 and 6, strong magnetism is first applied to the magnetic recording medium by the first magnetic head.
然る後外部入力に応じて変化する磁気ヘッド又は光学パ
ターンを同時に入力する光一磁気へッドーこより、前者
磁気ヘッドの端子とは極性を相逆転する様に形成するこ
とによってエッジ効果を弱めることができる。光学磁気
材料を用いてオリジナル光パターンの強度に応じて光学
磁気材料の磁気的性質すなわち透磁率変化を生ぜしめる
とパターン露光部と禾露光部で磁気的性質が著しく異な
ってくる。一般的に未露光部磁場が大きく、蕗光部磁場
が小さく観察される。従って第5図のものでもよく光学
磁性材料の中で特に光照射のみで生ずる磁気変化が充分
現像可能な大きさを所有していない場合には増感効果を
与える。After that, the edge effect can be weakened by forming an optical magnetic head that simultaneously inputs a magnetic head or an optical pattern that changes according to external input, so that the polarity is opposite to that of the terminal of the former magnetic head. . When an optical magnetic material is used to cause the magnetic properties, that is, magnetic permeability, of the optical magnetic material to change in accordance with the intensity of the original light pattern, the magnetic properties will be significantly different between the pattern exposed area and the non-exposed area. Generally, the magnetic field in the unexposed area is large and the magnetic field in the exposed area is small. Therefore, the material shown in FIG. 5 may provide a sensitizing effect especially when the magnetic change caused only by light irradiation does not have a sufficient size for development among optical magnetic materials.
磁気光学材料の場合は第6図のものが好ましく予め大き
な磁場を付与することで、偏向面の回転現像か磁気光学
材料に対してより完全に行われるため磁気塔像の大きさ
が磁場の付与の大小によって著しく異なりコントラスト
を高める。又逆転磁場によって磁気潜像の大きさを抑制
する方向にあるためにエッジ効果を少なくする。In the case of magneto-optical materials, the one shown in Fig. 6 is preferable, as by applying a large magnetic field in advance, rotational development of the deflection surface can be more completely performed on the magneto-optical material, so the size of the magnetic tower image is determined by the application of the magnetic field. It differs markedly depending on the size of the image and increases the contrast. Furthermore, since the size of the magnetic latent image is suppressed by the reverse magnetic field, the edge effect is reduced.
第1図は本発明による画像形成装置の概略図、第2図は
本発明による画像形成装置例の断面図、第3図は本発明
による他の装置例の断面略図、第4図は本発明に使用さ
れる材料、光ビームの特性表、第5,6図は磁気ヘッド
の断面図である。
第1図中、5は磁気光学材料、6は偏光板、7は光導電
材料、1は静露潜像形成部、2は現像器、3は転写ロー
ラ、4はクリニングブラシである。第1図
豹2図
第3図
第4図
策5図
第6図FIG. 1 is a schematic diagram of an image forming apparatus according to the present invention, FIG. 2 is a cross-sectional view of an example of an image forming apparatus according to the present invention, FIG. 3 is a schematic cross-sectional view of another example of an image forming apparatus according to the present invention, and FIG. 5 and 6 are cross-sectional views of the magnetic head. In FIG. 1, 5 is a magneto-optical material, 6 is a polarizing plate, 7 is a photoconductive material, 1 is a static exposure latent image forming section, 2 is a developing device, 3 is a transfer roller, and 4 is a cleaning brush. Figure 1 Leopard Figure 2 Figure 4 Figure 5 Strategy Figure 6
Claims (1)
材に磁気潜像を形成する手段と、光導電材を有し、回転
する静電潜像担持体と、上記磁性材に形成された磁気潜
像に光を照射する光源及びこの磁気潜像を通過した光を
受ける偏光手段を持ち、上記磁気潜像を光の濃淡像に変
換して上記静電潜像担持体に露光する光学手段と、この
露光により静電潜像担持体に形成された静電潜像をトナ
ーを用いて現像する手段と、を揃えた画像形成装置。 2 前記静電潜像担持体はドラム状であり、その光導電
材の内側に前記磁性材が配置されている特許請求の範囲
第1項記載の画像形成装置。 3 前記静電潜像担持体はドラム状であり、また前記磁
性材もドラム状であって、静電潜像担持体の外側に配置
されている特許請求の範囲第1項記載の画像形成装置。[Scope of Claims] 1. A rotating magnetic material having a magneto-optic effect, means for forming a magnetic latent image on the magnetic material, a rotating electrostatic latent image carrier having a photoconductive material, and the above-mentioned It has a light source that irradiates light onto a magnetic latent image formed on a magnetic material, and a polarizing means that receives the light that has passed through the magnetic latent image, and converts the magnetic latent image into a light density image to carry the electrostatic latent image. An image forming apparatus that includes an optical means for exposing a body to light, and a means for developing an electrostatic latent image formed on an electrostatic latent image carrier by this exposure using toner. 2. The image forming apparatus according to claim 1, wherein the electrostatic latent image carrier is drum-shaped, and the magnetic material is disposed inside the photoconductive material. 3. The image forming apparatus according to claim 1, wherein the electrostatic latent image carrier is drum-shaped, and the magnetic material is also drum-shaped, and is disposed outside the electrostatic latent image carrier. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13711676A JPS6013186B2 (en) | 1976-11-15 | 1976-11-15 | Image forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13711676A JPS6013186B2 (en) | 1976-11-15 | 1976-11-15 | Image forming device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5361345A JPS5361345A (en) | 1978-06-01 |
JPS6013186B2 true JPS6013186B2 (en) | 1985-04-05 |
Family
ID=15191193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13711676A Expired JPS6013186B2 (en) | 1976-11-15 | 1976-11-15 | Image forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6013186B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021065875A1 (en) | 2019-09-30 | 2021-04-08 | テルモ株式会社 | Medical device |
-
1976
- 1976-11-15 JP JP13711676A patent/JPS6013186B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021065875A1 (en) | 2019-09-30 | 2021-04-08 | テルモ株式会社 | Medical device |
Also Published As
Publication number | Publication date |
---|---|
JPS5361345A (en) | 1978-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3909258A (en) | Electrographic development process | |
US4545669A (en) | Low voltage electrophotography with simultaneous photoreceptor charging, exposure and development | |
US4446471A (en) | Electrostatic recording method and apparatus therefor | |
US4385822A (en) | Method and apparatus for forming and recording composite images | |
US4122455A (en) | Magnetic imaging for photocopying | |
US4585326A (en) | Developing electrophotographic image using magnets and magnetic material | |
JPS6013186B2 (en) | Image forming device | |
US4101904A (en) | Magnetographic imaging member and the method of its use | |
US5963762A (en) | Electrophotographic apparatus performing image exposure and development simultaneously | |
JPH0673047B2 (en) | Image forming apparatus using electro-optical device | |
US3946401A (en) | Electrothermographic image producing techniques | |
JPS6015073B2 (en) | image forming device | |
JPS6022145A (en) | Image forming method | |
US4325625A (en) | Electrophotographing method | |
US5140370A (en) | Image forming apparatus for forming a master copy | |
JPH01221265A (en) | Image forming device | |
JP2881129B2 (en) | Image forming device | |
US4486088A (en) | Method and apparatus for electrophotography capable of changing over images from positive to negative and vice versa | |
JPH03204658A (en) | Electrophotographic printing method | |
JPS6051104B2 (en) | electrophotographic equipment | |
JPH0310116B2 (en) | ||
JPS5840560A (en) | Formation of electrostatic latent image | |
JPH01221266A (en) | Image forming device | |
JPS6013179B2 (en) | Image forming method | |
JPS61122669A (en) | Picture forming device |