JPS6011771B2 - infrared gas grill - Google Patents
infrared gas grillInfo
- Publication number
- JPS6011771B2 JPS6011771B2 JP12231879A JP12231879A JPS6011771B2 JP S6011771 B2 JPS6011771 B2 JP S6011771B2 JP 12231879 A JP12231879 A JP 12231879A JP 12231879 A JP12231879 A JP 12231879A JP S6011771 B2 JPS6011771 B2 JP S6011771B2
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- porous ceramic
- grill
- food
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
本発明は食品の加熱の熱源として、セラミックを発熱体
として使用しバーナーで加熱することによって、被加熱
物の吸収波長に応じて波長分布の赤外線を放射させる効
率の良い赤外線ガスグリルを提供するものである。Detailed Description of the Invention The present invention uses ceramic as a heating element as a heat source for heating food and heats it with a burner, thereby emitting infrared rays with a wavelength distribution according to the absorption wavelength of the heated object. It provides an infrared gas grill.
一般に物を焼く場合、被加熱物である食品の赤外線吸収
特性の影響は極めて大きい。Generally, when baking something, the influence of the infrared absorption characteristics of the food being heated is extremely large.
いま魚(あじ)の身の反射スベクトルイ透過スペクトル
口を第1図に示す。測定は、15ムmの赤外域まで測定
可能な分光光度計を用いて行なった。第1図から解かる
様に、魚肉は、0.4仏m〜2.5Amの波長の光もし
くは、熱蟻泉を反射したり、透過させる蔓が比較的多く
、吸収しにくい。それに対し、2.5〃mよりも長い波
長の赤外線では、反射や透過するものはほとんど無く、
魚肉に充分吸収され熱エネルギーに変換されて魚肉の加
熱に対して有効に使われると言える。魚(あじ)のみな
らず、4・麦粉200夕と水200夕をこねたケーキの
タネについても、同様の結果を得た。魚やケーキのタネ
だけで無く、広く水分を多量に含む、食品を加熱する際
に共通の事と考えられる。食品を効率的に加熱するには
、2.5山mよりも長い赤外領域の熱線を発熱体からよ
り多く放射させてやる必要がある。従来家庭用のガスグ
リルでは、ガスバーナによって金属板を高温に加熱させ
て、それから放射する赤外線で食品を加熱する方法が広
く使われている。また、シュバンクバーナも赤外線バー
ナとして使われている。しかし、これ等から放射されて
いる赤外線の波長分布を測定しても主波長が2〜3Am
である。第2図イステンレス金鋼を発熱体としたグリル
の波長分布、口にシュバンクバーナを発熱体としたグリ
ルでの波長分布を示す。発熱体からなり、2.5仏mよ
り短かし・放射エネルギーが放射されているが、食品に
充分吸収されず効率が悪い。本発明は上記従来技術に鑑
み、現在最も良く使われている調理用熱源であるガスを
用いて効率的に食品を加熱する事ができる新しい赤外線
ガスグリルを提供するものである。Figure 1 shows the reflection and transmission spectrum of the flesh of a horse mackerel. The measurement was performed using a spectrophotometer capable of measuring up to an infrared region of 15 mm. As can be seen from FIG. 1, fish meat has a relatively large number of tendrils that reflect or transmit light with a wavelength of 0.4 French m to 2.5 Am or a hot ant spring, making it difficult to absorb it. On the other hand, infrared rays with wavelengths longer than 2.5 m have almost no reflection or transmission.
It can be said that it is sufficiently absorbed by fish meat, converted into thermal energy, and used effectively for heating fish meat. Similar results were obtained not only for fish (mackerel) but also for cake seeds made by kneading 200 times of flour and 200 times of water. This is thought to be common when heating a wide variety of foods that contain large amounts of water, not just fish or cake seeds. In order to heat food efficiently, it is necessary to emit more heat rays in the infrared region that are longer than 2.5 meters from the heating element. Traditionally, home gas grills use a method in which a metal plate is heated to a high temperature using a gas burner, and then the food is heated using infrared rays. Schwank burners are also used as infrared burners. However, even if we measure the wavelength distribution of infrared rays emitted from these devices, the dominant wavelength is 2 to 3 Am.
It is. Figure 2 shows the wavelength distribution of a grill with stainless steel as a heating element, and the wavelength distribution of a grill with a Schbank burner as a heating element at the mouth. It consists of a heating element and emits radiant energy shorter than 2.5 m, but it is not sufficiently absorbed by food and is inefficient. In view of the above prior art, the present invention provides a new infrared gas grill that can efficiently heat food using gas, which is currently the most commonly used cooking heat source.
以下本発明の詳細について実施例と共に説明する。The details of the present invention will be explained below along with examples.
−般に金属に較べて、セラミックが長波長の赤外線を放
射する事は知られているが、被加熱物である食品が良く
吸収すると考えられる2.5山m以上の波長をより多く
放射する発熱体を探索したところ、Ti02,Zの2,
BN等のセラミックのうち特に、Aそ203,Si02
の少なくとも一方を主成分とする組成をもったセラミッ
クが発熱体として優れている事を見し、出した。- It is generally known that ceramics emit infrared rays with longer wavelengths than metals, but they emit more wavelengths of 2.5 m or more, which are thought to be better absorbed by the food being heated. When searching for a heating element, Ti02, Z2,
Among ceramics such as BN, especially Aso203, Si02
It was discovered that a ceramic having a composition containing at least one of the following as a main component was superior as a heating element.
500ooでは表面を酸化させたステンレス鋼の全放射
エネルギーのうち2.5舷m以上の波長の放射エネルギ
ーが78%でしかないのに対してA〆203,Si02
は全放射エネルギーのうち2.5〆m以上の波長の放射
エネルギーは、それぞれ94%,92%もある事が分っ
た。At 500oo, only 78% of the total radiant energy of stainless steel with an oxidized surface is at wavelengths of 2.5 m or more, whereas A〆203, Si02
It was found that out of the total radiant energy, radiant energy with wavelengths of 2.5 m or more accounted for 94% and 92%, respectively.
またAそ203とSj02を混合したものの2.5仏m
以上の波長の放射エネルギーの全放射エネルギーに対す
る割合を測定すると第3図の様な結果が得られる。(5
0000)Aメ203の割合が増加するにつれ、2.5
一m以上の波長放射エネルギーの割合が増えるが、その
様な材料を主成分とするセラミックを焼成するには焼成
温度を上げなければならず「コストが高くなる欠点があ
り、Si02の成分が多くとも「充分発熱体としての効
果は期待できる。発熱体の形状として多孔性セラミック
体が優れている。Also, 2.5 French m of a mixture of Aso203 and Sj02
When the ratio of the radiant energy of the above wavelengths to the total radiant energy is measured, the results shown in FIG. 3 are obtained. (5
0000) As the proportion of American 203 increases, 2.5
The proportion of radiant energy with wavelengths of 1 m or more increases, but in order to fire ceramics whose main component is such materials, the firing temperature must be raised, which has the disadvantage of increasing costs. ``It can be expected to be sufficiently effective as a heating element.Porous ceramic bodies are excellent in terms of the shape of the heating element.
赤外線放射の場合、発熱体の面積が広い程有利であり、
単なるセラミックの板状のものに較べて、多子L性のも
のは表面積が広く、熱放射に有利である。また表面が凸
凹しており粗いので「同じ材質の研磨したものよりも、
はるかにより長波長の放射を行ないうる。比重が小さい
ので、熱容量も小さく、バーナで加熱するとすぐに温度
が上がり、軽量なので「器具内での取り扱いも容易であ
る。孔の形状は均一である必要もなく、従来のシュバン
クバーナの様にガスを孔から出して表面で燃焼させるも
のとちがい、単にバーナで加熱しさえすれば良いので、
孔も連続している必要もなく、強度面からは、むしろバ
ーナで加熱する面だけが多孔性である方が強いし「 ま
た孔が連続していない方が望ましい。シュバンクバーナ
よりも孔の精度が必要ないので、低コストでできる。多
孔性セラミックとしてセラミック材料を発泡性合成樹脂
原液に混入し、均一に分散させ「発泡工程を経た後競結
させたものや、あらかじめ発泡させた合成樹指に、セラ
ミックスラリーをコープィングして焼結させる物等があ
るが、いずれの製法でも構わない。第4図、第5図に発
熱体の構成の一例を示す。In the case of infrared radiation, the larger the area of the heating element is, the more advantageous it is.
Compared to a simple ceramic plate, a multilayer L type has a larger surface area and is advantageous for heat radiation. Also, because the surface is uneven and rough, it is ``better than a polished one made of the same material.
Much longer wavelength radiation can be performed. Because the specific gravity is low, the heat capacity is also small, and when heated with a burner, the temperature rises quickly, and because it is lightweight, it is easy to handle in the device. Unlike those that emit gas through holes and burn it on the surface, all you have to do is heat it with a burner.
The pores do not need to be continuous, and in terms of strength, it is better if only the surface heated by the burner is porous. Since precision is not required, it can be done at low cost.For porous ceramics, ceramic materials are mixed into a foaming synthetic resin stock solution and dispersed uniformly. There are products in which a ceramic slurry is coped and sintered on the finger, but any manufacturing method may be used.An example of the structure of the heating element is shown in FIGS. 4 and 5.
第4図の様に、ステンレス鋼等の耐熱性に優れた材料で
、多孔性セラミック角柱を支持する支持枠蔓、ストッパ
ー2、袋ブタ3を作る。支持枠1にAそ2Q,Si02
の少なくとも一方を主成分とする多孔性セラミックを角
柱状にダイヤモンドカッターで切断し、同じ長さにそろ
えたもの4を並列に並べ、ストッパー2でねじ止め等で
固定し、さらに、髪ブタ3をかぶせて、発熱体5を構成
する。第6図は本発明の一応用構成例を断面で示す、第
7図は側面の断面図である。ガスはパイプ6で導かれバ
ーナ7の炎口8で燃焼する燃焼完了した高温ガスは上部
の発熱体5を加熱する発熱体5に組込まれた多孔性セラ
ミック4よりの放射を下面の受皿9に内蔵された金網I
Qへ行なう。As shown in FIG. 4, the support frame vine, stopper 2, and bag lid 3 that support the porous ceramic prism are made of a material with excellent heat resistance such as stainless steel. A so2Q, Si02 on support frame 1
A porous ceramic containing at least one of the main components is cut into a prismatic shape with a diamond cutter, and the pieces 4 of the same length are arranged in parallel, fixed with a stopper 2 with screws, etc. The heating element 5 is formed by covering the parts. FIG. 6 shows a cross-sectional view of one applied configuration example of the present invention, and FIG. 7 is a side cross-sectional view. The gas is led through a pipe 6 and combusted at the flame port 8 of the burner 7. The high-temperature gas after combustion heats the heating element 5 on the upper part.The gas is radiated from the porous ceramic 4 incorporated in the heating element 5 to the saucer 9 on the lower surface. Built-in wire mesh I
Go to Q.
又受皿はガイド11と奥のストッパー12により囲まれ
熱の外部への放散を防いでいる。前面は受皿9と連結し
たガラス扉亀3とそれに設置した取手亀4により庫内よ
りの出し入れを自在にしている。発熱体を加熱した燃焼
ガスは上部カバー15に設けられた排気ロー6を出て外
装ケース17の上部に関孔した排気口18より外部へで
る外装ケースは脚19により設置面より若干の間隙を設
けて床面の温度が上昇しない様にしている。Further, the saucer is surrounded by a guide 11 and a stopper 12 at the back to prevent heat from dissipating to the outside. On the front side, a glass door turtle 3 connected to a saucer 9 and a handle turtle 4 installed thereon allow for easy access into and out of the refrigerator. The combustion gas that heated the heating element exits through the exhaust row 6 provided on the upper cover 15 and exits from the exhaust port 18 formed in the upper part of the exterior case 17. This is to prevent the temperature of the floor from rising.
なお燃焼に必要な空気は外装ケース17の下面に設けた
空気口20より流入する。金鋼亀0上に被加熱物(食品
)を置き「バーナ?で発熱体5を加熱させ、波長2.5
仏m以上の食品の加熱に有効な放射エネルギーを多量に
放射せしめ効率的に加熱調理する。Note that air necessary for combustion flows in through an air port 20 provided on the lower surface of the outer case 17. Place the object to be heated (food) on the gold steel turtle 0 and heat the heating element 5 with a burner.
To efficiently cook food by emitting a large amount of radiant energy effective for heating food with a temperature of more than 500 yen.
実施例 1
多孔性セラミック(Aそ20385%,Si0212%
)(不連続気孔)で第5図の様な発熱体を構成した。Example 1 Porous ceramic (A So20385%, Si0212%
) (discontinuous pores) to construct a heating element as shown in Fig. 5.
これを従来金属SUS430の金鋼を発熱体としてブン
ゼンバーナで加熱している市販のグリル付ガステープル
コンロのグリルで、金鋼にかえて、多孔性セラミックか
らなる発熱体を置いた(第6図参照)小麦粉200夕と
水200夕をねりあわせたものをバーナより下7仇磯の
ところに設けたステンレス製の角皿に流しこみ加熱した
。This was replaced with the grill of a commercially available gas staple stove with a grill, which was conventionally heated with a Bunsen burner using SUS430 gold steel as the heating element, but instead of the gold steel, a heating element made of porous ceramic was placed (Figure 6). Reference) A mixture of 200 grams of wheat flour and 200 grams of water was poured into a stainless steel rectangular plate set 7 feet below the burner and heated.
従来品では4分でこげめがつき始めたのに対して、多孔
性セラミック発熱体を用いたものは、3分でこげがつい
た。また加熱後5分たったものを取りだすと従来品はま
だ下まで火が通っていない部分があるのに対し、多孔性
セラミック加熱体を用いたものは、充分下まで火が通っ
ていた。さらに「表面のこげめも従来品にくらべてムラ
が少なく均一に焼けていた。また中アジ(140夕)2
匹をバーナより7仇松下に設けた金鋼上に並べて、多孔
性セラミック発熱体を用いたグリルで、表7分、裏6分
加熱すると、きれいに火が通り、均一に食の表面にこげ
目がつきおいしそうに焼けていた。それに対して従釆品
は13分間加熱後も火の通りが悪く、魚が水っぽく、こ
げめも充分についていなかった。実施例 2
多孔性セラミック(Aそ20369%,Si0228%
)を用いて第5図の様な発熱体を構成し、第6図、第7
図の様なグリルで、実施例1と同様にテストを行なった
(連続気孔)。While the conventional product started to burn in 4 minutes, the product using the porous ceramic heating element started to burn in 3 minutes. Furthermore, when we took out the product after 5 minutes of heating, there were some parts of the conventional product that were not cooked all the way to the bottom, whereas those using the porous ceramic heating element were fully cooked all the way to the bottom. In addition, ``The burnt surface was less uneven and more evenly burnt compared to conventional products.
Arrange the fish on a metal plate set 7 feet above the burner and heat on a grill using a porous ceramic heating element for 7 minutes on the front and 6 minutes on the back.The food will be cooked perfectly and the surface will be evenly browned. It was grilled and looked delicious. On the other hand, even after heating for 13 minutes, the fish was not cooked well, the fish was watery, and the fish was not browned enough. Example 2 Porous ceramic (A So20369%, Si0228%
) to construct a heating element as shown in Figure 5, and as shown in Figures 6 and 7.
A test was conducted in the same manner as in Example 1 using a grill as shown in the figure (continuous pores).
多孔性セラミック発熱体を用いたグリルでマグロの切身
(厚み25肋)を加熱したところ4分間で下まで完全に
火が通った。When a tuna fillet (25 ribs thick) was heated on a grill using a porous ceramic heating element, it was completely cooked to the bottom in 4 minutes.
一方従来品では4分間たってもまだ、まぐろの切身の下
部に火が通ってない部分が残っていた。実施例 3
コーデイライト(2Mg0・2Aそ203・$i02)
から成る多孔性セラミックを用いて5柵×6仇舷×20
仇肋のプレートを作り、発熱体とした。On the other hand, with the conventional product, even after 4 minutes, there was still some undercooked tuna fillet at the bottom. Example 3 Cordayrite (2Mg0/2A So203/$i02)
Using porous ceramic consisting of 5 fences x 6 sides x 20
I made a plate for my enemy and used it as a heating element.
これを用いて実施例1と同様のテストを行なった。市販
されているケーキ類プレミツクスを水とねりあわせたも
のを加熱した。コーディラィトで作られた多孔性セラミ
ック発熱体を使用したものは約3分2硯酸、でこげめが
つき始めたのに対して、従来品では約4分3硯砂かかっ
てこげめがつき始めた。また6分後食品をとりだしたと
ころ、多孔性セラミック発熱体では完全に火が通り表面
も均一にこげてし、たのに対して従来品では下まで火が
通っていない部分があり、焼きムラが多かった。上記実
施例の比較例として、成分(A夕20385%;Si0
213%)大きさの同じ多孔性セラミック体の発熱体と
多孔性でないセラミック平板の発熱体を前記実施例1と
同じ構成(第6図参照)で比較したところ、金網上での
赤外線放射強度は安定時に多孔性セラミック体の発熱体
では2比a夕/地・minであったのに対して、セラミ
ック平板の発熱体を用いると1&a夕/仇。Using this, the same test as in Example 1 was conducted. Commercially available cake premixes were mixed with water and heated. The product using a porous ceramic heating element made of cordierite was exposed to about 2/3 of silicic acid and began to become burnt, whereas the conventional product was exposed to about 3/4 of silicic acid and began to become burnt. I started. Also, when I took out the food after 6 minutes, I found that the porous ceramic heating element was completely cooked and the surface was evenly burnt, whereas with the conventional product, there were some areas that were not cooked all the way to the bottom, resulting in uneven cooking. There were many. As a comparative example of the above example, the component (A20385%; Si0
When comparing a heating element made of a porous ceramic body and a heating element made of a non-porous ceramic flat plate of the same size with the same configuration as in Example 1 (see Figure 6), the infrared radiation intensity on the wire mesh was When stable, the heating element made of a porous ceramic body had a heating value of 2 ratios per unit per hour, while when using a heating element made of a flat ceramic plate, the average temperature was 1 and a unit per unit per unit.
minであり赤外線放射強度は弱かった。また発熱体の
表面温度をガス点火後一定時に測定したところ、平均表
面温度が上記多孔性セラミック体では780午○上記セ
ラミック平板では660こ0であり、6個所測定したそ
れぞれの表面温度のばらつきも多孔性セラミック体の発
熱体の方が平板の発熱体よりも小さかった。min, and the infrared radiation intensity was weak. In addition, when the surface temperature of the heating element was measured at a certain time after gas ignition, the average surface temperature was 780 pm for the above porous ceramic body and 660 pm for the above ceramic flat plate, and the variation in the surface temperature measured at each of the 6 locations was also found. The porous ceramic body heating element was smaller than the flat plate heating element.
上記実施例からも明らかな様に、本発明のガスグリルは
、食品加熱に有効な2.5ぷm以上の赤外城の波長を多
量に放射する事ができる材料を放射面積が広く且つ均一
に放射する様に発熱体が多孔性セラミックで構成されて
いるので、温度の立ち上がりが早く、発熱体表面温度が
均一化されて、ムラなく食品を効率的に早く加熱調理が
できる。As is clear from the above examples, the gas grill of the present invention uses a material that can emit a large amount of infrared wavelengths of 2.5 pm or more, which is effective for heating food, in a wide and uniform radiation area. Since the heating element is made of porous ceramic so as to radiate heat, the temperature rises quickly and the surface temperature of the heating element is uniform, allowing food to be cooked evenly and efficiently and quickly.
またコストも安く〜軽量なので取り扱い易い等の優れた
効果を持つものである。In addition, it has excellent effects such as low cost and light weight, making it easy to handle.
第1図は魚(あじ)の身の反射スベクトルイおよび透過
スペクトル口を示す図、第2図は従来のグリルの放射波
長分布で、ステンレス鋼金鋼を加熱体としたグリルイシ
ュバンクバーナを加熱体としたグリルロの放射波長分布
を示す図、第3図はA夕203とSi02の混合物の2
.5ぷm以上の波長のエネルギー強度の全放射エネルギ
ー強度に占める割合(5003C)を示す図、第4図は
多孔性セラミック保持体の一例を示す分解斜視図、第5
図は多孔性セラミックを加工した発熱体の一例を示す斜
視図、第6図は本発明の一実施例における赤外線ガスグ
リルの正断面図、第7図は同側断面図である。
4・・・・・・多孔性セラミック、5・…・・多孔性セ
ラミック発熱体、6・…・・パイプ、7・…・・バーナ
ー、8…・・・炎口、9・・・・・・受皿、13・・・
・・・ガラス扉、17...・・・外装ケース。
寮1図
第2図
※3図
繁4図
第5図
第6図
第7図Figure 1 shows the reflection spectrum and transmission spectrum of fish (mackerel), and Figure 2 shows the radiation wavelength distribution of a conventional grill. Fig. 3 is a diagram showing the grille radiation wavelength distribution of the mixture of A203 and Si02.
.. Figure 4 is an exploded perspective view showing an example of a porous ceramic holder;
The figure is a perspective view showing an example of a heating element made of processed porous ceramic, FIG. 6 is a front cross-sectional view of an infrared gas grill in one embodiment of the present invention, and FIG. 7 is a side cross-sectional view of the same. 4... Porous ceramic, 5... Porous ceramic heating element, 6... Pipe, 7... Burner, 8... Burner port, 9...・Saucer, 13...
...Glass door, 17. .. .. ...Exterior case. Dormitory 1 Figure 2 *3 Figure 4 Figure 5 Figure 6 Figure 7
Claims (1)
分とする多孔性セラミツクで構成した発熱体を、ガスバ
ーナで加熱する事によって赤外線を放射し食品を加熱す
る事を特徴とする赤外線ガスグリル。1. An infrared gas grill that heats food by emitting infrared rays by heating a heating element made of porous ceramic containing at least one of Al_2O_3 and SiO_2 as a main component with a gas burner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12231879A JPS6011771B2 (en) | 1979-09-21 | 1979-09-21 | infrared gas grill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12231879A JPS6011771B2 (en) | 1979-09-21 | 1979-09-21 | infrared gas grill |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5646932A JPS5646932A (en) | 1981-04-28 |
JPS6011771B2 true JPS6011771B2 (en) | 1985-03-28 |
Family
ID=14832981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12231879A Expired JPS6011771B2 (en) | 1979-09-21 | 1979-09-21 | infrared gas grill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6011771B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6123604U (en) * | 1984-07-16 | 1986-02-12 | フイルトンインタ−ナシヨナル株式会社 | ceramic gas range |
TWI685631B (en) * | 2018-08-31 | 2020-02-21 | 關隆股份有限公司 | Infrared generation network |
-
1979
- 1979-09-21 JP JP12231879A patent/JPS6011771B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5646932A (en) | 1981-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3585390A (en) | Zirconia ceramics and infrared ray radiation elements utilizing the same | |
KR200169894Y1 (en) | Portable gas barbecue roaster | |
JPS6011771B2 (en) | infrared gas grill | |
JPS5924332B2 (en) | infrared gas grill | |
JPS6040768B2 (en) | infrared gas grill | |
JPS6047491B2 (en) | infrared heating device | |
US1963817A (en) | Gas stove | |
JPS6252219B2 (en) | ||
JPS589122Y2 (en) | Table stove with grill | |
JPH0440604Y2 (en) | ||
JPH0325717Y2 (en) | ||
JPH0425086Y2 (en) | ||
KR20060097412A (en) | Downward heat grill | |
JPH0351975B2 (en) | ||
JP2020116343A (en) | Heating cooker | |
KR200305101Y1 (en) | a double faced cooking pan | |
KR960004297B1 (en) | Cooking vessels | |
JPH0468936B2 (en) | ||
KR920003093B1 (en) | Heating radiator | |
JPH038287A (en) | Heating element and roaster | |
JPH02293536A (en) | Oven toaster | |
KR200214888Y1 (en) | Cooking set | |
JPS637767Y2 (en) | ||
JPS5820824Y2 (en) | Gas table with grill | |
JPH0718344Y2 (en) | roaster |