JPS60128279A - Method for producing metallic copper and chlorine from cuprous chloride - Google Patents
Method for producing metallic copper and chlorine from cuprous chlorideInfo
- Publication number
- JPS60128279A JPS60128279A JP58236415A JP23641583A JPS60128279A JP S60128279 A JPS60128279 A JP S60128279A JP 58236415 A JP58236415 A JP 58236415A JP 23641583 A JP23641583 A JP 23641583A JP S60128279 A JPS60128279 A JP S60128279A
- Authority
- JP
- Japan
- Prior art keywords
- cuprous chloride
- chloride
- chamber
- cathode
- hydrochloric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021591 Copper(I) chloride Inorganic materials 0.000 title claims abstract description 38
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 title claims abstract description 38
- 229940045803 cuprous chloride Drugs 0.000 title claims abstract description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 24
- 239000010949 copper Substances 0.000 title claims abstract description 24
- 239000000460 chlorine Substances 0.000 title claims abstract description 14
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 14
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 8
- 239000012528 membrane Substances 0.000 claims description 15
- 229910001510 metal chloride Inorganic materials 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 13
- 238000005341 cation exchange Methods 0.000 claims description 10
- -1 chlorine ions Chemical class 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 abstract description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract 5
- 230000005611 electricity Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 3
- 238000005363 electrowinning Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 150000004699 copper complex Chemical class 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、塩化第一銅から金属銅および塩素を製造する
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metallic copper and chlorine from cuprous chloride.
従来より電解銅の析出方法としては、硫酸銅溶液あるい
は硝酸銅溶液から電気分解により金属を陰極に還元析出
させることが行われている。Conventionally, as a method for depositing electrolytic copper, metal is reduced and deposited on a cathode by electrolysis from a copper sulfate solution or a copper nitrate solution.
この様な従来知られている電解採取法は目的製造物が陰
極上で電析される銅に限られている為、陽極反応におけ
る銅の溶解、あるいは安価な酸素発生(大気中に放出さ
れる)が行われ、多大な電力を使用しているのにかかわ
らず陽極反応を価値のあるものに利用出来ない。又化学
法としてはイオン化傾向を利用する置換法があげられる
が、析出する銅の純度が悪く、精製工程が必要となるた
べく幾多研究試験を重ねた結果、本発明を完成するに至
った。In conventional electrowinning methods such as this, the target product is limited to copper that is deposited on the cathode. ), and the anodic reaction cannot be used for anything of value, despite using a large amount of power. As a chemical method, there is a substitution method that utilizes ionization tendency, but the purity of the precipitated copper is poor and a purification process is necessary.As a result of repeated research and tests, the present invention was completed.
即ち本発明は陽イオン交換膜を介して陽極室と陰極室に
区画してなる電解槽の陽極室に塩酸又は金属塩化物の水
溶液を供給し、陰極室には、予め塩化第一銅を塩素イオ
ンと反応せしめて得た塩化第一銅の塩素化錯体を供給す
るか、又は/および塩素イオンを少くとも塩化第一銅塩
素化錯体の生成に足る濃度として陰極室内に存在せしめ
た状態で塩化第一銅を供給し、電解により陽極より塩素
ガスを発生させると共に、陰極に金属銅を電析せしめる
ことを特徴とする塩化第一銅から金属銅及び塩素を製造
する方法であり、以下図面を引用して一例を詳細に説明
する。That is, in the present invention, an aqueous solution of hydrochloric acid or a metal chloride is supplied to the anode chamber of an electrolytic cell which is divided into an anode chamber and a cathode chamber via a cation exchange membrane, and cuprous chloride is previously added to the cathode chamber. Supplying a chlorinated complex of cuprous chloride obtained by reacting with ions, or/and chlorinating in a state where chlorine ions are present in the cathode chamber at a concentration sufficient to at least form a cuprous chloride chlorinated complex. This is a method for producing metallic copper and chlorine from cuprous chloride, which is characterized by supplying cuprous chloride, generating chlorine gas from the anode by electrolysis, and electrodepositing metallic copper on the cathode. An example will be described in detail by quoting.
第1図は本発明方法の一例を示す作用説明図である。FIG. 1 is an explanatory diagram showing an example of the method of the present invention.
この図において、1は単位電解槽で構成された電解槽本
体、2は陽極室、3は陰極室であり、陽極室には陽極5
が、陰極室には陰極6が配備され、これら両極室は陽イ
オン交換膜4によって区画されている。In this figure, 1 is an electrolytic cell main body composed of unit electrolytic cells, 2 is an anode chamber, 3 is a cathode chamber, and the anode chamber has an anode 5.
However, a cathode 6 is provided in the cathode chamber, and these two electrode chambers are partitioned by a cation exchange membrane 4.
かメる電解槽において、塩化第一銅は、経路14より塩
化第一銅の塩素化錯体生成槽12に供給され、経路13
を経て供給される陰極液中の塩酸又は1価、2価イオン
の金属塩化物水溶液又は/および経路15により別途新
規に供給される塩酸又は1価、2価イオンの金属塩化物
水溶液によって塩化第一銅の塩素化錯体溶液として経路
7より陰極室3に送入される。又陽極室2には塩酸又は
金属塩化物水溶液が、循環系路9(この循環系路の役割
については後述する。)より供給されて電解される。In the Kameru electrolytic cell, cuprous chloride is supplied to the cuprous chloride chlorination complex generation tank 12 through path 14, and through path 13.
Hydrochloric acid or an aqueous solution of monovalent or divalent ions of metal chloride in the catholyte supplied via route 15 or/and hydrochloric acid or an aqueous solution of monovalent or divalent ion of metal chloride supplied separately via route 15 It is sent to the cathode chamber 3 via route 7 as a chlorinated copper complex solution. Further, hydrochloric acid or a metal chloride aqueous solution is supplied to the anode chamber 2 through a circulation path 9 (the role of this circulation path will be described later) and electrolyzed.
即ち電解槽における通電で陰極室3の塩化第一銅塩素化
錯体は還元を受け金属銅として陰極6の表面に電析され
る。That is, the cuprous chloride chlorinated complex in the cathode chamber 3 is reduced by energization in the electrolytic cell, and is electrodeposited on the surface of the cathode 6 as metallic copper.
一方、陽極室2内では塩酸又は金属塩化物水溶液の解離
により陽イオン(水素イオン、又は該当する金属塩化物
の金属イオン)として存在し、これが陽イオン交換膜を
通して配位水と共に陰極室3内に移行し、陰極室内にお
いて塩素イオンにより塩酸又は金属塩化物を生成する。On the other hand, in the anode chamber 2, cations (hydrogen ions or metal ions of the corresponding metal chloride) are present due to dissociation of hydrochloric acid or an aqueous metal chloride solution, and these pass through the cation exchange membrane and enter the cathode chamber 3 together with coordinated water. , and generates hydrochloric acid or metal chloride with chlorine ions in the cathode chamber.
この様にして生成した塩酸又は金属塩化物は、塩化第一
銅の塩素化錯体溶液中に含まれる遊離塩酸等と共に既述
の通り、その一部が循環系路9を通じて陽極室2に導入
され、陽極室供給原料として再使用に供され、残りは前
記経路13を経て塩化第一銅の塩素化錯体調整用として
生成槽12に供給される。又経路16は濃度調整用水の
供給口である。A portion of the hydrochloric acid or metal chloride thus generated is introduced into the anode chamber 2 through the circulation path 9, as described above, together with free hydrochloric acid, etc. contained in the chlorinated complex solution of cuprous chloride. , are reused as feedstock for the anode chamber, and the remainder is supplied to the production tank 12 via the route 13 for preparing a chlorinated complex of cuprous chloride. Further, the path 16 is a water supply port for concentration adjustment.
陽極室?とおいては、発生する塩素イオンが親電子され
て塩素ガスとして経路10より糸外に排出される。Anode chamber? In this case, the generated chlorine ions are electrophilic and are discharged to the outside of the yarn from the path 10 as chlorine gas.
陰極室3に供給される塩化第一銅の塩素化錯体は0.0
1moI/l〜2.2mol/lの濃度があれば、充分
であるが、本発明で特に限定されるものではない。The chlorinated complex of cuprous chloride supplied to the cathode chamber 3 is 0.0
A concentration of 1 mol/l to 2.2 mol/l is sufficient, but is not particularly limited in the present invention.
陰極室における1価銅イオンの濃度が低い時には、電解
液抵抗を減する為、電解質として塩酸又は金属塩化物等
の1種又は2種以上を添加してもよい。When the concentration of monovalent copper ions in the cathode chamber is low, one or more of hydrochloric acid or metal chlorides may be added as an electrolyte to reduce electrolyte resistance.
この場合の水素イオン濃度(pH)は、4以下であるこ
とが望ましい。陽イオン交換膜を通して陽極室から陰極
室に移行される陽イオーンは、配位水と共に通過電流に
よりその移行量が決ってくる。In this case, the hydrogen ion concentration (pH) is preferably 4 or less. The amount of cations transferred from the anode chamber to the cathode chamber through the cation exchange membrane is determined by the passing current together with coordinated water.
陽極室に供給する塩酸又は金属塩化物水溶液の濃度は0
.5moI/l〜5moI/lの範囲が好ましく、これ
ら供給原料は、前記の通り陰極室における脱銅後の塩酸
又は金属塩化物であることが最も望ましいが、本発明で
は必ずしもこれに拘泥するものではなく、一部もしくは
全部を新液きして供給してもよい。The concentration of hydrochloric acid or metal chloride aqueous solution supplied to the anode chamber is 0.
.. A range of 5 moI/l to 5 moI/l is preferable, and these raw materials are most preferably hydrochloric acid or metal chloride after copper removal in the cathode chamber as described above, but the present invention is not necessarily limited to this. Alternatively, part or all of the liquid may be freshly drawn and supplied.
こ\で本発明において一陰極室への塩化第一銅塩素化錯
体の供給に代えて原料塩化第一銅のスラリー液を陰極室
に直接供給してもよい。但しこの場合には、少くとも供
給した塩化第一銅溶液が陰極室内において、塩化第一銅
の塩素化錯体を形成するに足る濃度の塩素イオンを存在
させることが必要であり、か\る塩素イオンは塩化第一
銅の供給に併行して陰極室に直接加えるか、又は陰極室
への供給に先立って、塩化第一銅スラリー液中に加える
ことによって達成される。In the present invention, instead of supplying the cuprous chloride chlorinated complex to one cathode chamber, a slurry liquid of raw material cuprous chloride may be directly supplied to the cathode chamber. However, in this case, it is necessary that the cuprous chloride solution supplied has at least a sufficient concentration of chlorine ions to form a chlorinated complex of cuprous chloride in the cathode chamber. This can be achieved by adding the ions directly to the cathode compartment concurrently with the cuprous chloride feed, or by adding them into the cuprous chloride slurry liquid prior to feeding to the cathode compartment.
更に本発明方法においては、前記の予め調整した塩化第
一銅の塩素化錯体を陰極室に供給する手段と、上記した
塩化第一銅溶液の陰極室への直接供給手段を併用しても
よい。Furthermore, in the method of the present invention, the means for supplying the previously prepared chlorinated complex of cuprous chloride to the cathode chamber and the means for directly supplying the cuprous chloride solution to the cathode chamber may be used in combination. .
陽極室への供給用、陰極室への供給用、ならびに電解槽
外lこおいて塩化第一銅の錯体生成用として供給される
塩酸および金属塩化物の内の陽イオン種としてはH”、
I、i”、Na”、K”、Mg 、Ca 、Sr 。The cationic species of hydrochloric acid and metal chlorides supplied to the anode chamber, the cathode chamber, and the complex formation of cuprous chloride outside the electrolytic cell are H'',
I, i'', Na'', K'', Mg, Ca, Sr.
Ba であり、具体的にはHCt、NaCL、’KCL
。Ba, specifically HCt, NaCL, 'KCL
.
MgC1−2,CaCl2,5rcL2.BaC62等
を挙げることが出来、その濃度はいずれも前記の通り0
.5mol/l〜5 m o l / tの範囲が好ま
しい。MgC1-2, CaCl2, 5rcL2. BaC62, etc. can be mentioned, and the concentration of all of them is 0 as mentioned above.
.. A range of 5 mol/l to 5 mol/t is preferred.
陽極室から排出されろうすい酸、又は塩水は0.5mo
l/を以上あればよく経済的には分解率を大きくする方
が好ましい。The waxy acid or salt water discharged from the anode chamber is 0.5 mo
1/ or more is sufficient, and economically it is preferable to increase the decomposition rate.
電解槽の通電電流密度は1 A/dm’ 〜30A/d
m2の範囲が好ましいが、電解槽容量、電解時間、銅の
析出形態等を考慮するならば5A/dm2〜20A/d
m2が特に望ましい。The current density of the electrolytic cell is 1 A/dm' to 30 A/d.
The range of m2 is preferable, but if considering the electrolytic cell capacity, electrolysis time, copper precipitation form, etc., it is 5A/dm2 to 20A/d.
m2 is particularly desirable.
又電解反応に供される陽イオン交換膜については、カル
ボン酸膜、スルフォン酸膜等の通常の陽イオン交換膜が
使用出来るが、電解浴の水素イオン濃度が高いので強酸
型の例えばスルフォン酸基をもつ交換膜が望ましい。Regarding the cation exchange membrane used in the electrolytic reaction, ordinary cation exchange membranes such as carboxylic acid membranes and sulfonic acid membranes can be used. An exchange membrane with a
弱酸型の陽イオン交換膜を用いると、膜の抵抗が大きく
なり、摺電圧が高くなる傾向なのであまり好ましくない
。If a weak acid type cation exchange membrane is used, the resistance of the membrane increases and the sliding voltage tends to increase, which is not very preferable.
混在があっても交換膜の損傷は小さい。但し多価陽イオ
ンとして銅より貴なる析出電位をもつ金属イオンは純銅
を得る目的ではあまり好ましいものではない。Even if there is a mixture, the damage to the exchange membrane is small. However, as polyvalent cations, metal ions having a deposition potential nobler than copper are not very preferable for the purpose of obtaining pure copper.
陽極の材質に関してはグラファイト、マグネタイト、過
酸化ナマリ、あるいはチタン上に白金族を塗工された寸
法安定性不溶性金属陽極が使用される。Regarding the material of the anode, graphite, magnetite, peroxide, or a dimensionally stable insoluble metal anode coated with a platinum group metal on titanium is used.
陰極の材質については銅の析出電位が水素発生より貴の
電位で電析する為酸性溶液中においても常温での電解か
可能となるので、例えばニッケ也銅、チタ乙チタン合金
を使用しても陰極の腐蝕は問題とはならない。Regarding the material of the cathode, since copper is deposited at a higher potential than hydrogen generation, it is possible to perform electrolysis at room temperature even in an acidic solution. Corrosion of the cathode is not a problem.
以上の本発明方法によれば、塩化第一銅を主として含む
溶液を陽イオン交換膜を用いた電解槽で電解処理して高
純度の金属銅および塩素を高い効率で容易に回収するこ
とが出来るものである。According to the method of the present invention described above, high purity metallic copper and chlorine can be easily recovered with high efficiency by electrolytically treating a solution mainly containing cuprous chloride in an electrolytic cell using a cation exchange membrane. It is something.
又本発明を行う事により従来の二価銅塩を用いる銅の電
解採取の半分の電力で同量の金属銅が製造されるのみな
らず硫酸銅又は硝酸銅電解採取に比して陽極からは酸素
発生又は銅の溶解に代り有用な塩素を生成するので非常
に効率の高い経済的な方法である。Furthermore, by carrying out the present invention, not only can the same amount of metallic copper be produced with half the power of conventional copper electrowinning using divalent copper salts, but also the amount of metal copper produced from the anode can be reduced compared to copper sulfate or copper nitrate electrowinning. It is a very efficient and economical method as it produces useful chlorine instead of oxygen generation or copper dissolution.
以下に実施例を掲げて本発明を説明する。The present invention will be explained below with reference to Examples.
実施例1
第1図に示す電解槽構造および付属配管系路により次の
通り電解を行なった。Example 1 Electrolysis was carried out as follows using the electrolytic cell structure and attached piping system shown in FIG.
即ち塩化第一銅の塩素化錯体生成槽12に、塩化第一銅
スラリー液を経路14より送入し塩酸と反応させて塩化
第一銅の塩素化錯体を主とする液を得、これを経路7を
通して電解槽の陰極室3に供給した。生成槽12におけ
る使用塩酸は経路13からの塩酸と経路15における新
規補給分である。That is, a cuprous chloride slurry liquid is fed into the chlorinated complex generation tank 12 of cuprous chloride through the route 14, and is reacted with hydrochloric acid to obtain a liquid mainly containing a chlorinated complex of cuprous chloride. It was supplied to the cathode chamber 3 of the electrolytic cell through path 7. The hydrochloric acid used in the generation tank 12 is the hydrochloric acid from the route 13 and the newly supplied amount from the route 15.
陽極室には経路9より塩酸を供給し、経路11より未反
応の塩酸を含む液を排出した。Hydrochloric acid was supplied to the anode chamber through path 9, and a liquid containing unreacted hydrochloric acid was discharged through path 11.
この場合の各部の送入および排出の諸元、ならびに運転
条件その他は第1表の通りであった。In this case, the specifications for feeding and discharging each part, operating conditions, etc. were as shown in Table 1.
第 1 表 明鉱齋の浄書(内容1ζ陳更なし) その結果を下記第2表に示す。Table 1 Meikosai's engraving (Contents 1ζ No changes) The results are shown in Table 2 below.
第 2 表
1!ij lli書のa−書(内容に変更なし)実施例
2
実施例1において塩素化錯体生成槽12における塩酸の
新規補給を行なわず、陰極室からの塩化ナトリウムを経
路8および13を経て供給して上記生成槽で塩化第一銅
スラリー液と合流せしめると共に、別途陰極室に塩化ナ
トリウム溶液を送入して電解せしめた。Second table 1! ij lli book a-(no change in content) Example 2 In Example 1, the chlorinated complex generation tank 12 was not newly replenished with hydrochloric acid, and sodium chloride from the cathode chamber was supplied via routes 8 and 13. The solution was combined with the cuprous chloride slurry in the above-mentioned generation tank, and a sodium chloride solution was separately introduced into the cathode chamber for electrolysis.
この場合の各部の送入および排出の諸元ならびに電解運
転条件その他は第3表の通りであった。In this case, the specifications of the feeding and discharging of each part, the electrolytic operation conditions, etc. were as shown in Table 3.
第 3 表 明細・出の浄l(内容に変更なし) その結果を第4表に示す。Table 3 Detailed information / Outline (no change in content) The results are shown in Table 4.
第 4 表Table 4
第1図は不発明方法の一例を示す作用説明図である。
1・電解槽本体、2 陽極室、3 陰極室、4・・陽イ
オン交換膜。
特許出願人の名称 鶴見曹達株式会社
手続補正書(方式)
昭和59年4月φ日
特許庁長官 若 杉 和 夫 殿
1、事件の表示 昭和58年特許願第236415号3
、補正をする者
通り浄書する。 (内容に変更なし)FIG. 1 is an explanatory diagram showing an example of the non-inventive method. 1. Electrolytic cell body, 2. Anode chamber, 3. Cathode chamber, 4.. Cation exchange membrane. Name of patent applicant Tsurumi Soda Co., Ltd. Procedural amendment (method) April 1980 φ Date Commissioner of the Patent Office Kazuo Wakasugi 1, Indication of case 1988 Patent Application No. 236415 3
, and the person making the corrections. (No change in content)
Claims (1)
なる電解槽の陽極室に塩酸又は金属塩化物の水溶液を供
給し、陰極室には、予め塩化第一銅を塩素イオンと反応
せしめて得た塩化第一銅の塩素化錯体溶液を供給するか
、又は/および塩素イオンを少くとも塩化第一銅塩素化
錯体の生成に足る濃度として陰極室内に存在せしめた状
態で塩化第一銅を供給し、電解により陽極より塩素ガス
を発生させると共に、陰極に金属銅を電析せしめること
を特徴とする塩化第一銅溶液から金属銅及び塩素を製造
する方法。Hydrochloric acid or an aqueous solution of a metal chloride is supplied to the anode chamber of an electrolytic cell divided into an anode chamber and a cathode chamber via a 1S cation exchange membrane, and cuprous chloride is previously reacted with chlorine ions to the cathode chamber. Either supplying the chlorinated complex solution of cuprous chloride or/and supplying the chlorinated complex solution of cuprous chloride, or/and supplying cuprous chloride with chlorine ions present in the cathode chamber at a concentration sufficient to form the cuprous chloride chlorinated complex. A method for producing metallic copper and chlorine from a cuprous chloride solution, which comprises supplying copper, generating chlorine gas from an anode by electrolysis, and electrodepositing metallic copper on a cathode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58236415A JPS60128279A (en) | 1983-12-16 | 1983-12-16 | Method for producing metallic copper and chlorine from cuprous chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58236415A JPS60128279A (en) | 1983-12-16 | 1983-12-16 | Method for producing metallic copper and chlorine from cuprous chloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60128279A true JPS60128279A (en) | 1985-07-09 |
JPS6363638B2 JPS6363638B2 (en) | 1988-12-08 |
Family
ID=17000413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58236415A Granted JPS60128279A (en) | 1983-12-16 | 1983-12-16 | Method for producing metallic copper and chlorine from cuprous chloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60128279A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004205092B2 (en) * | 2003-09-30 | 2006-08-10 | Jx Nippon Mining & Metals Corporation | High purity electrolytic copper and its production method |
CN103422154A (en) * | 2012-05-24 | 2013-12-04 | 叶福祥 | Cuprous chloride (Cu+, cuCL) ion diaphragm electrodeposition regeneration of circuit board acidic waste etching solution |
JP2014520956A (en) * | 2011-07-08 | 2014-08-25 | インスティテュート・オブ・ケミカル・テクノロジー | Effect of operating parameters on the performance of electrochemical cells in the copper-chlorine cycle |
JP2014522912A (en) * | 2011-07-08 | 2014-09-08 | インスティテュート・オブ・ケミカル・テクノロジー | Electrochemical cell used in hydrogen production using CU-Cl thermochemical cycle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829977A (en) * | 1971-08-20 | 1973-04-20 | ||
JPS5440520A (en) * | 1977-09-07 | 1979-03-30 | Hitachi Ltd | Magnet ring driving mechanism |
JPS5518558A (en) * | 1978-07-27 | 1980-02-08 | Kagaku Gijutsu Shinkoukai | Recovering method for copper from ferric chloride etching waste solution containing copper |
-
1983
- 1983-12-16 JP JP58236415A patent/JPS60128279A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829977A (en) * | 1971-08-20 | 1973-04-20 | ||
JPS5440520A (en) * | 1977-09-07 | 1979-03-30 | Hitachi Ltd | Magnet ring driving mechanism |
JPS5518558A (en) * | 1978-07-27 | 1980-02-08 | Kagaku Gijutsu Shinkoukai | Recovering method for copper from ferric chloride etching waste solution containing copper |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004205092B2 (en) * | 2003-09-30 | 2006-08-10 | Jx Nippon Mining & Metals Corporation | High purity electrolytic copper and its production method |
JP2014520956A (en) * | 2011-07-08 | 2014-08-25 | インスティテュート・オブ・ケミカル・テクノロジー | Effect of operating parameters on the performance of electrochemical cells in the copper-chlorine cycle |
JP2014522912A (en) * | 2011-07-08 | 2014-09-08 | インスティテュート・オブ・ケミカル・テクノロジー | Electrochemical cell used in hydrogen production using CU-Cl thermochemical cycle |
US9487876B2 (en) | 2011-07-08 | 2016-11-08 | Institute Of Chemical Technology | Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle |
CN103422154A (en) * | 2012-05-24 | 2013-12-04 | 叶福祥 | Cuprous chloride (Cu+, cuCL) ion diaphragm electrodeposition regeneration of circuit board acidic waste etching solution |
Also Published As
Publication number | Publication date |
---|---|
JPS6363638B2 (en) | 1988-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6004449A (en) | Method of operating electrolytic cell to produce highly concentrated alkaline hydrogen peroxide | |
JPH05504170A (en) | Electrochemical production method of chloric acid/alkali metal chlorate mixture | |
US4230544A (en) | Method and apparatus for controlling anode pH in membrane chlor-alkali cells | |
JPH05214572A (en) | Electrocehmical process and reactor for producing sulfuric acid and sodium hydroxide | |
KR910001138B1 (en) | Combined process for production of clorine dioxine and sodium hydroxide | |
JPS61250187A (en) | Electrolysis of alkali metal chloride brine | |
US5089095A (en) | Electrochemical process for producing chlorine dioxide from chloric acid | |
JP2904860B2 (en) | Process for producing alkali metal dichromate and chromic acid by electrolysis | |
JPS5815552B2 (en) | chrome electroplating liquid | |
US3855089A (en) | Process for the electrolytic refining of heavy metals | |
JPS60128279A (en) | Method for producing metallic copper and chlorine from cuprous chloride | |
US4431496A (en) | Depolarized electrowinning of zinc | |
JPH05506481A (en) | Electrochemical production method of acid chlorate solution | |
RU1836493C (en) | Method of production of chlorine dioxide | |
EP0267704A1 (en) | Electrochemical removal of chromium from chlorate solutions | |
JPH0125835B2 (en) | ||
US4609443A (en) | Procedure for the cathodic electrowinning of metals, with the corresponding acid generation, from its salt solution | |
JPS6363637B2 (en) | ||
US2810685A (en) | Electrolytic preparation of manganese | |
US4699701A (en) | Electrochemical removal of chromium from chlorate solutions | |
JP2839155B2 (en) | Process for producing alkali metal dichromate and chromic acid | |
PT86003B (en) | PROCESS OF ELECTROCHEMICAL REMOVAL OF HYPOCHLORITE FROM LICORS OF CELLS CONTAINING CHLORIDE | |
US3119757A (en) | Process and apparatus for the conversion of hydrochloric acid to chlorine | |
JP2839156B2 (en) | Process for producing alkali metal dichromate and chromic acid | |
US4834848A (en) | Electrical removal of chromium from chlorate solutions |