[go: up one dir, main page]

JPS60131821A - Decomposing method of sodium nitrate - Google Patents

Decomposing method of sodium nitrate

Info

Publication number
JPS60131821A
JPS60131821A JP24154283A JP24154283A JPS60131821A JP S60131821 A JPS60131821 A JP S60131821A JP 24154283 A JP24154283 A JP 24154283A JP 24154283 A JP24154283 A JP 24154283A JP S60131821 A JPS60131821 A JP S60131821A
Authority
JP
Japan
Prior art keywords
sodium nitrate
heating
boric acid
mixture
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24154283A
Other languages
Japanese (ja)
Other versions
JPH0339011B2 (en
Inventor
Fumiaki Komatsu
史明 小松
Kiyoshi Asahina
潔 朝比奈
Takayoshi Masaki
昌木 隆義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24154283A priority Critical patent/JPS60131821A/en
Publication of JPS60131821A publication Critical patent/JPS60131821A/en
Publication of JPH0339011B2 publication Critical patent/JPH0339011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/023Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by microwave heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To decompose safely sodium nitrate to gaseous NOx and sodium borate without accompanying the volatilization of radioactive substance by adding boric acid to sodium nitrate contg. the radioactive substance and heating the mixture to melt. CONSTITUTION:In a process for recovering the remaining nuclear fuel substance or the like from the fuel after the usage, sodium nitrate contg. radioactive substance is obtained as a by-product. Boric acid (or boron oxide) are added to sodium nitrate and the mixture is decomposed to sodium borate and NOx at comparatively low temperature by heating and melting the mixture (it is preferable to use a microwave heating furnace). Also, in this method, it is possible to obtain a stable borosilicate glass instead of producing sodium nitrate by adding glass forming material such as silicates in addition to boric acid and heating the mixture to melt.

Description

【発明の詳細な説明】 この発明は放射性物質の含まれた硝酸ナトリウムを分解
処理する方法に関づ−るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for decomposing sodium nitrate containing radioactive substances.

原子炉に核燃料を装備し、燃焼を統【ノると燃料中に中
性子を吸収する核分裂生成物が生成し、燃焼効率が低下
してくる。そこで、燃料の有効利用を図るために未燃焼
の核燃料物質(ウラン)や新しく生成した核分裂生成物
の中からプルトニウムを分離回収して再度燃料に製造加
工することが行われている。この分離回収の際に硝酸液
が溶解のための薬品として用いられ、この中の一部t、
L N aOHで中和され、ここにNa NO3が生成
Jる。
When a nuclear reactor is equipped with nuclear fuel and its combustion is controlled, fission products that absorb neutrons are produced in the fuel, reducing combustion efficiency. Therefore, in order to effectively utilize fuel, plutonium is separated and recovered from unburned nuclear fuel material (uranium) and newly generated nuclear fission products and reprocessed into fuel. During this separation and recovery, nitric acid solution is used as a chemical for dissolution, and some of this
L is neutralized with NaOH, and NaNO3 is produced here.

NaNo3はチリ硝石としても古くから広く知られ、火
薬、酸化剤および染料等に用いられCおり、消防法によ
る危険物薬品としては第1類危険物品として指定されて
いる。また化学的性質からは比重2.26、融点308
℃で潮解性があり、水に対しては容易に溶解J、る。こ
のにうな性質のNaNO3をいかに安定に長期間にわた
って貯蔵づるかが問題であり、この方法の開発が望まれ
ている。
NaNo3 has been widely known as dust saltpeter for a long time, and is used in gunpowder, oxidizing agents, dyes, etc., and is designated as a Class 1 dangerous substance as a hazardous chemical under the Fire Service Act. Also, from the chemical properties, the specific gravity is 2.26 and the melting point is 308.
It is deliquescent at ℃ and easily dissolves in water. The problem is how to store NaNO3 with such unique properties stably over a long period of time, and the development of this method is desired.

この発明は、このような従来の課題を解決するためにな
されたものであり、NaNO3を長期間にわたって安定
して貯蔵できるようにしたものである。
This invention was made in order to solve such conventional problems, and makes it possible to store NaNO3 stably for a long period of time.

プなわら、この発明の第1の要旨は、硝酸す1−リーウ
ムに対してホウiまたは酸化ホウ素を添加し、加熱浴1
11することによってホウ酸す1〜リウムどNOxガス
とに分解させるようにしたもの(・ある。
However, the first gist of the present invention is to add boron or boron oxide to 1-rium nitrate and to heat the heating bath 1.
11 to decompose boric acid into NOx gas such as mono-lithium.

また第2の要旨は、硝酸ナトリウムに対してホウ酸また
は酸化ホウ素を添加し、さらにガラスを形成する物質を
添加し、ついで加熱浴WA11′ることによってガラス
物質とNOxガスとに分解さμるようにしたものである
。また、第3゛の要旨は、硝酸ナトリウムに対してホウ
酸または酸化ホウ素を添加し、さらにクイ酸塩を添加し
、つぃC加熱溶融Jることによってホウケイ酸塩ガラス
どNOxガスとに分解させるようにしたものである。上
記各方法において、加熱溶融を電磁波を利用して行うよ
うにJると加熱を効率よく行うことができるので好まし
い。
The second gist is that sodium nitrate is decomposed into a glass substance and NOx gas by adding boric acid or boron oxide, further adding a glass-forming substance, and then heating bath WA11'. This is how it was done. In addition, the third gist is that boric acid or boron oxide is added to sodium nitrate, silicate is further added, and borosilicate glass is decomposed into NOx gas by heating and melting. It was designed so that In each of the above methods, it is preferable to perform heating and melting using electromagnetic waves because heating can be performed efficiently.

一般に、NaNO3は380℃以上に加熱づると分解が
始まり、酸素を放出して亜硝酸すトリウムとなり、さら
に750℃以上では過酸化ナトリウムを生成し、ついで
酸化す!・5リウムになる。この場合、ガラス化J°る
にはNa NO3を酸化ナトリウム(Na20)の形に
まで改質する必要がある。すなわら、NaNO3が完全
に分解した場合、Na2Oの邑は元のNaNO3の量の
およそ40重量%が得られることになるが、実際に加熱
した場合には理論通りにはならない。
In general, when NaNO3 is heated above 380°C, it begins to decompose, releasing oxygen and becoming thorium nitrite, and when heated above 750°C, it produces sodium peroxide, which then oxidizes!・It becomes 5 lium. In this case, it is necessary to modify NaNO3 to the form of sodium oxide (Na20) for vitrification. That is, when NaNO3 is completely decomposed, approximately 40% by weight of the original amount of Na2O will be obtained, but when actually heated, this will not be as expected.

熱天秤法を用いてNaNOxの分解を行ったところ、図
−に系ずような活量が得られた。づなわち、Na、’N
O3単体の場合は線1で示ずよう5分解が690℃で始
まり、960℃付近で70%の残留率を示している。一
方、分解促進剤の効果を高めるためにSiCをNaNO
3に対してモル比で1:O,5添加したものは、112
で示すように若干分解温度が下がり、610℃句近で分
解が開始するが、800℃付近で同じく70%の残留率
を示し、Na2Oにまで改質されていない。これに対し
、B2O3をモル比で1:1添71+1 L、 /こも
のは線3に示□すように450i′から□分解が始まり
、800℃付近でほぼNa2Oにまで改質さ゛れている
。線4はNaNO3がNa2Oにまで分讐した場□合を
示す。
When NaNOx was decomposed using a thermobalance method, activities similar to those shown in the figure were obtained. Tsunawachi, Na, 'N
In the case of O3 alone, 5 decomposition as shown by line 1 begins at 690°C and shows a residual rate of 70% at around 960°C. On the other hand, in order to enhance the effect of the decomposition accelerator, SiC was replaced with NaNO.
The one added with 1:O,5 in molar ratio to 3 is 112
As shown in the figure, the decomposition temperature decreases slightly and decomposition starts at around 610°C, but the residual rate is also 70% at around 800°C, and it is not modified to Na2O. On the other hand, when B2O3 was added at a molar ratio of 1:1 to 71+1 L, the decomposition started at 450i' as shown by line 3, and it was modified to almost Na2O at around 800°C. Line 4 shows the case where NaNO3 is divided into Na2O.

上2の結果より、添加した酸化ホウ素が分解促進墳1ま
たは分解曲材とシ゛て有効に作用したちのど考′えられ
、以下の之つの反応のいずれかによって分解を容易にし
たものと考えられる。 −2Na NO3−1−2B2
 Os −*N’a 2.0 ・ 21320’3+2
NO2+玲O2・・・・・・□・・・(1)2’Na 
NO3+t3203−+Na 20− [32C)3’
+2NO2+ y20 2 ・・・ ・・・ ・・・ 
・・・ ・・−(2)すなわち、ホウ素はナトリウムと
容易に結合し、ホウ酸ナトリウムを形成することによっ
てNaNO3の分解を促進したものと推゛定される。こ
の役割を有する物質とし゛ては他にホウ11 (1−1
’B 03 )が存在し、その添加量は硝酸ナトリウム
に対し2Qwt%以上必要である。
Based on the results of the above 2, it is thought that the added boron oxide acted effectively with the decomposition promoting mound 1 or the decomposition bending material, and that it facilitated the decomposition by one of the following reactions. It will be done. -2Na NO3-1-2B2
Os −*N'a 2.0 ・21320'3+2
NO2 + ReiO2・・・・・・□・・・(1) 2'Na
NO3+t3203-+Na20- [32C)3'
+2NO2+ y20 2 ・・・ ・・・ ・・・
... - (2) That is, it is presumed that boron easily combines with sodium to form sodium borate, thereby promoting the decomposition of NaNO3. Other substances that have this role include pho 11 (1-1
'B 03 ) exists, and its addition amount is required to be 2Qwt% or more relative to sodium nitrate.

つぎに、ここで用いた酸化ホウ素を用いてガラス化を行
った・加熱源に番よゲタ0波”l熱iを使ツボとしてス
テンレス鋼製のルツ ボを用いた。マざり[1波の印加−力は3I≦W〜4゜
5KWの範囲で設定した。
Next, vitrification was performed using the boron oxide used here. A stainless steel crucible was used as a crucible using 0 waves of heat as the heating source. - The force was set in the range of 3I≦W to 4°5KW.

その結果は第1鼻にぷづよ?になつIC,,1′なわち
、分解促進剤を添加しない場合は、例えば合成ウオラス
トナイト(ケク酸カルシウム:成分割合としてCaOと
Sin/!:の重を社割合旧jL’ぼ1:1)の場合は
いずれも合成ウオラストナイトの粉末へ溶融したNaN
Os//bみ込むような現象を呈し、溶融反応によ?1
.。
The result is puzuyo in the first nose? In other words, when a decomposition accelerator is not added, for example, synthetic wollastonite (calcium citric acid: CaO and Sin/! as a component ratio) is used in a ratio of 1:1. ), NaN is fused into synthetic wollastonite powder.
It exhibits a phenomenon such as Os//b infiltration, and is caused by a melting reaction? 1
.. .

況は見られなかった。この結果、水の中に浸漬した場合
数時間後に溶解し・白−状にな、・た・一方・分解促進
剤を添加したものは容易にNaNO3が分解し、ガ□ラ
ス化しi − ごて合成ウオラストナイト(Ca 3i O3−ケイ酸
カルシウム)、下水カー焼却灰および高炉スラグを用い
たが、この中でケイ酸カルシウムは硝−カリウムへ酸化
ホウ素を添加することによりホウ酸ナトリウム化合物に
改質されたものに対し特にホウ素成分がカルシウム成分
と結合し、3CaO−[3203,2Ca 0−820
3等の水に不溶な化合を生成すると同時にす]〜リウム
成分はケイ酸成分と結合し、同じく水に不溶なケイ酸ガ
ラスを形成することによって、少ない添加邑ににって大
ぎな効果を−にげることが可能である。
The situation was not observed. As a result, when immersed in water, it dissolves and becomes white after a few hours.On the other hand, when a decomposition accelerator is added, NaNO3 easily decomposes and becomes vitrified. Synthetic wollastonite (Ca 3i O 3 -calcium silicate), sewage car incineration ash and blast furnace slag were used, among which calcium silicate was converted into a sodium borate compound by adding boron oxide to nitrate-potassium. In particular, the boron component combines with the calcium component, and 3CaO-[3203, 2Ca 0-820
At the same time, the lithium component combines with the silicic acid component to form silicate glass, which is also insoluble in water, and has a great effect with a small amount of addition. - It is possible to escape.

ffT2表にケイ酸カルシウムの化学組成を示づ。The chemical composition of calcium silicate is shown in the ffT2 table.

一般にケイ酸カルシウムには合成品と天然品の2種類が
知られており、合成品は天然品と比ベアルミナ(AQ2
O3)成分が多く含まれ、水に不溶化にづる度合いはア
ルミナが含まれている合成品の方がすぐれており、アル
ミナの含fj量は3owt%まで効果が認められる。第
3表はケイ酸カルシウムの主成分である酸化カルシウム
とクイ酸の割合を変化させ、水に対するよう溶出性をめ
lこ結果である。この場合、酸化カルシウムとケイ酸の
重量比を1=4から4=1まで変化さUlそれぞれ20
wt%添加した。この結果、水に不溶な同化体へ転換す
ることができた。
Generally, two types of calcium silicate are known: a synthetic product and a natural product, and the synthetic product is a natural product and a bare alumina (AQ2
Synthetic products that contain a large amount of O3) components and contain alumina have a better degree of insolubilization in water, and the effect is recognized up to an fj content of alumina of 3 owt%. Table 3 shows the results of elubility in water by varying the ratio of calcium oxide and citric acid, which are the main components of calcium silicate. In this case, the weight ratio of calcium oxide and silicic acid was varied from 1 = 4 to 4 = 1.
wt% was added. As a result, it was possible to convert it into a water-insoluble assimilate.

さらに、上記方法ではNa NO3を水に不溶な物質に
転換する際に加熱溶融方法を用いるが、この際加熱温度
が高すぎる゛と(例えば、1000℃以上)NaNO3
中に含まれる多種の放口・1性物質の中で、例えば 1
37C8等は1000℃以−1で蒸発化する等の問題が
あり、放射性物質を含む場合には良好な方法とはいえな
い。これに対し、酸化ホウ素、ホウ酸を用いると上記の
ように非常に低い温度でNOxガスへ分解が可能となり
、成用性物質の揮散を防止Jることができる。従っ−(
、NOxガスが分解した後、ホウ酸ナトリウム化合が残
るが、このホウ酸ナトリウムを水に不溶なガラス物質へ
改質りる場合のガラス改質材どし1番よ、ここで述べた
以外にケイ酸アルミニウム、タイ酸マグネシウム等のタ
イ11!2塩、さらには本節粘土、砂礫土等の粘土物質
を用いることができる。
Furthermore, in the above method, a heating melting method is used to convert NaNO3 into a water-insoluble substance, but in this case, if the heating temperature is too high (for example, 1000°C or higher), NaNO3
Among the various substances contained in it, for example, 1
37C8 and the like have problems such as evaporation at temperatures above 1000° C., and cannot be said to be a good method when radioactive substances are included. On the other hand, when boron oxide or boric acid is used, it is possible to decompose it into NOx gas at a very low temperature as described above, and it is possible to prevent the volatile substances from volatilizing. Follow-(
After the NOx gas decomposes, a sodium borate compound remains, but when modifying this sodium borate into a glass substance that is insoluble in water, what are the best glass modifying materials other than those mentioned here? Typical 11!2 salts such as aluminum silicate and magnesium tyate, as well as clay materials such as Honbushi clay and sandy gravel, can be used.

以上説明したにうに、この発明はbx射性物質を含む硝
酸ナトリウムを加熱溶融によって安定な物質に分解処理
するようにしたものであり、簡単な方法で長期間、安定
して貯蔵することができるものである。
As explained above, this invention decomposes sodium nitrate containing a BX radioactive substance into a stable substance by heating and melting it, and it can be stored stably for a long period of time using a simple method. It is something.

【図面の簡単な説明】 図面はこの発明を説明するための;bので、NaNO3
に対する加熱温度とNaNO3の残留率との関係図であ
る。 1・・・Na NO3単体の特性曲線、3・・・Na 
N。 3にB’203を加えた場合の特性曲線。 特V[出願人 株式会社神戸製鋼jカ
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings are for explaining the present invention;
FIG. 3 is a diagram showing the relationship between the heating temperature and the residual rate of NaNO3. 1...Na Characteristic curve of NO3 alone, 3...Na
N. Characteristic curve when B'203 is added to 3. Special V [Applicant: Kobe Steel Corporation

Claims (1)

【特許請求の範囲】 1、硝酸ナトリウムに対してホウ酸または酸化ホウ素を
添加し、加熱溶融することににつでホウ酸すトリウムと
NOxガスとに分解させることを特徴とする硝酸ナトリ
ウムの分解方法。 2、硝酸ナトリウムに対してホウ酸または酸化ホウ素を
添加し、さらにガラスを形成する物質を添加し、ついで
加熱溶融することににっ−Cガラス物質とNOXガスと
に分解させることを特徴とする硝酸ナトリウムの分解方
法。 3、硝酸すトリウムに対してホウ酸または酸化ホウ素を
添加し、さらにケイ酸塩を添加し、つぃt加熱溶融する
ことによってホウケイ酸塩ガラスとNOxガスとに分解
させることを特徴とするf1酸ナトリウムの分解方法。 4、上記加熱溶融を電磁波を用いて行うことを特徴とす
る特許請求の範囲第1項、第2項または第、3項記載の
硝酸ナトリウムの分解方法。
[Claims] 1. Decomposition of sodium nitrate, which is characterized by adding boric acid or boron oxide to sodium nitrate and heating and melting the mixture to decompose it into thorium borate and NOx gas. Method. 2. It is characterized by adding boric acid or boron oxide to sodium nitrate, further adding a glass-forming substance, and then heating and melting it to decompose it into a Ni-C glass substance and NOX gas. How to decompose sodium nitrate. 3. f1, which is characterized by adding boric acid or boron oxide to thorium nitrate, further adding silicate, and decomposing it into borosilicate glass and NOx gas by heating and melting. How to decompose sodium chloride. 4. The method for decomposing sodium nitrate according to claim 1, 2, or 3, wherein the heating and melting is performed using electromagnetic waves.
JP24154283A 1983-12-20 1983-12-20 Decomposing method of sodium nitrate Granted JPS60131821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24154283A JPS60131821A (en) 1983-12-20 1983-12-20 Decomposing method of sodium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24154283A JPS60131821A (en) 1983-12-20 1983-12-20 Decomposing method of sodium nitrate

Publications (2)

Publication Number Publication Date
JPS60131821A true JPS60131821A (en) 1985-07-13
JPH0339011B2 JPH0339011B2 (en) 1991-06-12

Family

ID=17075903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24154283A Granted JPS60131821A (en) 1983-12-20 1983-12-20 Decomposing method of sodium nitrate

Country Status (1)

Country Link
JP (1) JPS60131821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497755A (en) * 2011-12-19 2013-06-26 Charles Donald Ingham A process for the rapid shut-down of nuclear fission reactions
JP2014196934A (en) * 2013-03-29 2014-10-16 株式会社神戸製鋼所 Treating method of radioactive waste containing nitrate, and vitrified solid body produced by the treating method of radioactive waste

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555869B2 (en) * 2009-10-20 2014-07-23 独立行政法人日本原子力研究開発機構 Manufacturing method of nickel oxide using microwave absorption and heat generation effect by product addition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497755A (en) * 2011-12-19 2013-06-26 Charles Donald Ingham A process for the rapid shut-down of nuclear fission reactions
JP2014196934A (en) * 2013-03-29 2014-10-16 株式会社神戸製鋼所 Treating method of radioactive waste containing nitrate, and vitrified solid body produced by the treating method of radioactive waste

Also Published As

Publication number Publication date
JPH0339011B2 (en) 1991-06-12

Similar Documents

Publication Publication Date Title
RU2409526C2 (en) Method of producing redox glass frit
EP0111839B1 (en) Method of disposing radioactive ion exchange resin
US4988376A (en) Glassification of lead and silica solid waste
Xu et al. Rhenium volatilization in waste glasses
US7294291B2 (en) Ceramicrete stabilization of U-and Pu-bearing materials
JPS60131821A (en) Decomposing method of sodium nitrate
Langowski et al. Volatility literature of chlorine, iodine, cesium, strontium, technetium, and rhenium; technetium and rhenium volatility testing
US4898692A (en) Process for direct conversion of reactive metals to glass
CN1210723C (en) Oxide materials for nuclear reactor fusion liner wells
RU2242814C1 (en) Method for recovering reactor graphite waste
US5288434A (en) Hepa filter dissolution process
JP5090157B2 (en) A method that allows complete combustion and oxidation of mineral fragments of waste processed in direct incineration vitrification equipment
RU2097854C1 (en) Method for recovery of radioactive ash residue
Brownell et al. Thermal process for immobilization of radioactive wastes
KR102463401B1 (en) Volume reduction and vitrification treatment method for spent uranium catalyst waste minimized generation of secondary wastes by self sustained combustion reaction
US3469936A (en) Bromine pentafluoride disposal
Gilman A review of the dissolution of plutonium dioxide
RU2770298C1 (en) Method for vitrifying high-ash toxic waste
Karlina et al. Thermodynamic modeling and experimental tests of irradiated graphite molten salt decontamination
RU2123212C1 (en) Radioactive alkali metal recovery process
JPH0587985A (en) Method for treating salt waste in dry reprodessing of spent nuclear metal fuel
Lee et al. Processing ceramics for radioactive waste immobilisation
JPS61178699A (en) Volune reducing method of radioactive waste
US3303140A (en) Radioactive materials of low surface area
Eddy et al. Thermal processing system concepts and considerations for RWMC buried waste