JPS60125556A - Convection circulation type dissolved oxygen meter - Google Patents
Convection circulation type dissolved oxygen meterInfo
- Publication number
- JPS60125556A JPS60125556A JP58231409A JP23140983A JPS60125556A JP S60125556 A JPS60125556 A JP S60125556A JP 58231409 A JP58231409 A JP 58231409A JP 23140983 A JP23140983 A JP 23140983A JP S60125556 A JPS60125556 A JP S60125556A
- Authority
- JP
- Japan
- Prior art keywords
- detector
- electrolyte
- dissolved oxygen
- oxygen meter
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 239000003792 electrolyte Substances 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 23
- 239000001301 oxygen Substances 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 19
- 239000008151 electrolyte solution Substances 0.000 claims description 7
- 239000012528 membrane Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 101100283604 Caenorhabditis elegans pigk-1 gene Proteins 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000035936 sexual power Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/404—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は軽水炉9重水炉等における炉水中溶存07濃度
定凰に関するものである6
〔発明の背景〕
第1図に、公知の高温高圧型溶存酸素計の構造を示した
。この溶存酸素計は検出器13を耐圧容器14に収納し
、試料水入口16より導入した試料水を通水孔5により
通水して検出器全体を高圧試料水15中に浸し、内部電
解液6と試料水の間に圧力の均衡を保ち、耐圧性を向上
させるとともに検出器及び酸素透過膜3を耐熱性樹脂を
用いて製作し、ベローズ10で電解液の熱膨張を吸収す
ることにより耐熱性を向上させることを特徴としている
。ベローズの張力により検出器内圧が増太し、酸素透過
膜が破損することを防止するために。Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a fixed concentration of dissolved 07 in reactor water in light water reactors, heavy water reactors, etc. 6 [Background of the Invention] Fig. 1 shows a known high-temperature, high-pressure dissolved The structure of an oxygen meter is shown. In this dissolved oxygen meter, a detector 13 is housed in a pressure-resistant container 14, and sample water introduced from a sample water inlet 16 is passed through a water hole 5 to immerse the entire detector in high-pressure sample water 15. 6 and the sample water to improve pressure resistance, the detector and oxygen permeable membrane 3 are made of heat-resistant resin, and the bellows 10 absorbs the thermal expansion of the electrolyte to improve heat resistance. It is characterized by improving sexual performance. To prevent the internal pressure of the detector from increasing due to the tension of the bellows and damaging the oxygen permeable membrane.
酸素透過膜を多孔性陰極4及び金属フィルター1で挿ん
で支持し、酸素透過膜を補強する。試料水中の溶存02
は金属フィルター及び酸素透過膜を透過して検出器内に
入る。多孔性陰極は金、陽極は銀で作られる。電解液に
はKCQ溶液が用いられる。多孔性陰極は定電圧電源1
1により、陽極より負電位に保たれ、検出器内に入った
溶存O3は多孔性陰極上で(1)式に従い0)(−に還
元される。The oxygen permeable membrane is inserted and supported by a porous cathode 4 and a metal filter 1 to reinforce the oxygen permeable membrane. Dissolved 02 in sample water
passes through the metal filter and oxygen permeable membrane and enters the detector. The porous cathode is made of gold and the anode is made of silver. A KCQ solution is used as the electrolyte. The porous cathode is a constant voltage power supply 1
1, the dissolved O3 that has entered the detector is reduced to 0)(-) on the porous cathode according to equation (1).
0.+2H20+4 e−−)40H−・=(1)一方
、陽極上では(2)式の反応が進行し1両極Ag+CQ
−→AgCQ+e−−(2)間に電流が流れる。この電
流を電流計10で検出し、この電流値から溶存02濃度
を定量する。0. +2H20+4 e--)40H-・=(1) On the other hand, on the anode, the reaction of formula (2) proceeds, and one bipolar Ag+CQ
A current flows between -→AgCQ+e−(2). This current is detected by an ammeter 10, and the dissolved 02 concentration is determined from this current value.
本発明の目的は、大容積の液溜めから電解液を検出器内
電極近傍に連続的に供給することにより、長期間、高温
、高圧の試料水中の溶存02濃度を定量することが可能
な溶存酸素計を提供するにある。The purpose of the present invention is to continuously supply an electrolytic solution from a large volume reservoir to the vicinity of the electrodes in the detector, thereby making it possible to quantify the dissolved 02 concentration in sample water at high temperature and high pressure over a long period of time. There is an oxygen meter to provide.
公知の溶存酸素計は02測定に伴って電解液内CQ−イ
オンを消費するため、検出器の使用可能時間はCQ−イ
オンの総量、即ち電解液量で限定される。従ってとの溶
存酸素計の使用時間を延長するためには、大容量の液溜
めを装備し、電解液を増量することが不可欠である。然
るに公知の溶存酸素計は検出器内に対流を生ずる温度勾
配を生しにくく、CQ−イオンの輸送は専ら拡散によっ
てのみ行われるため、輸送能率が低く、液溜めから円滑
に検出器内近傍にイオンが輸送されないという問題があ
った。そこで本発明では検出器と液溜めの間に温度勾配
を設けることにより、この両者の間に対流を生せしめる
ことにより電解液を循環させ、液溜めから電極付近に電
解液を円滑かつ連続的に供給することを考えた。Since the known dissolved oxygen meter consumes CQ- ions in the electrolyte during 02 measurement, the usable time of the detector is limited by the total amount of CQ- ions, that is, the amount of the electrolyte. Therefore, in order to extend the usage time of a dissolved oxygen meter, it is essential to equip it with a large capacity reservoir and increase the amount of electrolyte. However, in known dissolved oxygen meters, it is difficult to create a temperature gradient that causes convection within the detector, and transport of CQ- ions is performed exclusively by diffusion, resulting in low transport efficiency and the ability to smoothly transport CQ-ions from the liquid reservoir to the vicinity of the detector. The problem was that ions were not transported. Therefore, in the present invention, by creating a temperature gradient between the detector and the liquid reservoir, the electrolyte is circulated by creating convection between the two, and the electrolyte is smoothly and continuously transferred from the liquid reservoir to the vicinity of the electrode. I thought about supplying it.
本発明の特徴は検出器内電解液と連絡する電解液を充填
した大容量の液溜めを検出器上部に設け、かつ検出器を
高m、wjt溜めを低温とする温度勾配を設ける、或は
大容量の液溜めを検出器下部に設け、かつ、検出器を低
温、液溜めを高温とする温度勾配を設けることにより液
溜めと検出器の間に対流を生ぜしめ、この両者の間で電
解液を循環させ、液溜めから電極付近に円滑がっ連続的
に電解液を供給するにある。The features of the present invention include providing a large capacity reservoir filled with electrolyte above the detector and communicating with the electrolyte in the detector, and providing a temperature gradient such that the detector is at high m and the wjt reservoir is at low temperature, or By installing a large-capacity liquid reservoir at the bottom of the detector and creating a temperature gradient in which the detector is at a low temperature and the liquid reservoir is at a high temperature, convection is created between the liquid reservoir and the detector, and electrolysis occurs between the two. The purpose is to circulate the liquid and smoothly and continuously supply the electrolyte from the liquid reservoir to the vicinity of the electrode.
以下、本発明の好適な実施例を第2図から第4図を用い
て説明する。第2図は対流循環型溶存酸素計の概略図で
ある。対流循環型溶存酸素計は検出器本体13とこれに
連結される液溜め22、これらを収納する体圧容器14
、及び定電圧電源、11.電圧計12、電流計lo等の
検出器内電極に結線される外部電気回路系から構成され
る。検出器本体には表面に酸素透過膜3が装置され、内
部に電解液6が封入される。電解液にはKCQ水溶液が
用いられる。この電解液中に多孔性陰極6、陽極7が装
置される。多孔性陰極は金、白金等、陽極は銀を用いて
製作される。酸素透過膜は多孔性陰極と金属フィルター
1により補強される。試料水中の02は金属フィルター
と酸素透過膜を透過して多孔性陰極上で(1)式に従い
OH−に還元され、また、陽極上では(2)式の反応が
進行し、両極間に電流が流れる。この電流を検出して溶
存0、濃度を定量する。検出器には、検出器と同一の電
解液を封入した液溜めがチューブA17及びチューブB
18により連結される。電解液はこれらのチューブを通
して検出器と液溜めの間を移動することが可能である。Hereinafter, preferred embodiments of the present invention will be described using FIGS. 2 to 4. FIG. 2 is a schematic diagram of a convection circulation type dissolved oxygen meter. The convection circulation type dissolved oxygen meter includes a detector body 13, a liquid reservoir 22 connected thereto, and a body pressure vessel 14 that houses these.
, and a constant voltage power supply, 11. It consists of an external electric circuit system connected to the electrodes in the detector, such as a voltmeter 12 and an ammeter lo. An oxygen permeable membrane 3 is provided on the surface of the detector body, and an electrolytic solution 6 is sealed inside. A KCQ aqueous solution is used as the electrolyte. A porous cathode 6 and an anode 7 are arranged in this electrolyte. The porous cathode is made of gold, platinum, etc., and the anode is made of silver. The oxygen permeable membrane is reinforced by a porous cathode and a metal filter 1. 02 in the sample water passes through the metal filter and oxygen-permeable membrane and is reduced to OH- according to equation (1) on the porous cathode, and the reaction of equation (2) proceeds on the anode, causing a current to flow between the two electrodes. flows. This current is detected to quantify the dissolved zero and concentration. The detector has a liquid reservoir filled with the same electrolyte as the detector in tube A17 and tube B.
connected by 18. Electrolyte can be transferred between the detector and the reservoir through these tubes.
チューブ、液溜め、検出器本体、酸素透過膜等は、四ふ
つ化エチレン樹脂。The tube, liquid reservoir, detector body, oxygen permeable membrane, etc. are made of tetrafluoroethylene resin.
等のふっ素樹脂シリコン樹脂、ポリイミド樹脂等の耐熱
性樹脂で製作される。検出器は耐圧容器下部に、液溜め
耐圧容器上部にそれぞれ配置され、これらは台座2によ
り容器内に固定される。高圧の試料水が耐圧容器下部の
試料水入口16より容器内に導入され、同じ耐圧容器下
部に設けられた試料水出口9より流出する。この試料水
は台座に設けられた通水孔5を通じて一部が耐圧容器内
実部に流入し、容器内部が試料水で満たされる。この試
料水中に検出器、チューブ及び液溜め全体が浸されてい
るので試料水と電解液との間に圧力の均衡が保たれ、こ
れらが試料水圧力により破損することは無い。高温水が
流入する伴い、検出器の温度が上昇するので、この電解
液の熱膨張を液溜めに設けられたベローズ8により吸収
する。耐圧容器内が試料水で満たされると、通水孔を通
じた試料水の流入は減少し、試料水入口より注入された
試料水は容器下部のみを循環し、そのまま流出るため、
耐圧容器下部が高温に加熱される。一方、容器上部は放
熱により冷却されこの結果、容器下部を高温、上部を低
温とする温度勾配が生ずる。Manufactured from heat-resistant resins such as fluorocarbon resins, silicone resins, and polyimide resins. The detectors are arranged at the bottom of the pressure-resistant container and at the top of the liquid reservoir pressure-resistant container, and these are fixed inside the container by a pedestal 2. High-pressure sample water is introduced into the container from a sample water inlet 16 at the bottom of the pressure container, and flows out from a sample water outlet 9 provided at the bottom of the same pressure container. A part of this sample water flows into the inner part of the pressure-resistant container through the water passage hole 5 provided in the pedestal, and the inside of the container is filled with the sample water. Since the detector, the tube, and the entire liquid reservoir are immersed in this sample water, a pressure balance is maintained between the sample water and the electrolyte, and these are not damaged by the sample water pressure. As the high-temperature water flows in, the temperature of the detector increases, so the thermal expansion of the electrolyte is absorbed by the bellows 8 provided in the reservoir. When the pressure-resistant container is filled with sample water, the inflow of sample water through the water hole is reduced, and the sample water injected from the sample water inlet circulates only at the bottom of the container and flows out as it is.
The lower part of the pressure vessel is heated to a high temperature. On the other hand, the upper part of the container is cooled by heat radiation, resulting in a temperature gradient in which the lower part of the container is at a higher temperature and the upper part is at a lower temperature.
これに伴い、電解液4にも液溜め側を低温、検出器側を
高温とする温度勾配が生ずる。この温度勾配により電解
液の対流が生じ、検出器内電解液は細孔B21からチュ
ーブAL7を通じ液溜め内に上昇し、液溜め内で冷却さ
れる。一方、液溜め内の電解液はチューブBを通じ細孔
19より検出器内に流入し加熱される。細孔A、Bには
弁A20゜弁B23が取り付けられ、電解液の逆流を防
止する。この対流に基づく電解液の循環により、大容量
の液溜めを用いた場合においても、液溜めから検出器内
に電解液が連続的に、能率よく供給され、検出器の使用
時間を大幅に向上させることができる。本実施例では電
解液としてKCQ水溶液を用いたが、これは他の水溶液
、例えばH2SO,、に、 5O4Na、 SO2等の
5042−イオンを含む水溶液、或は11,1PO4,
Na112PO4,Nat HPO4,Na、 PO4
等のPo、 2−イオンを含む水溶液の使用も可能であ
る。この時、陽極反応はそれぞれ式(3)及び式(4)
となる。Accordingly, a temperature gradient occurs in the electrolytic solution 4, with the liquid reservoir side being low temperature and the detector side being high temperature. This temperature gradient causes convection of the electrolyte, and the electrolyte in the detector rises from the pore B21 through the tube AL7 into the liquid reservoir and is cooled within the liquid reservoir. On the other hand, the electrolytic solution in the reservoir flows into the detector through the pore 19 through the tube B and is heated. A valve A20 and a valve B23 are attached to the pores A and B to prevent backflow of the electrolyte. This circulation of electrolyte based on convection allows the electrolyte to be continuously and efficiently supplied from the reservoir to the detector even when using a large-capacity reservoir, greatly improving the operating time of the detector. can be done. In this example, a KCQ aqueous solution was used as the electrolyte, but this may be other aqueous solutions such as H2SO, 504Na, SO2, etc., or an aqueous solution containing 5042- ions such as 11,1PO4,
Na112PO4, Nat HPO4, Na, PO4
It is also possible to use an aqueous solution containing Po, 2-ions such as. At this time, the anodic reaction is expressed by equation (3) and equation (4), respectively.
becomes.
2Ag+30.2−−+Ag25Oa +2e−−(3
)3Ag+P0.3−→Agi po4+3e−−(4
)また、電解液の循環方向を限定する必要が無い場合は
、弁A、弁Bは不要である。2Ag+30.2--+Ag25Oa +2e--(3
)3Ag+P0.3-→Agi po4+3e--(4
) Also, if there is no need to limit the direction of circulation of the electrolytic solution, valves A and B are unnecessary.
本実施例は耐圧容器上部を自然放熱により冷却がした第
3図に示すように耐圧容器上部に空冷フィン24を設け
、耐圧容器上部を冷却することも可能である。また、第
4図に示す如く、耐圧容器上部に冷却槽25を取り付は
冷却水人口27と、冷却水出口26の間に冷却水28を
通水して冷却することも可能である。In this embodiment, the upper part of the pressure vessel is cooled by natural heat radiation. As shown in FIG. 3, air cooling fins 24 may be provided at the upper part of the pressure vessel to cool the upper part of the pressure vessel. Further, as shown in FIG. 4, a cooling tank 25 may be attached to the upper part of the pressure vessel and cooling water 28 may be passed between a cooling water outlet 27 and a cooling water outlet 26 for cooling.
本発明によれば、大容量の電解液を連続的に、能率良く
電極近傍に供給できるので、検出器の使用時間を大幅に
延長することが可能である。高温高圧型溶存酸素計を原
子炉−次冷却水中の溶存02濃度定量に適用する場合、
定期点検から次回の定期点検までの間、電解液の補充な
どの操作を加えること無く、連続的に使用できる性能を
有することが不可欠であるが、本発明はこのために有力
な手段を供しうる。According to the present invention, a large amount of electrolyte can be continuously and efficiently supplied to the vicinity of the electrode, so that the usage time of the detector can be significantly extended. When applying a high-temperature, high-pressure dissolved oxygen meter to quantify the dissolved O2 concentration in sub-reactor cooling water,
It is essential that the device has the ability to be used continuously from one periodic inspection to the next periodic inspection without adding operations such as replenishing the electrolyte, and the present invention can provide an effective means for this purpose. .
第1図は、公知の高温高圧型溶存酸素計の概略図、第2
図は、本発明の一実施例の対流循環型溶存酸素計の概略
図、第3図、第4図は対流循環型溶存酸素計に使用する
容器の変形例を示す断面図である。
■・・・金属フィルター、2川台座、3・・・酸素透過
膜、4・・・多孔性陰極、訃・・通水孔、6・・・電解
液、7・・・FJ)ll、8・・・ベローズ、9・・・
試料水出0.10・・・電流側、11・・・定電圧電源
、12・・・電圧計、13・・・検出器本体、14・・
・耐圧容器、15・・・試料水、16・・・試料水入口
、17・・・チューブA、18・・・チューブB、】9
・・・細孔A、2o・・・弁A、21・・・細孔B、2
2・・・液溜め、23・・・弁B、24・・・空冷フィ
ン、25・・・空部槽、26・・・空冷水出口、27・
・・第 1 口
第2 図
第3 図
第4図
9Figure 1 is a schematic diagram of a known high-temperature, high-pressure dissolved oxygen meter;
The figure is a schematic diagram of a convection circulation type dissolved oxygen meter according to an embodiment of the present invention, and FIGS. 3 and 4 are sectional views showing modified examples of the container used in the convection circulation type dissolved oxygen meter. ■... Metal filter, 2 river pedestal, 3... Oxygen permeable membrane, 4... Porous cathode, Death... Water hole, 6... Electrolyte, 7... FJ)ll, 8 ...bellows, 9...
Sample water output 0.10... Current side, 11... Constant voltage power supply, 12... Voltmeter, 13... Detector body, 14...
・Pressure container, 15...sample water, 16...sample water inlet, 17...tube A, 18...tube B, ]9
...Pore A, 2o...Valve A, 21...Pore B, 2
2...Liquid reservoir, 23...Valve B, 24...Air cooling fin, 25...Empty tank, 26...Air cooling water outlet, 27...
...1st mouth 2nd figure 3 figure 4 figure 9
Claims (1)
に接して装置された隔膜を有し、電解液中に作用電極と
対極を装置した検出器と、かつ、上記両電極に結線され
、両電極間の電位を一定に保つ電源装置と、両電極間に
流れる電流を測定するための電流計から成る電気回路系
より構成される隔膜式溶存酸素計において、検出器内電
解液と連絡する大容積の液溜めを検出器の上部に配置し
、検出器よりこの液溜めが低温となる温度勾配を設け、
この液溜めと検出器の間を電解液が対流により循環する
ことにより、液溜めから検出器に、電解液を円滑かつ連
続的に供給することを特徴とする対流循環型溶存酸素計
。1. A container is filled with an electrolytic solution, a diaphragm is placed on the surface of the container in contact with the sample water, a detector is provided with a working electrode and a counter electrode in the electrolytic solution, and wires are connected to both of the electrodes. In a diaphragm-type dissolved oxygen meter, which consists of an electric circuit system consisting of a power supply device that maintains a constant potential between both electrodes and an ammeter that measures the current flowing between both electrodes, the electrolyte in the detector A communicating large volume liquid reservoir is placed above the detector, and a temperature gradient is created so that this liquid reservoir is cooler than the detector.
A convection circulation dissolved oxygen meter characterized in that the electrolyte is circulated between the reservoir and the detector by convection, thereby smoothly and continuously supplying the electrolyte from the reservoir to the detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58231409A JPS60125556A (en) | 1983-12-09 | 1983-12-09 | Convection circulation type dissolved oxygen meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58231409A JPS60125556A (en) | 1983-12-09 | 1983-12-09 | Convection circulation type dissolved oxygen meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60125556A true JPS60125556A (en) | 1985-07-04 |
Family
ID=16923145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58231409A Pending JPS60125556A (en) | 1983-12-09 | 1983-12-09 | Convection circulation type dissolved oxygen meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60125556A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5893817B1 (en) * | 2014-11-18 | 2016-03-23 | オリンパス株式会社 | Densitometer and endoscope reprocessor |
WO2016080077A1 (en) * | 2014-11-18 | 2016-05-26 | オリンパス株式会社 | Concentration meter and endoscope reprocessor |
-
1983
- 1983-12-09 JP JP58231409A patent/JPS60125556A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5893817B1 (en) * | 2014-11-18 | 2016-03-23 | オリンパス株式会社 | Densitometer and endoscope reprocessor |
WO2016080077A1 (en) * | 2014-11-18 | 2016-05-26 | オリンパス株式会社 | Concentration meter and endoscope reprocessor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Fabrication of Bio‐Inspired 2D MOFs/PAA hybrid membrane for asymmetric ion transport | |
Ward et al. | Stability of bubbles in a closed volume of liquid‐gas solution | |
Hinton et al. | Solvation numbers of ions | |
US3429796A (en) | Gas analyzer | |
CN113848174B (en) | Electrochemical corrosion test device under boiling and strong corrosive solution environment and application thereof | |
US3196100A (en) | Oxygen detecting and measuring apparatus | |
JPS59174748A (en) | Dissolved gas concentration measuring device | |
Spitzer et al. | Reference electrodes for aqueous solutions | |
Shawaqfeh et al. | Fabrication and characterization of single layer and multi-layer anodic alumina membranes | |
Vogtländer et al. | An experimental study of mass transfer from a liquid flow to wires and gauzes | |
JPS60125556A (en) | Convection circulation type dissolved oxygen meter | |
JPS58215549A (en) | Dissolved hydrogen concentration measuring device | |
US3915839A (en) | Apparatus for isoelectric focusing | |
CN207336430U (en) | A kind of electrochemical testing device of controllable temperature | |
US3315271A (en) | Cell for dissolved oxidant analysis | |
CN206648931U (en) | Temperature shock electrochemistry corrosion inhibition experimental apparatus for testing | |
CN115615970B (en) | Optical dissolved oxygen sensor response time test device and test method | |
JPH0545157B2 (en) | ||
CN113866242B (en) | A flow cell for on-line analysis of iodine-containing liquid loop water quality | |
JPS59190648A (en) | Reference electrode for high temperature | |
JPS5924503B2 (en) | electrochemical cell | |
Conner et al. | Design and development of a water vapor electrolysis unit | |
US3865709A (en) | Carbon activity meter | |
Yang et al. | Performance of PEMFCs with internal humidification | |
Zhu et al. | Amperometric operation of porous flow‐through electrodes at very low conversion efficiencies in flow stream detectors |