JPS60131801A - Hydrogen gas production method - Google Patents
Hydrogen gas production methodInfo
- Publication number
- JPS60131801A JPS60131801A JP23864783A JP23864783A JPS60131801A JP S60131801 A JPS60131801 A JP S60131801A JP 23864783 A JP23864783 A JP 23864783A JP 23864783 A JP23864783 A JP 23864783A JP S60131801 A JPS60131801 A JP S60131801A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- hydrogen gas
- gas
- reaction tank
- iron oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 238000001179 sorption measurement Methods 0.000 claims description 12
- 239000006227 byproduct Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 31
- 239000001257 hydrogen Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 31
- 239000007789 gas Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000003921 oil Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 8
- 239000003595 mist Substances 0.000 description 7
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- FZUJWWOKDIGOKH-UHFFFAOYSA-N sulfuric acid hydrochloride Chemical compound Cl.OS(O)(=O)=O FZUJWWOKDIGOKH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
発明の技術分野
この発明は、酸化鉄の製造過程で発生する水素ガスを回
収・精製することによって、高純度の水素ガスを安価に
製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for producing high-purity hydrogen gas at low cost by recovering and refining hydrogen gas generated during the production process of iron oxide.
発明の技術的背景とその問題点
水素は現在一般工業ガス、石油精製および石油化学工業
に不可欠な原料であることは周知の通りである。水素の
製造法としては種々の方法があるが、現在石油精製工業
および石油化学工業で最も広く採用されているのは炭化
水素を原料とする部分酸化法とスチームリフオーミング
法である。Technical background of the invention and its problems It is well known that hydrogen is currently an indispensable raw material for general industrial gas, petroleum refining, and petrochemical industries. There are various methods for producing hydrogen, but the ones currently most widely used in the oil refining industry and petrochemical industry are the partial oxidation method and the steam reforming method using hydrocarbons as raw materials.
部分酸化法は原料、炭化水素(ナフサ)と酸素とを高温
(1000〜1400℃)で触媒下あるいは無触媒下で
反応させ、完全燃焼ではなく部分酸化によって水素ガス
を得る方法であり、スチームリフオーミンメ法は原料炭
化水素と水蒸気とを800°C前後で触媒を用いて反応
させる方法である。しかし、この炭化、水素を原料とす
る水素製造法は、自家で消費する水素の製造のみに採用
されているだけで、外販水素の製造にはほとんど採用さ
れていない。The partial oxidation method is a method in which the raw material, hydrocarbon (naphtha), and oxygen are reacted at high temperatures (1000 to 1400°C) with or without a catalyst to obtain hydrogen gas through partial oxidation rather than complete combustion. The Ominme method is a method in which raw material hydrocarbons and steam are reacted at around 800°C using a catalyst. However, this hydrogen production method using carbonization and hydrogen as raw materials is only used to produce hydrogen for in-house consumption, and is rarely used to produce hydrogen for external sale.
外販水素はソーダ製造業界においてソーダと塩素を得る
ために食塩を電気分解した時に発生する副生ガスである
。すなわち、食塩水を電気分解するとか性ソ、−ダ、塩
素および水素が得られるが、外販水素の大部分はこの食
塩電解法により発生した余剰水素である。一方、外販水
素の需要量に対してソーダ業界の操業率は製造コスト、
電力費の高騰により年々減少している。このため、水素
製造業界では外販水素の需要に対応し得る新しい水素源
がめられている。Externally sold hydrogen is a byproduct gas generated when salt is electrolyzed to obtain soda and chlorine in the soda manufacturing industry. That is, when salt water is electrolyzed, caustic soda, chlorine, and hydrogen are obtained, but most of the hydrogen sold outside is surplus hydrogen generated by this salt electrolysis method. On the other hand, the operating rate of the soda industry is based on the production cost and the demand for externally sold hydrogen.
It is decreasing year by year due to rising electricity costs. For this reason, the hydrogen production industry is looking for new hydrogen sources that can meet the demand for externally sold hydrogen.
なお、上記以外の水素製造技術として従来、以下に示す
方法等が提、′案されている。In addition, as hydrogen production techniques other than those described above, the following methods and the like have been proposed and proposed in the past.
(1) S P E (5olId Polymer
Electrolyte )法この方法は水□電解法の
一種で、原理は高分子の電解質にカチオン交換膜を用い
、膜の両面に接合した触媒型−に主電極からカレンコレ
クターを通して電圧をかけ、極室に水を送ると陽極に酸
素が発生し、針は膜中のヌルホン酸基を介して陰極に向
い、陰極で水素を発生させる方法である。(1) S P E (5olId Polymer
Electrolyte) method This method is a type of water electrolysis method.The principle is that a cation exchange membrane is used as a polymer electrolyte, and a voltage is applied from the main electrode through a Karen collector to the catalyst bonded to both sides of the membrane, and the electrode chamber is When water is sent, oxygen is generated at the anode, and the needle is directed to the cathode via the sulfonic acid groups in the membrane, generating hydrogen at the cathode.
(2)熱化学法およびバイブ言乙ド法
熱化学法とは高温熱源を世いて熱化学サイクルを実施す
る熱化学プラントにより、水(または炭酸ガス)を分解
して水素(またはC0)を燃料として大量生産するエネ
ルギー技術である。(2) Thermochemical method and vibe method Thermochemical method uses a thermochemical plant that uses a high-temperature heat source to perform a thermochemical cycle to decompose water (or carbon dioxide) and turn it into hydrogen (or CO) as fuel. It is an energy technology for mass production.
また、反応の一部に電気分解を用いたものをハイブリッ
ド法という。In addition, a method that uses electrolysis as part of the reaction is called a hybrid method.
熱化学的方法/は電気分解より効率がよいが、実験室の
範囲を出ておらず■分離効率および熱究が行なわれてい
る。Thermochemical methods/are more efficient than electrolysis, but are still outside the laboratory and are being studied for separation efficiency and heat.
(3) 光電気化学反応法
太陽エネルギーを利用して水分を分解し、水素と酸素を
得る方法であり、水素変換経路としては■太陽電池−電
解1v’−卜、■太陽熱発電−電解ルート、■水の熱分
解によるルート、■光化学的水分解プロセス等がある。(3) Photoelectrochemical reaction method This is a method of decomposing water using solar energy to obtain hydrogen and oxygen. Hydrogen conversion routes include ■Solar cell - electrolysis 1v' - 卜, ■Solar thermal power generation - electrolysis route, ■Route by thermal decomposition of water, ■Photochemical water splitting process, etc.
(4)硫化水素を原料とする水素製造法灯油、軽油およ
び重油等の水素化脱硫および重質油や石炭ガス化におい
てイオウ分は硫化水素の形で生成ガス中に含まれてくる
。この硫化□
水素を回収し、分解して水素を得る方法がこの方法であ
る。(4) Hydrogen production method using hydrogen sulfide as raw material In hydrodesulfurization of kerosene, light oil, heavy oil, etc., and gasification of heavy oil and coal, sulfur is contained in the produced gas in the form of hydrogen sulfide. This method recovers this hydrogen sulfide and decomposes it to obtain hydrogen.
しかしながら、これらの方法は未だ研究段階、□実験段
階にあり、またこ糺らの方法を実施するためには談備費
の問題、得□られる水素□の純度の問題等大きな課題を
解決しなければならないため、実用化には相当の時間を
要し、現在の外販水素の需要には対応し得ない。However, these methods are still in the research and □experimental stages, and in order to implement these methods, major issues must be resolved, such as the problem of meeting costs and the purity of the hydrogen obtained. Therefore, it will take a considerable amount of time to put it into practical use, and it will not be able to meet the current demand for externally sold hydrogen.
ところで、酸化鉄(主として塩化鉄または硫酸鉄)は、
鉄源と塩酸または゛硫酸と゛の反応によって生成させる
ことができるが、この反応過程にセいて水・素ガスが副
生ずる。従って、酸化鉄の製造過程で発生する水素ガス
は新・しい水素源として十分利用可能である。しかし、
従来の酸化鉄製造技術では鉄源と塩酸または硫酸とを反
応させる反応槽が開放型であるため二副生する水素ガス
は作業環境の悪化をきたすと″の理由でミストセパレー
ター、ダスを集塵、放射基から成る環境改善設備にて処
理され大気放散している。By the way, iron oxide (mainly iron chloride or iron sulfate) is
It can be produced by reacting an iron source with hydrochloric acid or sulfuric acid, but water and hydrogen gas are produced as by-products during this reaction process. Therefore, hydrogen gas generated during the production process of iron oxide can be fully utilized as a new hydrogen source. but,
In conventional iron oxide manufacturing technology, the reaction tank in which the iron source reacts with hydrochloric acid or sulfuric acid is an open type, so the hydrogen gas produced as a by-product deteriorates the working environment, so a mist separator is used to collect the dust. , treated with environmental improvement equipment consisting of radioactive radicals and released into the atmosphere.
発明の目的
この発明は、上記酸化鉄の製造過程で一生する水素ガス
を回収して新しい水素源として利用しようとするもので
、水素ガスの回収が容易で、しかも二般的な高純度木本
の製造法・(炭化水素を原料とする部分酸化法等)と比
較し七安価に高純度の水素を得ることができる水素ガス
あ一造方法を提案することを目的とするもめである。Purpose of the Invention This invention aims to recover the hydrogen gas that remains during the manufacturing process of iron oxide and use it as a new hydrogen source. The purpose of this dispute is to propose a method for producing hydrogen gas that can obtain highly pure hydrogen at a lower cost than other methods (such as partial oxidation methods using hydrocarbons as raw materials).
発明の開示
この発明に係る水素ガスの製造方法は、密閉型反応槽で
鉄源を塩酸または硫酸と反応させて酸化の回収水素ガス
を吸着塔または膜□分−装置に通し精製することを特徴
とするものである。DISCLOSURE OF THE INVENTION The method for producing hydrogen gas according to the present invention is characterized in that an iron source is reacted with hydrochloric acid or sulfuric acid in a closed reaction tank, and the hydrogen gas recovered from oxidation is purified by passing it through an adsorption tower or a membrane separation device. That is.
の開放型から密閉型に替えることにより、外部からの不
純ガスの混入を防ぎ水素含有ガスの回収を容易にすると
と冒〒、回正ガスはC6やCO□ガスの混入が少なくな
ることにより、co、co、吸収塔i経ずに油吸着I経
て直接N、、O,油吸着塔99.9999%)′=水素
を得る方法でλる。By changing from an open type to a closed type, we can prevent impurity gas from entering from the outside and make it easier to recover hydrogen-containing gas. Co, co, N, O, oil adsorption tower 99.9999%)' = λ in a method of obtaining hydrogen directly through oil adsorption I without passing through absorption tower i.
酸化鉄の□製造過程で鉄源を塩酸または硫酸で溶に=ら
□れるようにF、分1−1す0.4ty/と多大な量F
e + 28C1l (またGtHtSO4) d F
eC1,(またはF6SO4) + H!↑
従来の酸化鉄製造技術では、酸化鉄の反応槽が開放型で
あったことにより、上記副生ガスの処理については、作
業環境を悪化しないためにミストセパレーター、ダスト
集塵、放散塔等の環境改善設備が必要であった。In the manufacturing process of iron oxide, the iron source is dissolved in hydrochloric acid or sulfuric acid, and a large amount of F, 1-1 to 0.4 ty/ is used.
e + 28C1l (also GtHtSO4) d F
eC1, (or F6SO4) + H! ↑ In conventional iron oxide production technology, the iron oxide reaction tank was an open type, so in order to avoid deteriorating the working environment, it was necessary to use mist separators, dust collectors, diffusion towers, etc. to treat the above-mentioned byproduct gas. Environmental improvement equipment was needed.
この発明では、上記副生ガスの回収を目的として反応槽
を密閉型とし、外部と遮断した状態で鉄源を塩酸または
硫酸と反応させる方法をとったのである。この方法によ
れば、密閉型反応槽内で副生ずる水素ガスは外部に漏れ
ないばかりでなく、外部の不純物が混入するおそれも全
くなく、またCOやCO,ガスの混入量も非常に少ない
水素ガスが得られる。また、この水素ガスの回収も密閉
型であるため容易となる。In this invention, for the purpose of recovering the above-mentioned by-product gas, the reaction tank is of a closed type, and a method is adopted in which the iron source is reacted with hydrochloric acid or sulfuric acid while being isolated from the outside. According to this method, hydrogen gas produced as a by-product in a closed reaction tank not only does not leak to the outside, but also there is no risk of contamination with external impurities, and the amount of CO, CO, and gas mixed in is very small. Gas is obtained. Furthermore, recovery of this hydrogen gas is also facilitated because it is a closed type.
このように、反応槽を密閉型とすることにより、外部か
らの不純ガスの混入を防ぎ、純度の高い水素ガスを容易
に回収することができる。また、C0やCO,ガスの含
有量が非常に少ないため、その回収ガスの精製に当って
は、触媒塔や酸性ガス吸収塔を経ずして、油吸着基とN
、、O,吸着塔または膜分離装置を通すのみでよく、炭
化水素を原料とする部分酸化法等のガス精製処理に比べ
大[11に61製工程が省略化され、高純度(99,9
〜99.9999チ)の水素ガスを安価に製造すること
ができる。In this way, by making the reaction tank a closed type, it is possible to prevent contamination of impure gas from the outside and to easily recover highly pure hydrogen gas. In addition, since the content of CO, CO, and other gases is very low, when refining the recovered gas, the oil adsorption group and N
,, O, only needs to be passed through an adsorption tower or membrane separation device, which is much larger than gas purification processes such as partial oxidation methods that use hydrocarbons as raw materials [11 to 61 manufacturing steps are omitted, and high purity (99,9
~99.9999 cm) of hydrogen gas can be produced at low cost.
次にこの発明の一実施例を図面に基づいて説明する。Next, one embodiment of the present invention will be described based on the drawings.
第1図はこの発明に係る水素ガス回収・精製フローで、
(1)は密閉型反応槽、(2)は洗浄塔、(3)はミス
トセパレーター、(4)は油吸着基、(5)はN1 e
O2吸着塔である。なお、図中細線で示した部分は酸
化鉄製造プロセスであり、α1は濾過器、0υは熱交換
器、(イ)は冷却塔である。Figure 1 shows the hydrogen gas recovery and purification flow according to this invention.
(1) is a closed reaction tank, (2) is a cleaning tower, (3) is a mist separator, (4) is an oil adsorption group, and (5) is a N1 e
It is an O2 adsorption tower. In addition, the part shown by the thin line in the figure is the iron oxide production process, α1 is a filter, 0υ is a heat exchanger, and (a) is a cooling tower.
すなわち、密閉型反応槽(1)で鉄源と塩酸(硫酸)と
水を反応させると、酸化鉄が生成すると同時に水素ガス
が発生する。この水素ガスは反応槽が密閉構造であるこ
とにより外部に漏れることがなく、かつ外部の不純ガス
が混入するおそれもない。従って、COや002等の酸
性ガスの含有量も少ない。That is, when an iron source, hydrochloric acid (sulfuric acid), and water are reacted in a closed reaction tank (1), iron oxide is generated and at the same time hydrogen gas is generated. This hydrogen gas does not leak to the outside due to the closed structure of the reaction tank, and there is no risk of contamination with external impurity gas. Therefore, the content of acidic gases such as CO and 002 is also small.
反応槽(1)内で発生した水素ガスは、槽頂部より圧縮
機(6)Iこて吸引し外部に取出すとともに、洗浄塔(
2)にて水洗し粉塵を洗い落すとともlこ、ミストセパ
レーター(3)にてミストを除去する。洗浄塔(2)詔
よびミストセパレーター(3)の廃水は反応W (1)
に戻して反応液として使用する。不純物を除去した水素
ガスは油吸着基(4)で圧縮機(6)から混入した油分
を除去しN、、O,吸着塔(5)へ通し、水素ガス中の
N、やOlを吸着除去する。Hydrogen gas generated in the reaction tank (1) is suctioned from the top of the tank by the compressor (6) I trowel and taken out to the outside, and is also transferred to the cleaning tower (
After rinsing with water in step 2 to remove dust, the mist is removed in a mist separator (3). The wastewater from the cleaning tower (2) and the mist separator (3) undergoes reaction W (1)
Return to water and use as reaction solution. The hydrogen gas from which impurities have been removed uses an oil adsorption group (4) to remove oil mixed in from the compressor (6), and passes through the N, O, and adsorption tower (5), where N and Ol in the hydrogen gas are adsorbed and removed. do.
以下に実施例を示す。Examples are shown below.
実 施 例
鉄源(スクラップ、ダスト)20トン、塩酸80トン、
水270トンを密閉型反応槽に入れ、60”Cの温度に
加熱して1時間反応させたところ、純ty90チの水素
含有ガスが9000m’副生じた。この副生カスを洗浄
塔およびミストセパレーター +C’T: 浄化した後
、油吸着基およびN2.O,吸着塔に通し油分およびN
2.Qtを除去した結果、純度99.9999%の水素
が6500m’得られた(歩留り80%)。Example iron source (scrap, dust) 20 tons, hydrochloric acid 80 tons,
When 270 tons of water was put into a closed reaction tank and heated to a temperature of 60"C and reacted for 1 hour, 9000 m' of hydrogen-containing gas with a purity of 90% was produced. Separator +C'T: After purification, oil and N2.
2. As a result of removing Qt, 6500 m' of hydrogen with a purity of 99.9999% was obtained (yield 80%).
以上説明したごとく、この発明法によれば、酸化鉄製造
の際に副生ずる多量の水素ガスを容易にしかも純度を落
すことなく回収することができる上、M製工程も吸MJ
J!?のみで高純度の水素を得ることができ、工業的に
大なる効果を奏するものである。As explained above, according to the method of the present invention, a large amount of hydrogen gas produced as a by-product during the production of iron oxide can be easily recovered without reducing the purity, and the M production process can also be carried out by absorbing MJ.
J! ? It is possible to obtain high purity hydrogen using only this method, which has great industrial effects.
第1図はこの発明の一実施例を示す水素ガス回収・精製
フローである。
l・・・密閉型反応槽、2・・・洗浄塔、3・・・ミス
トセパレーター、4用油吸着塔、5・・・N2.O2吸
着塔、6・・・圧縮機。
出願人 住友金属工業株式会社
同 共同酸素株式会社FIG. 1 is a hydrogen gas recovery and purification flow showing one embodiment of the present invention. l...Closed reaction tank, 2...Washing tower, 3...Mist separator, oil adsorption tower for 4, 5...N2. O2 adsorption tower, 6... compressor. Applicant: Sumitomo Metal Industries, Ltd. Kyodo Oxygen Co., Ltd.
Claims (1)
鉄を生成する際に副生ずる水素ガスを回収し、この回収
水素ガスを吸着塔または膜分離装置に通し精製すること
を特徴とする水素ガスの製造方法。It is characterized by recovering hydrogen gas that is produced as a by-product when iron oxide is produced by reacting an iron source with hydrochloric acid or sulfuric acid in a closed reaction tank, and purifying the recovered hydrogen gas by passing it through an adsorption tower or membrane separation device. Method for producing hydrogen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23864783A JPS60131801A (en) | 1983-12-16 | 1983-12-16 | Hydrogen gas production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23864783A JPS60131801A (en) | 1983-12-16 | 1983-12-16 | Hydrogen gas production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60131801A true JPS60131801A (en) | 1985-07-13 |
Family
ID=17033238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23864783A Pending JPS60131801A (en) | 1983-12-16 | 1983-12-16 | Hydrogen gas production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60131801A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019229754A1 (en) * | 2018-05-31 | 2019-12-05 | O-Phy Technologies Ltd. | Method of producing hydrogen gas from water in liquid phase |
-
1983
- 1983-12-16 JP JP23864783A patent/JPS60131801A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019229754A1 (en) * | 2018-05-31 | 2019-12-05 | O-Phy Technologies Ltd. | Method of producing hydrogen gas from water in liquid phase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brecher et al. | The Westinghouse sulfur cycle for the thermochemical decomposition of water | |
JP5385153B2 (en) | Method for producing hydrogen and sulfuric acid | |
US4197421A (en) | Synthetic carbonaceous fuels and feedstocks | |
US3766027A (en) | Method and apparatus for co{11 {11 conversion to methane | |
CN103898265B (en) | A kind of coke-oven gas upgrading direct-reduction iron ore system and device and method | |
CN110180383B (en) | Hydrogen sulfide acid gas and hydrogen sulfide resource cooperative recovery device and method | |
CN102448876B (en) | The concentrated method of dilute sulphuric acid and the equipment of concentrated dilute sulphuric acid | |
CN114854457B (en) | Decarbonization and desulfurization method for mixed gas containing combustible gas | |
CN112811454A (en) | System and method for comprehensively utilizing sulfur-containing flue gas and fly ash of boiler | |
US4765873A (en) | Continuous process for the removal of hydrogen sulfide from a gaseous stream | |
JPH06509497A (en) | Method for removing hydrogen sulfide and/or carbon disulfide from waste gas | |
US20100230296A1 (en) | Production of Hydrogen Gas From Sulfur-Containing Compounds | |
CN108011119B (en) | Method and system for resource utilization of hydrogen-containing exhaust gas coupled to fuel cell clean power generation | |
US4332650A (en) | Thermoelectrochemical process using copper oxide for producing hydrogen and oxygen from water | |
JPS60131801A (en) | Hydrogen gas production method | |
CN101157443A (en) | A method for synchronously producing synthesis gas and metallic zinc | |
CN114684794B (en) | Claus tail gas treatment system and treatment method | |
US4528173A (en) | Electrolytic process for desulphurization and seed regeneration in coal fired magnetohydrodynamic (MHD) power generation systems | |
JPH0261410B2 (en) | ||
CN119013249A (en) | Method and apparatus for producing urea | |
CN214319665U (en) | Claus tail gas treatment system | |
CN110357043B (en) | A method for producing hydrogen sulfide by utilizing high-concentration sulfur dioxide and natural gas | |
CN113213685A (en) | Desulfurization product sulfur recycling treatment process | |
CN205635670U (en) | System for clean gas of coal gasification preparation base shaft furnace is crude gas still | |
JPH04261130A (en) | Production of methanol utilizing nuclear heat |