[go: up one dir, main page]

JPS60118681A - Manufacture of porous mulite ceramic - Google Patents

Manufacture of porous mulite ceramic

Info

Publication number
JPS60118681A
JPS60118681A JP58223948A JP22394883A JPS60118681A JP S60118681 A JPS60118681 A JP S60118681A JP 58223948 A JP58223948 A JP 58223948A JP 22394883 A JP22394883 A JP 22394883A JP S60118681 A JPS60118681 A JP S60118681A
Authority
JP
Japan
Prior art keywords
porous
ceramic
mullite
mulite
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58223948A
Other languages
Japanese (ja)
Other versions
JPH0148231B2 (en
Inventor
安藤 汀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP58223948A priority Critical patent/JPS60118681A/en
Publication of JPS60118681A publication Critical patent/JPS60118681A/en
Publication of JPH0148231B2 publication Critical patent/JPH0148231B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は特に熱伝導率が低く、シかも耐熱衝撃性の1f
itlだ多孔質ムライト磁器の製造法に関するるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a particularly low thermal conductivity and a 1f
This invention relates to a method for producing porous mullite porcelain.

高温断熱材としては低い熱伝導率が要求され。Low thermal conductivity is required for high-temperature insulation materials.

0.0001 Cal /Cl1l −sec −℃級
のセラミック7フイバが知られているが、該ファイバの
如き不定形で機械的強度の低いものは実用上不便のため
、定形で低い熱伝導率を呈するセラミックスが要望され
ている。
Ceramic 7 fibers of 0.0001 Cal /Cl1l -sec -℃ class are known, but fibers with irregular shapes and low mechanical strength are inconvenient for practical use, so they exhibit low thermal conductivity due to their regular shape. Ceramics are requested.

また、上記高温断熱材を含む高温用構造材料においては
耐熱衝撃性が要求されるが、該耐熱衝撃性は熱伝導性と
略々比例するため低い熱伝導性を有スる中膨張セラミッ
クスに対して高い耐熱性撃性を付与することは困篠とさ
れていた。
In addition, thermal shock resistance is required for high-temperature structural materials including the above-mentioned high-temperature insulation materials, but since the thermal shock resistance is approximately proportional to thermal conductivity, medium-expansion ceramics, which have low thermal conductivity, are required. However, it has been difficult to impart high heat resistance and impact resistance.

本発明は上記セラミックファイバに略々等しい低い熱伝
導率と、セラミックス中高い数値を示すとされるコージ
ライトあるいはβスポジュメン磁器に相等する耐熱衝撃
性を具えた網目状の多孔質ムライト磁器を供給しようと
するものである。
The present invention provides a mesh-like porous mullite porcelain that has a low thermal conductivity that is approximately equal to that of the above-mentioned ceramic fiber, and a thermal shock resistance that is equivalent to that of cordierite or β-spodumene porcelain, which is said to have a high value among ceramics. That is.

実廁例 金属珪素(純度98%、150メツシュ通、三津和化$
) 200゜ アルミナ(純度99.9%、タイミクロンAG。
Practical example: Metallic silicon (98% purity, 150 meshes, Mitsuwaka $)
) 200° alumina (purity 99.9%, Taimicron AG.

大明化学) 1092g メチルエチルケトン(溶剤) ’120yジブチルフタ
レート(EJI塑剤) 80gイオネット5−20 (
分散剤、三洋化成>、By以上を内容積31!のアルミ
ナ磁器製ボールミルで24時間の混合、粉砕した後、バ
インダとしてポリビニルブチラールを120g加え更に
24時間の混合を行なう。
Daimei Chemical) 1092g Methyl ethyl ketone (solvent) '120y dibutyl phthalate (EJI plasticizer) 80g Ionet 5-20 (
Dispersant, Sanyo Chemical>, By or more with an internal volume of 31! After mixing and pulverizing for 24 hours in an alumina porcelain ball mill, 120 g of polyvinyl butyral was added as a binder and mixing was continued for another 24 hours.

得られたスラリーを、ドクターブレード法によってポリ
エステルフィルム上にシート成形、15時間の自然乾燥
によって厚さ4肩のグリーンシートを得た。
The obtained slurry was formed into a sheet on a polyester film by a doctor blade method and air-dried for 15 hours to obtain a green sheet with a thickness of 4 shoulders.

この厚さ4rrrmのシートを各種の条件で焼成−(1
時間保持)して得た試料の緒特性を他のセラミック組成
物の一般的特性値と共に表1に示す。
This sheet with a thickness of 4rrrm is fired under various conditions - (1
Table 1 shows the properties of the samples obtained after holding the ceramic composition for a long time, together with the general properties of other ceramic compositions.

前表から明らかにされるように1本発明によってに’N
した試′44Nα1〜6及びNα11〜16は実に気孔
率55%以上の多孔質構造のムライト組織で。
As is clear from the preceding table, according to the present invention, 'N
The samples '44Nα1 to 6 and Nα11 to 16 actually had a porous mullite structure with a porosity of 55% or more.

該多孔質構造は代表例として挙げた試料NQ2及びNo
 14の顕微鏡写真(X5000)を示す第1図及び第
2図によって示される通り、針状結晶が空間的に網目状
に形成され、ムライト本来の高い耐熱性と、セラミック
ファイバに略々匹敵する低熱伝導性(断熱性)を具え乍
らも高い機械的強度を具えている。
The porous structure is similar to that of samples NQ2 and No.
As shown in Figures 1 and 2, which are micrographs (X5000) of No. 14, needle-shaped crystals are formed spatially in a network shape, and have the high heat resistance inherent to mullite and the low heat resistance almost comparable to ceramic fibers. It has high mechanical strength while being conductive (insulating).

従って、炉材、バーナーノズル、アーク断熱板等の高温
断熱材料を初め、上記特性に加えてコージライト、βス
ボジュメン等低膨張性磁器と同等の耐熱衝撃性をも具え
ているため、外部からの圧縮空気を燃焼室に導くに先立
って高温に予熱し。
Therefore, in addition to the above characteristics, high-temperature insulation materials such as furnace materials, burner nozzles, arc insulation plates, etc. have thermal shock resistance equivalent to low-expansion porcelain such as cordierite and β-subodumene, so they can be used to protect against external damage. The compressed air is preheated to a high temperature before being introduced into the combustion chamber.

燃焼室内において燃料を噴射、燃焼させてタービンを作
動させた後、高温の排ガスの熱エネルギーの一部を上記
の燃焼室に導かれる圧縮空気へ回収して大気中に放出す
る特に温度差の大きいガスタービンのハニカム構造型を
初め各種の熱交換器の材料として著効を奏し、また最大
92%にも達する気孔率を有する網目状の構造体は炉材
、生化学反応触媒担体としてのバイオセラミック、液体
クロマトグラフ用吸着シート等広い範囲に亘って有効で
あるが、出発原料が同一でも水素ガス、アンモニア分解
ガスの露点が10゛Cを超えた試料Nα7及びNα17
は粒子状の結晶構造を呈し、参考例として挙げたムライ
ト磁器に近寄った諸特性値を示した。
After fuel is injected and burned in the combustion chamber to operate the turbine, a portion of the thermal energy of the high-temperature exhaust gas is recovered into the compressed air introduced into the combustion chamber and released into the atmosphere.Especially when the temperature difference is large. It is highly effective as a material for various heat exchangers, including the honeycomb structure type of gas turbines, and the mesh structure, which has a porosity of up to 92%, is used as a furnace material and bioceramic as a biochemical reaction catalyst carrier. , is effective in a wide range of applications such as adsorption sheets for liquid chromatography, but samples Nα7 and Nα17 have hydrogen gas and ammonia decomposition gas dew points exceeding 10°C even if the starting materials are the same.
exhibited a granular crystal structure and exhibited various characteristic values close to those of the mullite porcelain cited as a reference example.

本発明においてAl2O3と反応してムライトを生成す
る5s02源として金属珪素Siを使用すると共に。
In the present invention, metallic silicon Si is used as a 5s02 source which reacts with Al2O3 to produce mullite.

水蒸気露点10°C以下の還元性雰囲気中において焼成
する理由は、出発原料の金属珪素Siが焼成雰囲気中の
水蒸気によってSiOと5i02に酸化し、後者5i0
2がAt203と反応してムライトを生成するが露点を
低くすれば5i02の濃度が低い状態でAl2O3と反
応するので反応に時間を要して網目状結晶構造のムライ
トを生成し、該5i02と平衡するSiOはSi02が
A12036反応して減少するに伴って5io2.とな
って逐次遊離のAl 20 aと反応して網目状結晶構
造のムライトを生成し、この反応は水蒸気露点が10℃
以下に限定することによって得られることが実験的に確
かめられたからである。
The reason for firing in a reducing atmosphere with a water vapor dew point of 10°C or less is that the starting material, metallic silicon, is oxidized by the water vapor in the firing atmosphere into SiO and 5i02, the latter 5i0
2 reacts with At203 to produce mullite, but if the dew point is lowered, 5i02 reacts with Al2O3 at a low concentration, so the reaction takes time to produce mullite with a network crystal structure, which is in equilibrium with 5i02. As Si02 is reduced by A12036 reaction, 5io2. This reacts with free Al 20 a one after another to produce mullite with a network crystal structure, and this reaction occurs when the water vapor dew point is 10°C.
This is because it has been experimentally confirmed that it can be obtained by limiting the following.

しかして、水蒸気露点の下限は量産面から一5°C程度
である。
Therefore, the lower limit of the water vapor dew point is about 15°C from the standpoint of mass production.

前表は出発原料として金属珪素とアルミナを用い、ムラ
イトの理論組成が得られるよう秤量したが、常法に従っ
て焼結促進剤としてCaO、MgO等の少量を配合する
ことができ、また最終生成物中に遊離Al2O3,Si
O2が存在してもそれらがムライトに対して8%5以内
の範囲内にあれば許容される。
In the previous table, metallic silicon and alumina were used as starting materials and were weighed to obtain the theoretical composition of mullite. Free Al2O3, Si
The presence of O2 is permissible as long as it is within 8%5 of mullite.

また、出発原料としてSiO□源として金属珪素Siは
動かせないが、Al2O3源としてはアルミナゾル。
In addition, as a starting material, metal silicon Si cannot be used as a source of SiO□, but alumina sol can be used as a source of Al2O3.

水m化アルミニウム等アルミニウム化合物を使用するこ
とができ、焼成ガスも一酸化炭素ガスと窒素ガスの混合
ガス等地の還元性ガスを用いてもよい。
An aluminum compound such as aluminum hydrate can be used, and the firing gas may also be a reducing gas such as a mixed gas of carbon monoxide gas and nitrogen gas.

更に実施例は出発原料の粉末をスラリとし、こjをドク
ターブレード法によってグリーンシートを製作した場合
について・示したが、スラリの状態における鋳込み成型
−系土状としてローリング成型、あるいはスラリを噴霧
乾燥によって造粒して行なうプレス成型等、目的に応じ
て成形法を選択することができる。
Furthermore, the example shows the case where the powder of the starting material is made into a slurry and a green sheet is manufactured using the doctor blade method. A molding method can be selected depending on the purpose, such as press molding performed by granulation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明によって得られた網目状の多孔質ムライト
磁器の顕微鏡写真(X5000)で、第1図は前掲の表
1の試料Nα2.第2図は同じ(表1の試料Nα14を
代表例として示した。 特許出願人 日本特殊陶業株式会社 代理人 今 井 d1°■[曹 l ゛・、j 図面の;ン:貿内IFに変更なし) 第2図 手 続 補 正 書 (方式) 昭和59年3月lり日 1、事件の表示 昭和58年特許願 第223948号 2発明の名称 多孔質ムライト磁器の製造法 a補正をする者 事件との関係 特許出願人 住所 名古屋市瑞穂区高辻町14番18号氏名 (45
4)日本特殊陶業株式会社代表者小川修次 生代理人 住 所 郵便番号 46′l G補正の対象 明細書中、「図面の簡単な説明」の欄、および「図面」
。 7補正の内存 (1)明細書第8頁第5行目、図面の簡単な説明の欄を
下記の通り訂正します。 「第1図は本発明の多孔質ムライト磁器の結晶構造の電
子顕微鏡写真(倍率5000倍)、第2図は本発明の他
の実施例による多孔質ムライト磁器の結晶構造の電子顕
微鏡写真(倍率5000倍)である。」 (2)図面第1図、第2図を別紙の通り訂正します。 手続補正書(自発) 昭和59年6月79日 り事件の表示 昭和58年特許願 第228948号 2発明の名称 多孔質ムライト磁器の製造法 a補正をする者 事件との関係 特許出願人 (454)日本特殊陶業株式会社 代表者小川修次 生代理人 (〒467) 五補正の対象 明細書中、発明の詳細な説明の欄。 G補正の内容 (1)gA細書第2頁第8行目から同第4行目までを下
記の通り訂正します。 「有するセラミックスに対して高い耐熱衝撃性を付与す
ることは困難とされていた。」以上
The drawings are micrographs (X5000) of the mesh-like porous mullite porcelain obtained by the present invention, and FIG. 1 is the sample Nα2. Figure 2 is the same (Sample Nα14 in Table 1 is shown as a representative example. Patent applicant: NGK Spark Plug Co., Ltd. Agent Imai d1° (None) Figure 2 Procedures Amendment (Method) Date of March 1, 19801, Case description, 1982 Patent Application No. 223948, 2 Name of the invention, Process for manufacturing porous mullite porcelain a. Person making the amendment Relationship to the incident Patent applicant address 14-18 Takatsuji-cho, Mizuho-ku, Nagoya Name (45
4) NGK Spark Plug Co., Ltd. Representative Shujio Ogawa Agent Address Postal Code 46'l In the specification subject to the G amendment, the column "Brief explanation of drawings" and "Drawings"
. 7. Inclusion of amendments (1) The brief explanation of the drawings column on page 8, line 5 of the specification is corrected as follows. "Figure 1 is an electron micrograph (magnification: 5000x) of the crystal structure of porous mullite porcelain according to the present invention, and Figure 2 is an electron micrograph (magnification: (2) Figures 1 and 2 of the drawings will be corrected as shown in the attached sheet. Procedural amendment (voluntary) Indication of the case dated June 79, 1988 Patent application No. 228948 2 Name of the invention Process for manufacturing porous mullite porcelain ) NGK Spark Plug Co., Ltd. Representative Shujio Ogawa (467) Column for detailed explanation of the invention in the specification subject to the five amendments. Contents of the G amendment (1) gA Specification, page 2, line 8 to line 4 of the same page are corrected as follows. ``It has been considered difficult to impart high thermal shock resistance to ceramics.''

Claims (1)

【特許請求の範囲】[Claims] 金属珪素とアルミニウム化合物の混合粉末を主体とする
成形体を、露点10℃以下の水素ガスあるいはアンモニ
ア分解ガス等の還元性雰囲気によって焼成することを特
徴とした網目状の多孔質ムライト磁器の製造方法。
A method for producing mesh-like porous mullite porcelain, characterized by firing a molded body mainly composed of a mixed powder of metallic silicon and an aluminum compound in a reducing atmosphere such as hydrogen gas or ammonia decomposition gas with a dew point of 10°C or less. .
JP58223948A 1983-11-28 1983-11-28 Manufacture of porous mulite ceramic Granted JPS60118681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58223948A JPS60118681A (en) 1983-11-28 1983-11-28 Manufacture of porous mulite ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58223948A JPS60118681A (en) 1983-11-28 1983-11-28 Manufacture of porous mulite ceramic

Publications (2)

Publication Number Publication Date
JPS60118681A true JPS60118681A (en) 1985-06-26
JPH0148231B2 JPH0148231B2 (en) 1989-10-18

Family

ID=16806204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58223948A Granted JPS60118681A (en) 1983-11-28 1983-11-28 Manufacture of porous mulite ceramic

Country Status (1)

Country Link
JP (1) JPS60118681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313412U (en) * 1986-02-27 1988-01-28
JP2003342076A (en) * 2002-05-23 2003-12-03 Ngk Insulators Ltd Process for manufacturing composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313412U (en) * 1986-02-27 1988-01-28
JP2003342076A (en) * 2002-05-23 2003-12-03 Ngk Insulators Ltd Process for manufacturing composite material

Also Published As

Publication number Publication date
JPH0148231B2 (en) 1989-10-18

Similar Documents

Publication Publication Date Title
US4001028A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
CN100384784C (en) Mullite green body and method for producing mullite green body
EP0037868A1 (en) Method of producing low-expansion ceramic materials
EP0036462B2 (en) A honeycomb structure for use as a catalyst support for automobile exhaust
ZA200206263B (en) Honeycomb structure and method for manufacture thereof.
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
US4460528A (en) Refractory
JPS6212661A (en) Manufacturing method of spinel ceramic sintered body
JPS60118681A (en) Manufacture of porous mulite ceramic
JP4348429B2 (en) Porous silicon nitride and method for producing the same
US6015517A (en) Controlled porosity for ceramic contact sheets and setter tiles
JP2000016872A (en) Porous silicon carbide sintered body and its production
US4205033A (en) Process for producing compact silicon nitride ceramics
US4886652A (en) Production of metal carbides
JP2672545B2 (en) Method for manufacturing silicon carbide honeycomb filter
JP2779651B2 (en) Metallization method for high purity alumina ceramics
US4055614A (en) Method of firing formed ceramic body
KR102782493B1 (en) Silicon carbide composite comprising metal silicide and silicon nitride compound and method for manufacturing the same
JPH02500667A (en) composite refractory material
JPH02311360A (en) Aluminum titanate sintered compact
JP2586893B2 (en) Method for producing catalyst for low temperature reforming of magnesia hydrocarbon
JP2000351679A (en) Method for producing porous silicon carbide body and porous silicon carbide body
CN100413804C (en) Preparation method of flake microcrystalline toughened MgAlON composite corundum material
JPH0829977B2 (en) High strength / low thermal expansion ceramic and method for manufacturing the same
JP2507976B2 (en) Method for manufacturing ceramic porous body