[go: up one dir, main page]

JPS6012688A - Method of producing airtight insulated terminal - Google Patents

Method of producing airtight insulated terminal

Info

Publication number
JPS6012688A
JPS6012688A JP12082083A JP12082083A JPS6012688A JP S6012688 A JPS6012688 A JP S6012688A JP 12082083 A JP12082083 A JP 12082083A JP 12082083 A JP12082083 A JP 12082083A JP S6012688 A JPS6012688 A JP S6012688A
Authority
JP
Japan
Prior art keywords
metal
temperature
reverse electrode
insulating member
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12082083A
Other languages
Japanese (ja)
Inventor
白沢 宗
井上 武男
卓 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12082083A priority Critical patent/JPS6012688A/en
Publication of JPS6012688A publication Critical patent/JPS6012688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、気密絶縁端子の製造方法に関するものであ
り、とりわけ、金属製気密容器の壁面を貫通して取付け
られる気密絶縁端子、とくに気密容器内に沸騰系の液体
化合物を冷却媒体として充填し、その中に発熱をともな
う大電流用の半導体からなる整流素子を浸漬した強制冷
却方式の整流装置などに用いられる気密絶縁端子の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an airtight insulated terminal, and more particularly, to a method for manufacturing an airtight insulated terminal that is installed through a wall of a metal airtight container. The present invention relates to a method of manufacturing an airtight insulated terminal used in a forced cooling type rectifying device, etc., in which a rectifying element made of a semiconductor for large currents that generates heat is immersed in a cooling medium filled with a rectifier.

近時、′上記の整流装置は車両に搭載されることが多く
なり、その場合、全体の重量に関係する気密絶縁端子に
、軽量小形化に対する要求が強く、同時?と振動等に対
して安定であることも併せて要求されている。
Recently, the above-mentioned rectifying devices are often installed in vehicles, and in that case, there is a strong demand for the airtight insulated terminals, which are related to the overall weight, to be lighter and smaller. It is also required to be stable against vibrations, etc.

従来、前記気密端子として一般に使用されているものに
、゛気密封着剤および電気絶縁物として、ゴム、ガラス
あるいは磁器を用いたものがあるが、ゴムを用いたもの
は耐熱特性に乏しく経年変化があり、さらには冷却媒体
に対する耐食特性等に問題があり、ガラスまたは磁器を
用いたものは、耐振動衝は性に乏しく破損の危険率が高
いため、車両に搭載する整流装置等には殆んど使用され
ていない。
Conventionally, the airtight terminals that have been commonly used include those that use rubber, glass, or porcelain as airtight adhesives and electrical insulators, but those that use rubber have poor heat resistance and deteriorate over time. Furthermore, there are problems with corrosion resistance against cooling media, etc., and those made of glass or porcelain have poor vibration and shock resistance and have a high risk of breakage, so they are rarely used in rectifiers installed in vehicles. Mostly unused.

前述したように、上記従来の気密絶縁端子には不可避の
致命的欠陥があった。
As mentioned above, the conventional airtight insulated terminal has an unavoidable fatal flaw.

上記の致命的欠陥すなわち耐熱特性、経年特性、冷却媒
体に対する耐食性、耐振動衝撃性を完備し、きわめて優
れた特性を保持するものとして、ガラス質の粉末とマイ
カの粉末の混合粉末を原料とし、ガラス質が加圧により
流動する温度に加熱し、加熱状態下で加圧成形して得ら
れる絶縁物、いわゆるガラス・マイカ塑造体を気密封着
剤兼絶縁物に使用したものが、本発明者らlこよって提
案された。
It is made from a mixed powder of vitreous powder and mica powder as a raw material that has completely completed the above-mentioned fatal defects, namely heat resistance properties, aging properties, corrosion resistance against cooling media, and vibration and shock resistance, and maintains extremely excellent properties. The present inventor has developed an insulating material obtained by heating the vitreous material to a temperature at which it flows under pressure and then press-molding it under the heated state, using a so-called glass-mica plastic material as an airtight sealant and an insulating material. It was proposed by L.

しかし上記の気密絶縁端子で上記特性を保持するのは、
通電用導体(以下通電極という)の径が太いもの、例え
ば直径が/左〜2 Omr&あるいは、これより太いも
のに限定され、逆電極径が小さくなるにしたがい気密保
持特性が低下し、とくに直径が2〜lIma程度に小さ
くなると、その気密保持特性は極端に低下し、現実的に
使用不可能のものしか製造し得なかった。これは従来の
製造方法に起因する不可避の事情であった。
However, in order to maintain the above characteristics with the above airtight insulated terminal,
The current-carrying conductor (hereinafter referred to as the current-carrying electrode) is limited to those with a large diameter, for example, those with a diameter of /2 Omr or larger, and as the reverse electrode diameter becomes smaller, the airtightness property decreases, When it becomes small to about 2 to lIma, its airtightness is extremely degraded, and only products that are practically unusable can be manufactured. This was an unavoidable situation due to the conventional manufacturing method.

この発明の説明に先立ち、理解を容易にするため、逆電
極径の太いものを対象にした従来の製造方法を説明する
Prior to explaining the present invention, in order to facilitate understanding, a conventional manufacturing method for a reverse electrode with a large diameter will be explained.

第1図に従来の逆電極径の大きい気密絶縁端子の構造を
示す。図において棒状の逆電極/は、銅または銅合金な
ど電気伝導率の良好な材料でなり、金属製気密容器の壁
面を貫通して取付けるようになっている金属筒コは、機
械的強度に富み、かつ、できるだけ熱膨張率、熱収縮率
の大きい金属でなり、一般にはステンレス等が使用され
る。絶縁部材3は、ガラス質粉末とマイカ粉末の混合粉
末を原料とし、ガラス質が加圧により流動可能な温度に
加熱し、加熱状態で加圧成形して得たガラス・マイカ塑
造体よりなっている。
FIG. 1 shows the structure of a conventional airtight insulated terminal with a large reverse electrode diameter. In the figure, the rod-shaped reverse electrode / is made of a material with good electrical conductivity, such as copper or copper alloy, and the metal tube, which is installed by penetrating the wall of the metal airtight container, has high mechanical strength. , and is made of a metal with as high a coefficient of thermal expansion and contraction as possible, and stainless steel or the like is generally used. The insulating member 3 is made of a glass-mica plastic body made of a mixed powder of vitreous powder and mica powder, heated to a temperature at which the vitreous material can flow under pressure, and then pressure-molded in the heated state. There is.

次に第2図により、上記気密絶縁端子の従来の製造方法
を説明する。図において、分割構造の壁体左には底部に
受金7を収納できる四部3−/が形成されている。壁体
Sは枠体基により締けられる。
Next, a conventional manufacturing method of the above-mentioned hermetic insulated terminal will be explained with reference to FIG. In the figure, a four part 3-/ is formed on the left side of the wall of the divided structure in which a receiver 7 can be accommodated at the bottom. The wall S is fastened by the frame base.

受金7には通・rl −1,= lが挿入される挿入孔
?−/と冷却水路7−2が形成されている。冷却水路7
−2の両端には注水および排水が可能なパイプ(図示せ
ず)が取り伺けられている。加圧金ざには冷却水路g−
lが設けられており、冷却水路g−/の両端には注水環
よび排水が可能なパイプ(図示せず)が取付けられてい
る。成形には上記の成形型が用いられる。
Receiver 7 has an insertion hole into which 1/rl −1,=l is inserted? -/ and a cooling water channel 7-2 are formed. Cooling water channel 7
-2 has pipes (not shown) at both ends that allow water to be injected and drained. Cooling water channel g-
A water injection ring and a pipe (not shown) capable of draining water are attached to both ends of the cooling water channel g-/. The above-mentioned mold is used for molding.

絶縁部材3の原料は、ガラス質の粉末とマイカの粉末の
混合物に水分を加えて湿潤状態にし、これを別の成形型
(図示せず)を用いて冷間加圧成形により、中央に通電
(へ/を貝通し得る貝通孔を有−する円筒状の予備成形
体りとして使用する。
The raw material for the insulating member 3 is a mixture of vitreous powder and mica powder, which is made wet by adding water to it, and then cold-pressed using another mold (not shown) to conduct electricity in the center. (It is used as a cylindrical preformed body with a hole through which the shell can be passed through.)

成形は、成形型中、壁体j1枠体6および受金7を第一
図(a)に示すように組立て所定温度に加熱する。また
逆電極/、金属筒コおよび予備成形体りもそれぞれ所定
温度に加熱する。これらの加熱が完了すると、逆電極l
を挿入孔?−/に、金属筒コを壁体S内に、予備成形体
グは金属筒コ上にそれぞれ装填する。このときの状態が
第2図(a)に示しである。次に加圧金gを予備成形体
q上に載置して加圧成形機により加圧金gを加圧し、予
備成形体ダを流動させて金属筒コと逆電極lの間隙部ワ
に圧入、充填する。このときの状態を第一図(b)に示
す。加圧が完了すると、直に受金7および加圧金gに設
けられた冷却水路7−コ、 g−/に通水を行う。この
間、加圧を継続する。成形された絶縁部材3の温度がガ
ラス質の転位温度以下の温度に達して固化した時点で通
水を止め、脱圧の後、成形型を分?+% t、て成形品
を取り出す。
In the molding, the wall j1, frame 6 and receiver 7 are assembled in a mold as shown in FIG. 1(a) and heated to a predetermined temperature. In addition, the reverse electrode, the metal tube, and the preform are also heated to a predetermined temperature. When these heatings are completed, the counter electrode l
Insert hole? -/, the metal cylinder is loaded into the wall S, and the preform G is loaded onto the metal cylinder. The state at this time is shown in FIG. 2(a). Next, the pressurized metal g is placed on the preformed body q, and the pressurized metal g is pressurized by a pressure molding machine, and the preformed body D is made to flow into the gap between the metal cylinder and the counter electrode l. Press fit and fill. The state at this time is shown in FIG. 1(b). When the pressurization is completed, water is immediately passed through the cooling channels 7-, g-/ provided in the receiving metal 7 and the pressurizing metal g. During this time, continue applying pressure. When the temperature of the molded insulating member 3 reaches a temperature below the glass transition temperature and solidifies, the water flow is stopped, and after depressurizing, the mold is separated. +%t, and take out the molded product.

上記の製造工程において、加圧工程が完了すると同時に
行う受金7および加圧金gの冷却水路への通水により、
受金7と加圧金3は急速に冷却される。
In the above manufacturing process, by passing water through the cooling channel of the receiving metal 7 and the pressurizing metal g, which is performed at the same time as the pressurizing process is completed,
The receiving metal 7 and the pressurizing metal 3 are rapidly cooled.

この受金7と加圧金ざに接している逆電極lは熱伝導率
が良好な銅もしくは銅合金により構成されているので、
この逆電極/は他の部分に優先して冷却され、体積が収
縮し、その径が細くなる。そのため通′r!J、極/の
外周面き成形された絶縁部拐3との接触面に空隙が発生
するようになるが、一方、成形されたt3縁部材3はこ
の時点において流動可能な状態にあり、しかも上部から
加圧力を受けているので、この空隙に絶縁部材3が充填
され、現実にはこの空隙が発生しない。次に絶縁部材3
は逆電極lによって・ 冷却され固化する。このとき外
周部の金属筒コは、後に詳細に説明するが、絶縁物3に
比べて加熱温度が高いので、高い温度を保持しており、
絶縁部材3の固化状態において、より高い温度から冷却
するので、その体積収縮は絶縁部材3に対する締付圧に
なり、あたかも焼嵌めと同等の現象が具現される結果、
気密特性が確保される。
Since the counter electrode l in contact with this receiver 7 and the pressurizing metal plate is made of copper or copper alloy with good thermal conductivity,
This counter electrode is cooled preferentially to other parts, its volume contracts, and its diameter becomes thinner. That's why it's so good! A gap is generated at the contact surface with the molded insulating part 3 on the outer peripheral surface of J, pole/, but on the other hand, the molded t3 edge member 3 is in a flowable state at this point, and Since the pressurizing force is applied from above, this gap is filled with the insulating member 3, and this gap does not actually occur. Next, insulation member 3
is cooled and solidified by the reverse electrode l. At this time, as will be explained in detail later, the metal cylinder on the outer periphery maintains a high temperature because the heating temperature is higher than that of the insulator 3.
When the insulating member 3 is in a solidified state, it is cooled from a higher temperature, so the volumetric contraction becomes a tightening pressure on the insulating member 3, and as a result, a phenomenon equivalent to shrink fitting occurs.
Airtightness is ensured.

上記従来の製造方法によれば、通電極径が大きい製品の
場合には、上記説明で明らかなようにきわめて気密保持
特性が優れたものが得られるのであるが、通電極径が小
さくなるにしたがい気密保持特性が低下し、とくに直径
が2〜+ y+mになるとその特性が極端に低下し、使
用に耐えないものしか得られなかった。その理由につい
て以下に説明する。
According to the conventional manufacturing method described above, in the case of a product with a large diameter conductor, a product with extremely excellent airtightness can be obtained, as is clear from the above explanation, but as the diameter of the conductor becomes smaller, The air-tightness property deteriorated, especially when the diameter became 2 to +y+m, the property deteriorated extremely, and only a product that could not be used was obtained. The reason for this will be explained below.

上記の製造方法において、具現しなければならない必須
の条件は、成形された絶縁部材3の温度下降に優先して
逆電極/の温度を下降させること、および金属筒コの温
度下降を絶縁部材3のそれより遅らせることである。こ
のような条件を具現するために、加圧成形完了後、受金
7、および加圧金3の冷却水路?−2,g−/に通水し
ているが、成形前に逆電極11金属筒2、予備成形体ダ
および成形型を加熱するに際して各々温度差を設け、上
記条件が確保されるようにしている。
In the above manufacturing method, the essential conditions that must be realized are that the temperature of the opposite electrode is lowered in priority to the temperature of the molded insulating member 3, and that the temperature of the metal cylinder is lowered by reducing the temperature of the insulating member 3. It is to be later than that of . In order to realize these conditions, after the completion of pressure forming, cooling channels for the support metal 7 and the pressure metal 3 are installed. -2,g-/, but before molding, a temperature difference is established when heating the reverse electrode 11 metal cylinder 2, preform body DA, and mold to ensure the above conditions. There is.

以下、各加熱温度について説明する。まず、逆電極/の
加熱温度であるが、考え方としては低いほど望ましいが
、実際にはガラス質の転位温度もしくはそれより幾分高
くしておく必要がある。この温度より低いと加熱状態の
予備成形体ケが接した際、予備成形体グのガラスが固化
して表面に低密度の層を構成することになるからである
。このことは気密特性上、最悪の事態であるので上記の
温度に加熱する必要がある。次に金属筒2の加熱温度で
あるが、考え方としては高いほど望ましいが、高温時に
おける機械的強度に支配される。第2図(a)に示すよ
うに装填時には金属筒コの外周部と壁体5の内壁面の間
に空隙10が存在するが、加圧成形後の第一図(b)に
おいては金属筒コが変形し、上記の空隙lθが消失し、
完全に密着する。
Each heating temperature will be explained below. First, regarding the heating temperature of the counter electrode, it is preferable that it be as low as possible, but in reality it needs to be at or slightly higher than the glassy transition temperature. This is because if the temperature is lower than this, when the heated preform comes into contact with the glass, the glass of the preform will solidify and form a low-density layer on the surface. Since this is the worst case in terms of airtightness, it is necessary to heat it to the above temperature. Next, regarding the heating temperature of the metal tube 2, although higher is preferable in concept, it is governed by the mechanical strength at high temperatures. As shown in FIG. 2(a), a gap 10 exists between the outer periphery of the metal cylinder and the inner wall surface of the wall body 5 during loading, but in FIG. is deformed, the above-mentioned void lθ disappears,
Completely adhere.

金属筒λの加熱は、加圧方向における変形が問題になり
、使用材質によっても異なるが実際には6θ0−A!;
0℃が限度である。次に予備成形体りの加熱温度である
が、温度を高くすると、充填完了後金属筒コの温度を上
昇させ、冷却速度を遅くさせるためには有効であるが、
同時に逆電極lの温度も上昇させることになり、通g、
極lの最優先冷却に対して恕効呆を及はすこきになる。
When heating a metal cylinder λ, deformation in the pressurizing direction becomes a problem, and although it varies depending on the material used, in reality 6θ0-A! ;
The limit is 0°C. Next, regarding the heating temperature of the preform, increasing the temperature is effective in increasing the temperature of the metal cylinder after filling is completed and slowing down the cooling rate.
At the same time, the temperature of the counter electrode 1 will also rise, leading to
I don't want to have any effect on cooling, which is the highest priority.

したがって、その設定温度はきわめて難しく、加圧によ
り十分に流動する温度にする。最後に成形型の加熱温度
であるが全屈筒コの温度下降速度を遅くするために高い
はど望ましいが機械的強度に関連し5り0℃が限度であ
る。
Therefore, it is extremely difficult to set the temperature, and the temperature must be set so that it will flow sufficiently when pressurized. Finally, as for the heating temperature of the mold, it is desirable to set it as high as possible in order to slow down the temperature drop rate of the fully curved cylinder, but the upper limit is 50°C in relation to mechanical strength.

成形する気密絶縁端子の逆電極lの直径が/j〜λOV
aあるいはこれより大きい場合には、必然的に金属筒コ
の形状も大きくなり、肉厚が厚くなり、また成形型も当
然大きくなり各部分の熱容量が大きいため、受金7およ
び加圧金gの冷却水路に通水して逆電極lを最優先して
冷却する効果が完全に得られ、前記の必須の条件が完全
に夾現して気密保持特性の高い気密絶縁端子が得られる
The diameter of the reverse electrode l of the airtight insulated terminal to be molded is /j ~ λOV
a or larger, the shape of the metal cylinder will inevitably become larger and the wall thickness will become thicker. Also, the mold will also naturally become larger and the heat capacity of each part will be large. The effect of cooling the reverse electrode 1 with the highest priority by passing water through the cooling channel is completely obtained, the above-mentioned essential conditions are completely satisfied, and an airtight insulated terminal with high airtightness retention properties is obtained.

ところで、逆電極lの直径が小さいものを、上記従来の
成形方法によって製造すると、治定な気密特性を保持す
る製品が得られないのは、上記の必須条件が崩れること
が最大の理由であり、その原因として、逆電極径の縮少
に伴う金属筒2および成形型の小型化による熱容量の不
足が考えられる。
By the way, if a reverse electrode l with a small diameter is manufactured using the conventional molding method described above, the main reason why a product that maintains a certain airtight property cannot be obtained is that the above essential conditions are violated. The reason for this is thought to be a lack of heat capacity due to the downsizing of the metal cylinder 2 and the mold due to the reduction in the diameter of the reverse electrode.

この発明は、以上の点に着目してなされたもので、従来
の製造方法の致命的な欠陥、すなわち、逆電極径の小さ
いもの−が−その気密保持特性が低下することを完全に
除去し、従来の製造方法で得た逆電極径の大きいものが
保持する各種特性を維持するとともに、逆電極径に関係
なく完全な気密保持特性を具備する気密絶縁端子が得ら
れる製造方法を提供することを目的とするものである。
This invention was made with attention to the above points, and completely eliminates the fatal flaw of the conventional manufacturing method, namely, the small diameter of the reverse electrode, which deteriorates its airtightness. To provide a manufacturing method that maintains various characteristics of a large reverse electrode obtained by conventional manufacturing methods and provides a hermetic insulated terminal having perfect airtightness regardless of the reverse electrode diameter. The purpose is to

また、この発明の目的は、金属筒の中心部に逆電極を配
置し、両者の間に、ガラス質粉末とマイカ粉末の混合粉
末を原料とし、ガラス質が加圧により流動する温度に加
熱し、加熱状態で加圧成形したガラス・マイカ塑造体か
らなる絶縁部材を介在させた気密絶縁端子を製造する方
法において、上部に金属筒、逆電極および原料粉末を円
筒状に成形した予備成形体を装填することができ、下部
に冷却用水路および逆電極の挿入孔を有する受金を収納
し得る分割構造の壁体と、この壁体を締付ける枠体と、
中央に逆電極の嵌合用貫通孔を有する加圧金とからなる
成形型を使用し、金属筒には装填時に壁体に接する底部
に底溝、および対面する外周面に螺子溝もしくは環状溝
を有するものを使用し、逆電極、金属筒、予備成形体お
よび成形型を各所定温度に加熱し、逆電極を受−金の挿
入孔Iこ挿入し、壁体の上部に金属筒および予備成形体
を装填し、加圧金を予備成形体上に載置する工程と、加
圧金を加圧して予備成形体を逆電極と金属筒の間隙部に
圧入、充填し、高密度の絶縁部材を成形する工程と、加
圧が完了した時点で加圧を継続しながら受金lこ通水し
て逆電極を急冷する工程と、絶縁部材の温度がガラス質
の転位温度以下の温度に達した時点で成形型を分解して
成形品を取り出す工程とからなる気密絶縁端子の製造方
法を提供することである。
Another object of the present invention is to place a reverse electrode in the center of a metal cylinder, and between the two, a mixed powder of vitreous powder and mica powder is heated to a temperature at which the vitreous material flows under pressure. , a method for manufacturing an airtight insulated terminal in which an insulating member made of a glass-mica plastic body press-molded in a heated state is interposed, in which a preformed body formed into a cylindrical shape with a metal tube, a reverse electrode, and raw material powder is placed on top. A wall body with a split structure that can house a receiver that can be loaded and has a cooling water channel and a reverse electrode insertion hole in the lower part, and a frame body that tightens this wall body;
A pressurized metal mold with a through hole for fitting the reverse electrode in the center is used, and the metal tube has a bottom groove on the bottom that touches the wall when loading, and a screw groove or annular groove on the facing outer peripheral surface. Heat the reverse electrode, metal cylinder, preform, and mold to a predetermined temperature, insert the reverse electrode into the insertion hole I of the holder, and place the metal cylinder and preform on the upper part of the wall. The process of loading the body and placing the pressurized metal on the preform, pressurizes the pressurized metal, press-fits the preform into the gap between the counter electrode and the metal cylinder, and fills the gap between the counter electrode and the metal cylinder, and creates a high-density insulating member. and, once the pressure is completed, the process of rapidly cooling the reverse electrode by passing water through the receiver while continuing the pressure, and the step of rapidly cooling the reverse electrode until the temperature of the insulating member reaches a temperature below the glass transition temperature. It is an object of the present invention to provide a method for manufacturing an airtight insulated terminal, which comprises a step of disassembling the mold and taking out the molded product at the time when the mold is removed.

以下、この発明の一実施例を第3図を参照して具体的に
説明する。図中、第2図におけると同一符号は同一部分
を示す。図において金属筒/2には、外周面に螺子溝も
しくは環状溝よりなる外周溝lコー/および壁体Sに接
する底部に底溝/コー2を有するものを使用する。成形
型中、加圧金/gには冷却水路を具備しないものを使用
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG. In the figure, the same reference numerals as in FIG. 2 indicate the same parts. In the figure, the metal cylinder 2 has an outer circumferential groove 1, which is a screw groove or an annular groove, on its outer circumferential surface, and a bottom groove 2, which is in contact with the wall S. In the mold, a pressurizing metal/g without cooling channels is used.

成形の手順は、従来の方法と同じく、逆電極/、金属筒
7.2予備成形体ダおよび成形型をそれぞれ所定温度に
加熱し、逆電極/を受金7の挿入孔7−/に挿入し、金
属筒/、2、および予備成形体グを壁体5内に装填する
。このときの状態が、第3図(a)に示しである。次に
加圧金/gを予備成形体ダ上に載置し、加圧成形機によ
り加圧金/gを加圧し、予備成形体グを流動させ逆電極
lと金属筒12の間隙部デに圧入、充填する。このとき
の状態が第3図(1))に示しである。加圧充填が完了
すると直に受金7に設けられた冷却水路クーコに通水を
行う。
The molding procedure is the same as the conventional method: heat the reverse electrode/, the metal tube 7.2 preform, and the mold to a predetermined temperature, and insert the reverse electrode/ into the insertion hole 7-/ of the receiver 7. Then, the metal tube 2 and the preform 2 are loaded into the wall 5. The state at this time is shown in FIG. 3(a). Next, the pressurized gold/g is placed on the preformed body DA, and the pressurized gold/g is pressurized by the pressure molding machine, and the preformed body G is made to flow and the gap between the reverse electrode 1 and the metal tube 12 is made to flow. Press fit and fill. The state at this time is shown in FIG. 3 (1). Immediately after the pressurized filling is completed, water is passed through the cooling water channel Cuco provided in the receiver 7.

この間加圧を継続する。成形された絶縁部材3の温度が
ガラス質の転位温度以下の温度に達して固化した時点で
通水を止め、脱圧の後成形型を分解して成形品を取り出
し、外周溝/、2−/および底溝/2−2の除去等、必
要な機械加工を施し、製品に仕上げる。
Continue pressurizing during this time. When the temperature of the molded insulating member 3 reaches a temperature below the glass transition temperature and solidifies, the water flow is stopped, and after depressurization, the mold is disassembled and the molded product is taken out, and the outer circumferential groove /, 2- Perform necessary machining such as removing / and bottom groove /2-2 to finish the product.

この発明になる上記の製造方法によれば、加圧充填工程
が完了した時点で、受金7は通水により急速に冷却され
るため、逆電極lは他の部分に優先して冷却されるよう
になる。また、加圧金/gは冷却水路を有せず、直接冷
却されないため、逆電極lを急冷する効果がないが、同
時に接面する成形された絶縁部材3も急冷されず、逆電
極lが受金7により急冷され寸法収縮を生ずることによ
り発生した外周面の空間部に連続して絶縁部材3が充填
される。一方、金属筒/コは外周面に外周溝lコーlを
、底部に底溝/2−2を有しており、成形時に変形して
壁体Sに接するが、その接面する面積が著しく減少して
いるため、温度の低い壁体Sにより冷却される速度が極
端に遅くなる。上記一連の関係により、この種の気密絶
縁端子の製造条件における必須の具備条件である、成形
された絶縁部材3の温度下降に優先して逆電極/の温度
を下降させること、および金属筒lコの温度下降を絶縁
部材3の温度下降より遅くすることが確実に具現される
According to the above-described manufacturing method of the present invention, when the pressurized filling process is completed, the receiver 7 is rapidly cooled by water flow, so the reverse electrode l is cooled preferentially to other parts. It becomes like this. Moreover, since the pressurized gold/g does not have a cooling channel and is not directly cooled, it has no effect of rapidly cooling the reverse electrode l, but at the same time, the molded insulating member 3 in contact with it is also not rapidly cooled, and the reverse electrode l The insulating member 3 is continuously filled into the space on the outer circumferential surface created by the dimensional shrinkage caused by rapid cooling by the receiving metal 7. On the other hand, the metal cylinder has an outer circumferential groove on its outer circumferential surface and a bottom groove on its bottom, and is deformed during molding and comes into contact with the wall S, but the contact area is extremely large. As a result, the cooling rate due to the low-temperature wall body S becomes extremely slow. Due to the above-mentioned series of relationships, it is possible to lower the temperature of the reverse electrode with priority to lowering the temperature of the molded insulating member 3, which is an essential condition in the manufacturing conditions of this type of airtight insulated terminal, and to lower the temperature of the metal tube l. This ensures that the temperature drop of the insulating member 3 is slower than that of the insulating member 3.

例えば、通電棒lに直径+ mrnの銅クロームを使用
し、従来の製造方法に従った場合、ヘリウムのリークデ
テクターを用いて試験した結果、洩れ量が、s X /
 O−’atm cc/sec (y)ものしか得らレ
ナカッたが、この発明の製造方法に従ったものはt x
 lo ’−11atmcc/seaの洩れ量を示し、
その効果が顕著に示された。
For example, when copper chrome with a diameter + mrn is used for the current-carrying rod l and the conventional manufacturing method is followed, a test using a helium leak detector shows that the amount of leakage is s x /
O-'atm cc/sec (y) Only the product was obtained, but the product according to the manufacturing method of this invention is t x
Indicates the leakage amount of lo '-11 atmcc/sea,
The effect was clearly demonstrated.

以上のように、この発明の製造方法によれば、従来の製
造方法では得ることができなかった通電極径の小さいも
のの場合でも気密保持特性の高い気密絶縁端子が容易に
得られるようになり、気密絶縁端子の小形化が可能にな
り、整流装置自体の軽量小形化ができるので、その技術
的ならびに実用的効果はきわめて大きい。
As described above, according to the manufacturing method of the present invention, it is possible to easily obtain an airtight insulated terminal with high airtightness retention properties even in the case of a small conducting electrode diameter that could not be obtained using conventional manufacturing methods. The hermetic insulated terminal can be made smaller, and the rectifier itself can be made lighter and smaller, so its technical and practical effects are extremely large.

なお、以上の説明においては、強制冷却方式の整流装置
を対象としたが、その気密絶縁端子の製造に限定される
ものでなく、高圧の気体あるいは液体を充満した容器に
取り付けて使用される気密絶縁端子の製造に実施できる
ことは勿論、その用途はきわめて広範囲である。
In the above explanation, the target is a forced cooling type rectifier, but it is not limited to the manufacture of airtight insulated terminals for this type of rectifier. Not only can it be implemented in the production of insulated terminals, but its applications are extremely wide-ranging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の気密絶縁端子の縦断面図、第一図は従来
の製造方法を示す半裁縦断面図で、同図(a)は加圧成
形直前の状態を、同図(b)は加圧成形完了後の状態を
示す。第3図はこの発明による製造方法を示す半裁縦断
′面図で、同図(a)は加圧成形直前の状態を、同図(
b)は加圧成形完了後の状態を示す。 図中、lは通電棒、3は絶縁部材、ダは予備成形体、S
は壁体、6は枠体、7は受金、7−7は挿入孔、7−2
は冷却水路、9は間隙部、12は金属筒、/2−/は外
周溝、lコースは底溝である。 なお、各図中、同一符号は同一または相当部分を示す。 代理人 大岩増雄 焔3 (G) (b)
Figure 1 is a vertical cross-sectional view of a conventional airtight insulated terminal, and Figure 1 is a half-cut vertical cross-sectional view showing the conventional manufacturing method. The state after pressure molding is completed. FIG. 3 is a half-cut vertical sectional view showing the manufacturing method according to the present invention, and FIG. 3(a) shows the state immediately before pressure molding.
b) shows the state after completion of pressure molding. In the figure, l is a current-carrying rod, 3 is an insulating member, da is a preformed body, and S
is a wall body, 6 is a frame body, 7 is a receiver, 7-7 is an insertion hole, 7-2
9 is a cooling channel, 9 is a gap, 12 is a metal cylinder, /2-/ is an outer circumferential groove, and l course is a bottom groove. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa 3 (G) (b)

Claims (1)

【特許請求の範囲】[Claims] 金属筒の中心部に棒状の逆電極を配設し、両者の間に、
ガラス質粉末とマイカ粉末の混合粉末を原料とし前記ガ
ラス質が加圧により流動する温度に加熱し加熱状態で加
圧成形したガラス・マイカ塑造体からなる絶縁部材を介
在させてなる気密絶縁端子の製造方法において、上部に
前記金属筒、前記逆電極および前記絶縁部材の原料粉末
を収納することができ下部に冷却用水路および前記逆電
極の挿入孔を有する受金を収納し得る分割構造の壁体と
、この壁体を締付ける枠体と、中央に前記逆電極の嵌合
用貫通孔を有する加圧金とからなる成形型を使用すると
ともに、前記壁体に接する外周溝および底溝を有する前
記金属筒を使用し、前記逆電極、前記金属筒、予め中心
部に貫通孔を有する板状に成形した前記原料粉末の予備
成形体、および前記成形型をそれぞれ所定温度に加熱す
る工程と、加熱状態で前記逆電極を前記受金の前記挿入
孔に挿入し前記金属筒および前記予備成形体を前記壁体
の上部に装填する工程と、前記加圧金を前記予備成形体
の上部に載置する工程と、前記加圧金を加圧して前記予
備成形体を前記逆電極と前記金属筒の間隙部に圧入、充
填する工程と、この充填が完了した時点で加圧を継続し
ながら前記受金に通水して前記逆電極を急冷する里程と
、充填成形された前記絶縁部材の温度が前記ガラス質の
転位温度以下の温度に達した時点で前記成形型を分解し
て成形品を取り出す工程と、機械加工により前記金属筒
の前記外周溝および前記底溝を除去し製品に仕上げる工
程とからなることを特徴とする気密絶縁端子の製造方法
A rod-shaped reverse electrode is placed in the center of the metal cylinder, and between the two,
An airtight insulated terminal made of a mixed powder of vitreous powder and mica powder, heated to a temperature at which the vitreous powder flows under pressure, and interposed with an insulating member made of a glass-mica plastic body which is pressure-molded in the heated state. In the manufacturing method, the wall body has a split structure in which an upper part can house the metal cylinder, the reverse electrode, and raw material powder for the insulating member, and a lower part can house a receiver having a cooling water channel and an insertion hole for the reverse electrode. and a frame body for tightening this wall body, and a pressurizing metal having a through hole in the center for fitting the above-mentioned reverse electrode. a step of heating the reverse electrode, the metal tube, the preformed body of the raw material powder previously formed into a plate shape having a through hole in the center, and the mold to a predetermined temperature using a cylinder, and the heating state inserting the reverse electrode into the insertion hole of the receiving metal and loading the metal tube and the preform onto the upper part of the wall; and placing the pressurizing metal onto the upper part of the preform. a step of pressurizing the pressurized metal to press-fit the preform into the gap between the counter electrode and the metal cylinder, and when this filling is completed, pressurizing the metal cylinder while continuing to press the metal cylinder; a step of rapidly cooling the reverse electrode by passing water through the insulating member, and a step of disassembling the mold and taking out the molded product when the temperature of the filled and molded insulating member reaches a temperature equal to or lower than the transition temperature of the glassy substance. and a step of removing the outer circumferential groove and the bottom groove of the metal tube by machining to finish the product.
JP12082083A 1983-06-30 1983-06-30 Method of producing airtight insulated terminal Pending JPS6012688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12082083A JPS6012688A (en) 1983-06-30 1983-06-30 Method of producing airtight insulated terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12082083A JPS6012688A (en) 1983-06-30 1983-06-30 Method of producing airtight insulated terminal

Publications (1)

Publication Number Publication Date
JPS6012688A true JPS6012688A (en) 1985-01-23

Family

ID=14795768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12082083A Pending JPS6012688A (en) 1983-06-30 1983-06-30 Method of producing airtight insulated terminal

Country Status (1)

Country Link
JP (1) JPS6012688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911220A (en) * 1982-07-09 1984-01-20 Yamauchi Rubber Ind Co Ltd Calender roll
JPH08140298A (en) * 1994-11-10 1996-05-31 Nec Shizuoka Ltd Holding structure of motor for generating vibration which is used in small electronic equipment
US5532042A (en) * 1989-04-05 1996-07-02 Hitachi Maxell, Ltd. Magnetic recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911220A (en) * 1982-07-09 1984-01-20 Yamauchi Rubber Ind Co Ltd Calender roll
JPS6240476B2 (en) * 1982-07-09 1987-08-28 Yamauchi Rubber Ind Co Ltd
US5532042A (en) * 1989-04-05 1996-07-02 Hitachi Maxell, Ltd. Magnetic recording medium
USRE38048E1 (en) * 1989-04-05 2003-03-25 Hitachi Maxell, Ltd. Magnetic recording medium
JPH08140298A (en) * 1994-11-10 1996-05-31 Nec Shizuoka Ltd Holding structure of motor for generating vibration which is used in small electronic equipment

Similar Documents

Publication Publication Date Title
CN102388508B (en) High-voltage airtight terminal and method for producing the same
CN112289587B (en) Processing method of metallized film capacitor and metallized film capacitor
US3451853A (en) Plate assembly,cell and method for making same
CA1085114A (en) Method of making a multi-circuit electrical interconnector
JPS6012688A (en) Method of producing airtight insulated terminal
JP6771041B2 (en) Manufacturing method of ceramic insulator
US4073856A (en) Method of fabricating welded PFA-to-PTFE structures
CN113224430A (en) Storage battery pole column sealing process
JPS6314474B2 (en)
US4558399A (en) Electrolytic capacitor and a process for producing the same
EP4166869A1 (en) Semiconductor refrigeration plate and manufacturing method therefor
CN111199942B (en) High-insulation lead frame and plastic packaging method
JP3333084B2 (en) Method of manufacturing bare chip molded part and bare chip molded part manufactured by the method
JPS61189388A (en) Manufacture of airtight insulating pipe joint
US3465402A (en) Electrical capacitor for use in adverse environments and method of making the same
JP5308107B2 (en) Circuit device manufacturing method
JPS6220267A (en) Airtight insulated terminal
JPS61147482A (en) Manufacture of multipolar airtight insulation terminal
JPS5914868B2 (en) Airtight insulated terminal and its manufacturing method
US2820087A (en) Seals between metal conductors and ceramic insulators
JPS6346315B2 (en)
JPS61290672A (en) Airtight insulated terminal
JPS58166189A (en) Insulating pipe joint
JPH06151248A (en) Electric dual layer capacitor
JPS6215798B2 (en)