[go: up one dir, main page]

JPS60129711A - Formation of optical waveguide - Google Patents

Formation of optical waveguide

Info

Publication number
JPS60129711A
JPS60129711A JP23723083A JP23723083A JPS60129711A JP S60129711 A JPS60129711 A JP S60129711A JP 23723083 A JP23723083 A JP 23723083A JP 23723083 A JP23723083 A JP 23723083A JP S60129711 A JPS60129711 A JP S60129711A
Authority
JP
Japan
Prior art keywords
groove
etching
mask
substrate
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23723083A
Other languages
Japanese (ja)
Inventor
Shigehiro Kusumoto
楠本 茂宏
Hideaki Okayama
秀彰 岡山
Keisuke Watanabe
敬介 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP23723083A priority Critical patent/JPS60129711A/en
Publication of JPS60129711A publication Critical patent/JPS60129711A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To shorten a groove working time by employing anisotropic etching on RIE basis and isotropic chemical etching in combination for the groove work of a glass substrate. CONSTITUTION:A mask 2 is formed of a metallic protection film of Ni, etc., with etching resistance on a glass substrate 1 of quartz, etc., by photolithography, and anisotropic etching is carried out on RIE basis through a hole 3 to form a temporary groove 4 of depth d1. Then, the mask 2 is used for isotropic chemical etching using fluoric acid to shape the temporary groove 4, forming a groove 7 for an optical waveguide. The groove 7 is a sectioned in a channel shape having an arc of a radius (r) and has a size and a shape suitable for the joining of optical fibers. The mask 2 is removed and then a glass layer 8 having a larger refractive index than the substrate 1 is deposited by a CVD method; and its surface is polished and a glass layer 9 having a refractive index nearly equal to that of the substrate 1 is deposited to form the optical waveguide 8b. The isotropic etching is applied for the shaping, so the work time is shortened.

Description

【発明の詳細な説明】 (発明の技術分野) この発明はマルチモードの先導波路の形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for forming a multimode leading wavepath.

(技術的背景) 従来よりこの種の先導波路の色々な形成方法が提案され
ている。例えば、文献: [電子通信学会技術研究報告
 0 Q E 8O−135J (1981年2月20
日発行)に開示されている方法で代表されるように、従
来方法では、石英等のガラス基板に対してCF、1等の
反応性ガスを使用したドライエツチング法(例えば、R
eactive fan Etching、以下RIE
という)により、横断面の形状が角型の溝を形成し、こ
のガラス基板の屈折率よりも屈折率の大きい別のガラス
材料をCvD等の方法でこの角型溝に堆積させて光導波
路を形成していた。
(Technical Background) Various methods for forming this type of leading wavepath have been proposed. For example, literature: [IEICE Technical Research Report 0 Q E 8O-135J (February 20, 1981)
Conventional methods, as typified by the method disclosed in Japan (Japanese Edition), involve a dry etching method (e.g., R
active fan etching, hereinafter referred to as RIE
), a groove with a square cross section is formed, and another glass material with a refractive index higher than that of the glass substrate is deposited in this square groove by a method such as CvD to form an optical waveguide. was forming.

ところで1通常伝送用として使用されているマルチモー
ド光ファイバのコアの直径は50μ腸程度である。これ
がため、光ファイバとの接合に好適な同程度の寸法を有
する溝の加工を上述した従来のようにRIE法によるエ
ツチングのみで行うとすると、このRIE法での加工速
度が遅いため、加工に長時問掛ってしまうという欠点が
ある。
By the way, the core diameter of the multimode optical fiber normally used for transmission is about 50 μm. For this reason, if a groove with similar dimensions suitable for bonding to an optical fiber is processed by etching only using the RIE method as described above, the processing speed of this RIE method is slow, so it is difficult to process the groove. The problem is that the questions take a long time.

また、このRIE法でエツチングされて得られた溝の壁
面及び底面は光学的に粗面であるため、これが光の散乱
による伝送損失の主要原因となるという欠点がある。
Furthermore, since the walls and bottom surfaces of the grooves etched by this RIE method are optically rough, there is a drawback in that they are a major cause of transmission loss due to light scattering.

さらに、このRIE法によるエツチングは異方性エツチ
ングであるため、加工された溝、すなわち、先導波路の
断面形状は角型となってしまう。
Furthermore, since etching by this RIE method is anisotropic etching, the cross-sectional shape of the processed groove, that is, the leading waveguide, becomes square.

これかため、先導波路の接合面と円形断面形状をイfす
る光ファイバとの接合面との完全な一致が得られず、従
って、接合部で断面形状の相違による接続損失が起ると
いう欠点がある。
For this reason, the bonding surface of the leading waveguide and the bonding surface of the optical fiber having a circular cross-sectional shape cannot be perfectly matched, and therefore, there is a disadvantage that splice loss occurs at the bonding portion due to the difference in cross-sectional shape. There is.

(発明の目的) この発明の目的は上述した従来方法の欠点を除去した先
導波路の形成方法を提供するにある。
(Object of the Invention) An object of the present invention is to provide a method for forming a leading waveguide that eliminates the drawbacks of the above-mentioned conventional methods.

(発明の構成) この1」的の達成を図るため、この発明においては、カ
ラス基板へ溝加工するに当り、RIE法による異方性エ
ツチングと、化学エツチング法による等方性エツチング
とを組合せて行うことを要旨とする。
(Structure of the Invention) In order to achieve objective 1, the present invention combines anisotropic etching by RIE and isotropic etching by chemical etching when forming grooves on a glass substrate. The gist is what to do.

(実施例の説明) 以下、図面を参照してこの発明の実施例につき説明する
(Description of Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図(A)〜(C)はこの発明の光導波路の形成方法
の−・実施例を説明するための工程図で、それぞれ、主
要段階における光導波路の形成状態な断面図として略図
的に示しである。
FIGS. 1(A) to 1(C) are process diagrams for explaining an embodiment of the method for forming an optical waveguide according to the present invention, each of which is schematically shown as a cross-sectional view of the optical waveguide forming state at the main stage. This is an indication.

先ず、第1図(A)に示すように、石英等のカラス基板
l(屈折率をIll とする)を用意し、この基板1上
に1通常のホ]・リングラフィ技術により、下地の基板
lのエツチングに際し使用するマスク2を形成する。こ
のマスク2を例えばNiのような耐エツチング性の金属
保護膜とする。3はこのマスク2に形成されている穴(
又は窓)で、基板lのこの穴3に対応する部分に光導波
路が形成される。この穴3の幅W、を形成すべき先導波
路の幅W2(第1図(C))よりも全体的に小さめに形
成する。
First, as shown in FIG. 1(A), a glass substrate 1 made of quartz or the like (with a refractive index of Ill) is prepared, and an underlying substrate 1 is deposited on this substrate 1 using the usual phosphorography technique. A mask 2 is formed to be used in etching the pattern. This mask 2 is made of, for example, an etching-resistant metal protective film such as Ni. 3 is a hole formed in this mask 2 (
or a window), and an optical waveguide is formed in a portion of the substrate l corresponding to this hole 3. The width W of this hole 3 is formed to be smaller overall than the width W2 (FIG. 1(C)) of the leading waveguide to be formed.

次に、第2図に示すように、このマスク2を有する基板
lに対して、このマスク2の穴3を経て、RIE法によ
り異方性エツチングを行う。この場合、CF4ガス或い
はこのCF4と酸素との混合ガスを用いるのが好適であ
る。この異方性エツチングによって、基板lに幅はマス
クの穴3と等しくかつ深さd+の仮構4が形成されるが
、この仮構4の大きさは使用される光ファイバの断面の
太きさよりも小さく形成される。また、エツチング形成
された仮構4の断面形状は壁の側面と底面とが交差する
角の部分が角ぼって丸みのないいわゆる四角型形状とな
っている。
Next, as shown in FIG. 2, the substrate l having the mask 2 is subjected to anisotropic etching through the holes 3 of the mask 2 by RIE. In this case, it is preferable to use CF4 gas or a mixed gas of CF4 and oxygen. Through this anisotropic etching, a temporary structure 4 is formed on the substrate l with a width equal to the mask hole 3 and a depth d+, but the size of this temporary structure 4 is larger than the cross-sectional thickness of the optical fiber used. Formed small. Further, the cross-sectional shape of the etched temporary structure 4 has a so-called rectangular shape with rounded corners where the side surfaces and the bottom surface of the wall intersect.

次に、第1図(C)に示すように、マスク2をそのまま
使用して、響の仮構4に対して弗酸を用いてYη温で化
学エツチングを行って仮構の整形を行い、先導波路用の
溝7を形成する。この場合、弗酸の濃度は所要に応じた
濃度を選定することが出来′コが、例えば、50%の濃
度とする。この化学エツチングは等方性エンチングであ
るため、仮構4の壁の側面5a、5b及び底面6の方向
にエツチングが行われ、仮構4が加工整形される。この
化学エンチングによる加]−策、すなわち、エツチング
により仮構4の壁面(5a、5b、 6 )から掘られ
る量をrとすれば、第1図(C)に示したように、整形
されて最終的に得られる溝7の幅W2はWl+2rとな
り、深さd2はdl+rとなる。また、この化学エンチ
ングにより、角型の仮構4(第1図(C)に点線で示す
)の側面と底面とが交差する部分の角か取れて、この仮
構4の両面の交差する点を中心とした半径rの円弧状と
なり、従って、最終的に得られる溝7の隅の部分は図示
のように丸くU字状となる。
Next, as shown in FIG. 1(C), using the mask 2 as it is, chemically etching the Hibiki temporary structure 4 using hydrofluoric acid at Yη temperature to shape the temporary structure, and forming the leading waveform. A groove 7 is formed for this purpose. In this case, the concentration of hydrofluoric acid can be selected as required, but for example, the concentration is 50%. Since this chemical etching is isotropic etching, etching is performed in the direction of the side surfaces 5a, 5b and bottom surface 6 of the wall of the temporary structure 4, and the temporary structure 4 is processed and shaped. If r is the amount excavated from the wall surface (5a, 5b, 6) of the temporary structure 4 by this chemical etching method, the etching will be reshaped and finalized as shown in Fig. 1(C). The width W2 of the groove 7 thus obtained is Wl+2r, and the depth d2 is dl+r. Also, due to this chemical etching, the corner of the intersection of the side and bottom surfaces of the square temporary structure 4 (indicated by dotted lines in Figure 1 (C)) is removed, and the intersection point of both sides of this temporary structure 4 is centered. Therefore, the corner portion of the groove 7 finally obtained has a round U-shape as shown in the figure.

この化学エツチングによる加工J峰を制御して溝7の断
面を、光ファイバに対する接合に好適な大きさ及び形状
となるようにする。
By controlling the processed J peak by this chemical etching, the cross section of the groove 7 is made to have a size and shape suitable for joining to an optical fiber.

この化学エツチングによって得られた溝7の壁の面は光
学的に面精度が良い平滑面であり、光の伝送に悪影響を
及ぼす光の散乱を効果的に減少させる。
The surface of the wall of the groove 7 obtained by this chemical etching is a smooth surface with optically good surface precision, which effectively reduces light scattering that adversely affects light transmission.

第2図(A)〜(C)はこのようにして加工された溝に
光学的に透明な光伝送に好適な物質を堆積してコア部で
ある光導波路を形成する工程を説明する工程図である。
FIGS. 2(A) to 2(C) are process diagrams illustrating the process of depositing an optically transparent material suitable for light transmission into the groove thus processed to form an optical waveguide, which is the core part. It is.

第2図(A)に示すように、基板1上のマスク2を除去
した後、この基板1に対してCVD法等の通常の技術を
用いてガラス基板1の屈折率n、より大きな屈折率n2
のガラス層8を堆積させる。
As shown in FIG. 2(A), after removing the mask 2 on the substrate 1, the refractive index n of the glass substrate 1 is changed to a larger refractive index by using a conventional technique such as the CVD method. n2
A glass layer 8 is deposited.

次に、第2図(B)に示すように、基板1の表面に堆積
したカラス層8(8aと8bの一部分)及び基板1の表
面1aを研摩して除去し、満7内のカラス層部分8bを
残存させて、その研摩面1bを光学的に面精度の良い平
滑面にする。
Next, as shown in FIG. 2(B), the crow layer 8 (a portion of 8a and 8b) deposited on the surface of the substrate 1 and the surface 1a of the substrate 1 are removed by polishing, and the crow layer within 7 is removed by polishing. The portion 8b is left to remain, and the polished surface 1b is made into a smooth surface with optically good surface precision.

次に、第2図(C)に示すように、GVD法によりカラ
ス基板1と同程度の屈折率の別のカラス層9を堆積して
形成し、残存ガラス層部分8bを先導波路として形成す
る。
Next, as shown in FIG. 2(C), another glass layer 9 having a refractive index similar to that of the glass substrate 1 is deposited and formed by the GVD method, and the remaining glass layer portion 8b is formed as a leading waveguide. .

J−述した溝7に充填する物質は光学的に透明で、吸収
が小さくて光伝送に実害を与えない物質であれは良く、
例えば、樹脂等でも良い。
J-The material to be filled in the groove 7 described above should be optically transparent, have low absorption, and do not cause any actual damage to optical transmission.
For example, resin or the like may be used.

(発明の臭果) 」一連した説明からも明らかなように、この発明の先導
波路形成方法によれば、光導波路作成時のカラス基板の
溝加工をRIEによる異方性エツチング工程と、化学エ
ツチング法による等方性エツチング工程とで行う。この
化学エツチング法での工、チング速度は、例えば、濃度
50%の弗酸を使用したとすると、RIE法のエツチン
グ速度よりも10倍から20倍速いので、従来のRIE
法のみによるエツチングにより溝加工する場合に比べて
溝加]二時間を短縮することが出来るという利点が得ら
れる。
(Features and Effects of the Invention) As is clear from the series of explanations, according to the leading waveguide forming method of the present invention, the groove processing of the glass substrate at the time of optical waveguide creation is performed by an anisotropic etching process using RIE and a chemical etching process. This is done using an isotropic etching process. The etching speed of this chemical etching method is, for example, 10 to 20 times faster than that of the RIE method if hydrofluoric acid with a concentration of 50% is used.
Compared to the case where grooves are formed by etching using only the etching method, there is an advantage that the groove forming time can be shortened by two hours.

また、この化学エツチングにより、溝の面の面精度を、
従来のRIE法のみによるエツチングの場合よりも、高
く出来、光学的に良質の平滑面が得ら、従って、従来の
ような光導波路の面の荒さに起因する光の散乱もなく伝
送損失を低減出来るという利点が得られるI さらに、化学エツチングにより、溝の断面形状を従来の
角型から角の無い丸みを有する、例えば、U字状形状と
かその他の形状、例えば、円形形状とすることが出来る
ので、光ファイバとの接合を従来の場合よりも良好に行
うことが出来、接続損失を著しく低減させるこたが出来
るという利点が得られる。
This chemical etching also improves the surface accuracy of the groove surface.
Compared to the case of etching using only the conventional RIE method, it is possible to obtain a smooth surface with high quality and optical quality, and therefore, there is no light scattering caused by the roughness of the surface of the optical waveguide as in the conventional method, and transmission loss is reduced. Further, by chemical etching, the cross-sectional shape of the groove can be changed from the conventional square shape to a rounded shape with no corners, such as a U-shape, or other shapes, such as a circular shape. Therefore, the advantage is that the connection with the optical fiber can be performed better than in the conventional case, and the connection loss can be significantly reduced.

尚、この発明は上述した実施例にのみ限定されるもので
はないこと明らかである。例えば、化学エツチングを弗
酸以外のものを用いて行っても良く、例えば、アルカリ
性のものを用いることが出来る。その場合には、使用す
るマスクもそのエツチングに酎えfliるものとする必
要がある。その場合には、マスク形成の当初から・耐酸
及び耐アルカリ性を有するエツチングマスクとしても良
いし、或いは、化学エツチング処理前に、RIE法での
エツチングに用いたマスクを一旦除去して新たに耐アル
カリ性エツチングマスクを設けても良い。
It is clear that the present invention is not limited only to the embodiments described above. For example, chemical etching may be performed using something other than hydrofluoric acid; for example, an alkaline material can be used. In that case, the mask used must also be compatible with the etching process. In that case, it is possible to use an etching mask that has acid and alkali resistance from the beginning of the mask formation, or to remove the mask used for RIE etching and create a new alkali-resistant etching mask before chemical etching. An etching mask may also be provided.

また、マスクは上述したNi以外の金属保護膜としても
良い。
Further, the mask may be a metal protective film other than the above-mentioned Ni.

さらに、弗酸の濃度を50%以外の他の濃度とすること
も出来る。
Furthermore, the concentration of hydrofluoric acid can also be set to a concentration other than 50%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)はこの発明の先導波路形成方法の
溝加工の工程を示す工程図、 第21;4(A)〜(C)はこの発明の先導波路形成方
法の溝に光学物質を設けて先導波路を完成させるJ−程
を示す工程図である。 l・・・(屈折率nlの)ガラス基板、1a・・・(カ
ラス基板の)表面 1b・・・(ガラス基板の)研摩面 2・・・マスク、 3・・・(マスクの)穴又は窓4・
・・板溝、 5a、5b・・・(板溝の)側面6・・・
(板溝の)底面、7・・・(先導波路用)溝8・・・(
屈折率n2の)ガラス層 8a・・・(基板表面上の)ガラス層部分8b・・・(
溝内の)ガラス層部分又光導波路9・・・(研磨面上に
設けられた)別のガラス層。 特許出願人 沖電気工業株式会社 第1図 第2図 L糸売有n正書 11/1和58年2月1日 特許庁長官 J’i杉和夫 殿 1°ハヂ1の表示 特願昭58−237230号29、
明の名称 先導波路形成方法 3補正をする者 ”バヂ1との関係 特許出願人 住所(〒−105) 東京都港区虎ノ門1丁目7番12号 名称(02+11)沖電気工業株式会社代表者 橋本 
南海男 4代理人 〒170 廿(988)5583住所 東京
都豊島区東池袋1丁目20番地5ズ 説明の欄1図面の簡単な説明の欄及び図面6者It j
Eの内容 別紙の通り (1)、明細書の特許請求の範囲を次の通りに訂正する
。 「2、特許請求の範囲 屈折率nlのガラス基板に溝を形成し、線溝に屈折率n
2 (1五〉見上)の光学的材料を堆積させて先導波路
を形成するに当り、線溝の形成を、先ず、該基板に対し
反応性ガスによる異方性エツチングを行って仮構を形成
する工程と、該仮構に対して化学エツチング法で等方性
エツチングを行って前記仮構を整形する工程とにより行
うことを特徴とする光導波路形成方法、j (2)、明細書、第4頁第4行の[基板l上に、」をr
基板lの表面la上に、1と訂正し、同第13行の「第
2図に」を1第1図(B)に」と訂正する。 (3)、同、第5頁第2行の「側面と底面と」を「側面
5a、5bと底面6と」と訂正する。 (4)、同、第6頁第3行〜第4行を「隅の部分〜とな
る。」を1隅の部分7a及び7bは図示のように丸くな
り、溝7の断面形状はU字状となる。」と訂11シ、 同第19行の「カラス層8をJを8力ラス層8()み根
表面1a l:の部分を8aとし、i1ζ7内の部分を
8bとする)をAと訂正する。 (5)、同第10頁第3行の[7・・・(先導波路用)
溝」の次に1+’?a、7b・・・(溝の)隅の部分J
を加入する。 (6)3図面第1図(C)を添付図面に示すように訂正
する。 第1図
FIGS. 1(A) to (C) are process diagrams showing the steps of groove processing in the method for forming a leading waveguide of the present invention. FIGS. FIG. 4 is a process diagram showing the J-step of completing the guide waveguide by providing an optical material. l...Glass substrate (with refractive index nl), 1a...(glass substrate) surface 1b...(glass substrate) polished surface 2...mask, 3...(mask) hole or Window 4・
... Plate groove, 5a, 5b... (plate groove) side surface 6...
Bottom surface (of plate groove), 7... (for leading waveguide) groove 8... (
Glass layer 8a (with refractive index n2)...Glass layer portion 8b (on the substrate surface)...(
Glass layer portion (in the groove) or optical waveguide 9...another glass layer (provided on the polished surface). Patent Applicant: Oki Electric Industry Co., Ltd. Figure 1 Figure 2 L Itotori Yun Official Book 11/1 February 1, 1958 Commissioner of the Patent Office J'i Kazuo Sugi Tono 1° Haji 1 Indication Patent Application 1983 -237230 No. 29,
Name of the person who amends the leading wave path formation method 3 Relationship with Badge 1 Patent applicant address (〒-105) 1-7-12 Toranomon, Minato-ku, Tokyo Name (02+11) Oki Electric Industry Co., Ltd. Representative Hashimoto
Nankai O 4 Agent 170 廿 (988) 5583 Address 1-20-5 Higashiikebukuro, Toshima-ku, Tokyo Explanation column 1 Brief explanation of drawings and drawings 6 Person It j
As per Appendix E (1), the scope of claims in the specification is amended as follows. ``2. Forming a groove in a glass substrate with a refractive index nl as claimed in the claim, and forming a groove in a line groove with a refractive index nl.
2. When depositing the optical material (see above in 15) to form a guiding waveguide, the line grooves are first formed by anisotropic etching with a reactive gas on the substrate to form a temporary structure. and a step of shaping the temporary structure by isotropically etching the temporary structure using a chemical etching method, j (2), Specification, page 4. In the fourth line, change [on board l] to r
On the surface la of the substrate l, 1 is corrected, and in the 13th line, ``In Figure 2'' is corrected to 1 In Figure 1 (B)''. (3), ``Sides and bottom surface'' in the second line of page 5 is corrected to ``side surfaces 5a, 5b and bottom surface 6''. (4), page 6, line 3 to line 4, "becomes a corner part." One corner part 7a and 7b is rounded as shown in the figure, and the cross-sectional shape of the groove 7 is U-shaped. It becomes like this. ”, and in line 19 of the same line, “Crow layer 8 is J, 8 force lath layer 8 () The part of root surface 1a l: is 8a, the part inside i1ζ7 is 8b)” is corrected as A. (5), page 10, line 3 [7... (for leading waveguide)
Groove” then 1+’? a, 7b... Corner part J (of the groove)
join. (6) 3 Drawings Figure 1 (C) is corrected as shown in the attached drawing. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 屈折率n1 のカラス基板に溝を形成し、該溝にh+E
折率n7 (ill > I+2)の光学的材料を堆積
させて先導波路を形成するに当り、該溝の形成を、先ず
、該基板に対し反応性ガスによる異方性エツチングを行
って仮構を形成する工程と、該仮構に対して化学エツチ
ング法で等方性エツチングを行って前記仮構を整形する
工程とにより行うことを4.ν徴とする光導波路形成方
法。
A groove is formed in a glass substrate with a refractive index of n1, and h+E is formed in the groove.
When depositing an optical material with a refractive index of n7 (ill > I+2) to form a guiding wavepath, the grooves are first formed by anisotropic etching of the substrate using a reactive gas to form a temporary structure. 4. performing isotropic etching on the temporary structure using a chemical etching method to shape the temporary structure; A method for forming an optical waveguide with a ν characteristic.
JP23723083A 1983-12-16 1983-12-16 Formation of optical waveguide Pending JPS60129711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23723083A JPS60129711A (en) 1983-12-16 1983-12-16 Formation of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23723083A JPS60129711A (en) 1983-12-16 1983-12-16 Formation of optical waveguide

Publications (1)

Publication Number Publication Date
JPS60129711A true JPS60129711A (en) 1985-07-11

Family

ID=17012307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23723083A Pending JPS60129711A (en) 1983-12-16 1983-12-16 Formation of optical waveguide

Country Status (1)

Country Link
JP (1) JPS60129711A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664390A1 (en) * 1990-07-09 1992-01-10 Commissariat Energie Atomique METHOD FOR PRODUCING INTEGRATED OPTICAL COMPONENTS
US5271801A (en) * 1990-07-09 1993-12-21 Commissariat A L'energie Atomique Process of production of integrated optical components
JPH06216456A (en) * 1993-01-18 1994-08-05 Kokusai Denshin Denwa Co Ltd <Kdd> Method for manufacturing guided glass laser
EP1435533A1 (en) * 2002-12-30 2004-07-07 STMicroelectronics S.r.l. Waveguide manufacturing method and waveguide
FR3057677A1 (en) * 2016-10-13 2018-04-20 Stmicroelectronics Sa METHOD FOR PRODUCING A WAVEGUIDE
US10067291B2 (en) 2016-10-13 2018-09-04 Stmicroelectronics Sa Method of manufacturing a waveguide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664390A1 (en) * 1990-07-09 1992-01-10 Commissariat Energie Atomique METHOD FOR PRODUCING INTEGRATED OPTICAL COMPONENTS
US5271801A (en) * 1990-07-09 1993-12-21 Commissariat A L'energie Atomique Process of production of integrated optical components
JPH06216456A (en) * 1993-01-18 1994-08-05 Kokusai Denshin Denwa Co Ltd <Kdd> Method for manufacturing guided glass laser
EP1435533A1 (en) * 2002-12-30 2004-07-07 STMicroelectronics S.r.l. Waveguide manufacturing method and waveguide
FR3057677A1 (en) * 2016-10-13 2018-04-20 Stmicroelectronics Sa METHOD FOR PRODUCING A WAVEGUIDE
US10067291B2 (en) 2016-10-13 2018-09-04 Stmicroelectronics Sa Method of manufacturing a waveguide
US10488594B2 (en) 2016-10-13 2019-11-26 Stmicroelectronics Sa Method of manufacturing a waveguide
US10976494B2 (en) 2016-10-13 2021-04-13 Stmicroelectronics Sa Method of manufacturing a waveguide

Similar Documents

Publication Publication Date Title
JP3917033B2 (en) Fiber array for optical communication and manufacturing method thereof
JPS60129711A (en) Formation of optical waveguide
US20020159729A1 (en) Optical fiber array
JPH04281406A (en) Flexible light waveguide substrate and its production
JP7605105B2 (en) Polymer and Composite Optical Waveguides
JPH04140702A (en) Connection method and device for optical fiber and optical waveguide
JP2001324647A (en) Optical fiber array, optical waveguide chip and optical module connecting them
JPH063550A (en) Juncture of optical fibers and its production
JPS60149007A (en) Formation of optical waveguide
JP2004302241A (en) Optical waveguide and its manufacturing method
JP2002071967A (en) Plastic optical fiber cutting equipment
JPH01134309A (en) Production of light guide
SE9401373L (en) Optical fiber comprising a reflector as well as ways of producing a reflector in an optical fiber
JP4012686B2 (en) Optical components
JP2006098697A (en) Optical waveguide and manufacturing method therefor
JP3234347B2 (en) Optical fiber array and manufacturing method thereof
JP2005128407A (en) Optical waveguide module
JPS5918921A (en) Fiber type coupler and its manufacture
JP2945206B2 (en) Optical fiber alignment holder
FI85195C (en) OPTICAL FORMFAELTSTRANSFORMATOR.
JPS61255305A (en) Terminal structure for optical fiber
JPS6017083B2 (en) Method for manufacturing fiber polarizer
JPH02181709A (en) Method for coupling plane optical waveguide and optical fiber
JPH10260337A (en) Optical fiber bundle and its manufacture
JPH0772347A (en) Production of optical waveguide with guide groove