[go: up one dir, main page]

JPS60117105A - Radiant ray scintillator - Google Patents

Radiant ray scintillator

Info

Publication number
JPS60117105A
JPS60117105A JP58225721A JP22572183A JPS60117105A JP S60117105 A JPS60117105 A JP S60117105A JP 58225721 A JP58225721 A JP 58225721A JP 22572183 A JP22572183 A JP 22572183A JP S60117105 A JPS60117105 A JP S60117105A
Authority
JP
Japan
Prior art keywords
radiation
radiation source
radiant ray
emitted
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225721A
Other languages
Japanese (ja)
Inventor
Yoshitetsu Tanimoto
谷本 慶哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58225721A priority Critical patent/JPS60117105A/en
Publication of JPS60117105A publication Critical patent/JPS60117105A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To intensity strength of a radiation source without enlarging the focus of the radiation source, by arranging a radiant ray emitted from a plurality of radiation sources in such a way that it is emitted in a fan-shape from a single focus and detecting this radiant ray after passing through the specimen. CONSTITUTION:A group of radiant rays 1 is shaped as a plurality of radiant ray sources 1-1-1-320 arranged in a fan-shape. By this, the plural radiant rays be have in such a way that they were emitted from an imaginery focus O. A collimetor 3 is attached to each radiant ray source. A specimen 4 is fixed on a turn table 4a. Radiant ray detectors 5-1-5-320 corresponding to a plurality of radiant ray sources are installed onto radiant ray source group 5. Thus, the focus of radiant ray source becomes smaller, and at the same time, its strength is intensified and space resolution capacity and permeability are improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明線、放射線源を被測定体に照射し透過データを取
得して被測定体の形状、内部構造等の情報を得るCTス
キャナなどの放射線計測装置に係り、特にその放射線源
の構造の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The radiation of the present invention, such as a CT scanner, which irradiates a radiation source onto an object to be measured and obtains transmission data to obtain information on the shape, internal structure, etc. of the object to be measured. The present invention relates to measurement devices, and particularly to improvements in the structure of their radiation sources.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種の放射線計測装置としては、CTスキャナやクラ
ウン厚み計等があり、例えばCTスキャナはその放射線
源にX線や放射性同位元素(う、ジオアイソドーグ、R
I)が用いられている。ラジオアイソトープが用いられ
た放射線源は、例えば直径1〔■〕、長さ1〔■〕の円
柱状のラジオアイソトープをステンレスからなる2 3
ji:カプセルに収納したものとなっている。ところで
第2学代、第3世代及び第4世代などと称される十分に
コリノートされたファン状の放射線を用いるCTスキャ
ナにちっては、空間分解能を向上させるために放射線源
の焦点を小さくすることが要求される。つまり、放射線
源には、第1図(a)に示すように焦点S1が小さく、
この焦点S1からファン状に放射線R1が放射されるも
のが要求される。これに対して第1図(b)に示すよ5
.に、焦点S2が大きいと放射線R2の放射が散乱した
状態となり、これにより得られる断層像は空間分解能の
劣ったものとなってしまう 。
This type of radiation measuring device includes CT scanners and crown thickness gauges. For example, CT scanners use X-rays, radioisotopes, radioisotopes, and
I) is used. A radiation source using a radioisotope is, for example, a cylindrical radioisotope with a diameter of 1 [■] and a length of 1 [■] made of stainless steel.
ji: It is stored in a capsule. By the way, in CT scanners that use well-corinated fan-shaped radiation called second generation, third generation, and fourth generation, the focal point of the radiation source is made smaller in order to improve spatial resolution. This is required. In other words, the radiation source has a small focal point S1 as shown in FIG.
A device is required that emits radiation R1 in a fan shape from this focal point S1. In contrast, as shown in Figure 1(b), 5
.. Furthermore, if the focal point S2 is large, the radiation R2 will be scattered, resulting in a tomographic image obtained with poor spatial resolution.

ところが、放射線の被測定体に応じその透過能力を向上
させる測定範囲を広くするには、放射線の強度を強くす
るためラジオアイソトープを多く用いることになる。こ
のため放射線源の寸法が大きくなり、必然的にその焦点
も大きくなってしまう。
However, in order to widen the measurement range and improve the ability of radiation to penetrate depending on the object to be measured, a large amount of radioisotope must be used to increase the intensity of the radiation. This increases the size of the radiation source and necessarily increases its focus.

このように空間分解能を向上させるには焦点を小さくし
なければならず、また透過能力を向上させるためには焦
点が大きくなってしまうことになり、両者の間には、相
反した関係がある。
In this way, in order to improve the spatial resolution, the focal point must be made smaller, and in order to improve the transmission ability, the focal point must be made larger, and there is a contradictory relationship between the two.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に基づいてなされたもので、その目的
とするところは、放射線源の焦点を極小にし得、かつ放
射線源の強度を増大し得る放射線計測装置を提供するこ
とにある◎ 〔発明の概要〕 本発明は、複数の放射線源を、これら放射線源からの放
射線がファン状にかつ1焦点から放射されるように配置
した放射線源群から放射し、被検査体全通過してきた放
射線を複数の放射線検出器により検出し、これら検出信
号に基づいて前記被測定体の情報を得る放射線計測装置
である。
The present invention has been made based on the above circumstances, and its purpose is to provide a radiation measuring device that can minimize the focus of a radiation source and increase the intensity of the radiation source. [Summary] The present invention emits radiation from a group of radiation sources arranged so that the radiation from these radiation sources is emitted from one focal point in a fan shape, and the radiation that has passed through the entire object to be inspected is emitted. This is a radiation measuring device that detects radiation using a plurality of radiation detectors and obtains information about the object to be measured based on these detection signals.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の第1の実施例について第2図ないし第3
図(a) Cb)を参照して説明する。第2図は本発明
に係る放射線計測装置として第3世代OCTスキャナと
同様のデータ収集系及び画像構成アルゴリズムを適用し
た場合の構成図である。第2図において1は放射線源群
であって、この放射線源群1は、ラジオアイソトープが
力、fセルに収納された320個の放射線源1−1〜1
−320を、これら放射線源1−1〜1−320から放
射される放射線があたかも仮想焦点dから放射されてい
る如く扇形に配置して線源容器2に収納した構成となっ
ている。すなわち放射線源群1には、第3図(a)に示
すように320個の放射線源1−1〜J−320を各々
収納する凹溝1&−1〜1 a −320が形成さえて
おり、各放射線源からの放射線はとの凹溝1a−1〜I
ts−320によって各々コリメートされている。また
これらの放射線はコリメータ3によって各々から形成さ
れるファン状めビーム面が同一平面でかつ十分にコリメ
ートされる。このコリメータ3は例えば第3図(a)に
示すように線源容器2と同じ曲率半径をもって形成され
た2板のコリメート板Ja 、3bからなっている。こ
のようにビーム面に対し水平・垂直の両方向にコリメー
トすることによって、各放射線源1−1〜1−320か
ら放射されるビームは各々十分に細くコリメートされた
ペンシルビームとなる。なお、コリメータは第3図(b
)に示すように線源容器2と一体に形成してもよい。
Hereinafter, the first embodiment of the present invention will be explained with reference to FIGS. 2 to 3.
This will be explained with reference to Figures (a) and (Cb). FIG. 2 is a configuration diagram of a radiation measuring device according to the present invention in which a data acquisition system and image configuration algorithm similar to those of a third generation OCT scanner are applied. In FIG. 2, reference numeral 1 denotes a radiation source group, and this radiation source group 1 consists of 320 radiation sources 1-1 to 1, each containing a radioisotope and stored in an f-cell.
-320 are housed in the radiation source container 2 in a fan-shaped arrangement so that the radiation emitted from these radiation sources 1-1 to 1-320 is radiated from a virtual focus d. That is, in the radiation source group 1, grooves 1&-1 to 1a-320 are formed to house 320 radiation sources 1-1 to J-320, respectively, as shown in FIG. 3(a). The radiation from each radiation source is the concave groove 1a-1 to I.
Each is collimated by a ts-320. Further, these radiation beams are sufficiently collimated by the collimator 3 so that the fan-shaped beam surfaces formed from each radiation beam are coplanar and sufficiently collimated. The collimator 3 consists of two collimating plates Ja and 3b formed to have the same radius of curvature as the radiation source container 2, as shown in FIG. 3(a), for example. By collimating both horizontally and vertically with respect to the beam plane in this manner, the beams emitted from each of the radiation sources 1-1 to 1-320 become sufficiently narrow collimated pencil beams. The collimator is shown in Figure 3 (b
) may be formed integrally with the radiation source container 2.

すなわち、線源容器2aに放射線の放射口2−1〜2−
320を形成し、放射線源としてRIの棒状線源を使用
することにより、十分にコリメートされた放射線ビーム
を容易な加工・構造によって取得できる。
That is, radiation emission ports 2-1 to 2- are provided in the radiation source container 2a.
320 and using an RI rod-shaped radiation source as a radiation source, a well-collimated radiation beam can be obtained with easy processing and construction.

被検査体4は、ターンテーブル4a上に載置されており
、機構制御部及び機構駆動部(図示せず)によって回転
の駆動、制御される。すなわち制御部12から被検査体
4の画像データ収集命令が供給されると機構制御部は機
構駆動部を制御してターンテーブル4aを所定の回転数
で回転させ、被検査体4のあらゆる角度からの投影デー
タを取得させる。この被検査体4を介し前記放射線源群
1に対向して放射線検出器群5が設置されている。なお
、放射線検出器群5の前面にもコリメータ3と同様の構
造をもったコリメート板 群5は、放射線源群′1から被検査体4を透過してきた
放射線を検出するもので、放射線検出器5−1〜5−3
20をそれぞれ仮想焦点百と放射線源1−1〜J−32
0とを通る直線上に設けたものとなっている。これら放
射線検出器5−1〜5−320の前には、放射線源1−
1〜1−320の放射線強度のバラツキを補正する補正
装置7−1〜7−320が設けられている。
The object to be inspected 4 is placed on a turntable 4a, and its rotation is driven and controlled by a mechanism control section and a mechanism drive section (not shown). That is, when a command to collect image data of the object 4 to be inspected is supplied from the control section 12, the mechanism control section controls the mechanism drive section to rotate the turntable 4a at a predetermined number of rotations, so that the object 4 to be inspected can be viewed from all angles. to obtain projection data. A radiation detector group 5 is installed opposite the radiation source group 1 with the inspected object 4 interposed therebetween. In addition, a collimating plate group 5 having the same structure as the collimator 3 on the front side of the radiation detector group 5 detects the radiation transmitted through the inspected object 4 from the radiation source group '1. 5-1 to 5-3
20 respectively as virtual focal point 100 and radiation source 1-1 to J-32
It is provided on a straight line passing through 0. In front of these radiation detectors 5-1 to 5-320, a radiation source 1-
Correction devices 7-1 to 7-320 are provided for correcting variations in radiation intensity of 1 to 1-320.

この補正装置7−1〜7−320は、例えばりングステ
ンのしゃへい板により構成され、各放射線源ノー1〜1
−320の強度に応じて透過厚さを調整できるようにな
っている。
The correction devices 7-1 to 7-320 are constituted by shielding plates made of lingsten, for example, and each of the radiation source numbers 1 to 1
The transmission thickness can be adjusted according to the intensity of -320.

そして各放射線検出器5−1〜5−J20の検出(i3
号はデータ収集部ioに取込まれて周知の第3世代CT
スキャナによって収集された投影データと同様の投影デ
ータとして収集されて画像再構成部11に送られるよう
に構成されている。この画像再構成部11は、データ収
集部10からのデータを周知画像再構成アルゴリズムに
よって再構成してすなわち数学的処理をして二次元画像
に復元するものである。制御部12は画像再構成部11
で得られた二次元画像を映像信号に変換してモニタテレ
ビジョン13に送るものである。
And detection of each radiation detector 5-1 to 5-J20 (i3
The issue is taken into the data collection department io and is a well-known 3rd generation CT.
It is configured to be collected as projection data similar to projection data collected by a scanner and sent to the image reconstruction unit 11. The image reconstruction unit 11 reconstructs the data from the data collection unit 10 using a well-known image reconstruction algorithm, that is, performs mathematical processing to restore it to a two-dimensional image. The control unit 12 is the image reconstruction unit 11
The two-dimensional image obtained is converted into a video signal and sent to the monitor television 13.

次に上記の如く構成された装置の動作について説明する
。検査開始にあっては、被検査体4は放射線源群1から
の放射線があたらない位置にある。そこで放射線源群1
の放射線源1−1〜J−320から放射線が放射される
と、これら放射線はあたかも仮想焦点dから放射された
如く放射される。さらに、これら放射線はコリメータ3
によって同一平面に放射される。ぞして、これら放射線
は補正装置7−1〜7−320を通って放射線検出器5
−1〜5−320に達する。
Next, the operation of the apparatus configured as described above will be explained. At the start of the test, the test subject 4 is in a position where the radiation from the radiation source group 1 is not applied. Therefore, radiation source group 1
When radiation is emitted from the radiation sources 1-1 to J-320, these radiations are emitted as if they were emitted from the virtual focus d. Furthermore, these radiations are transmitted through the collimator 3
is radiated to the same plane by Therefore, these radiations pass through the correction devices 7-1 to 7-320 and reach the radiation detector 5.
-1 to reach 5-320.

被検査体4の検査にあっては、被検査体4を例えば矢印
0)の方向に回転(rotate動作)させながら行な
う。1回のrotate動作で被検査体4を微小角度だ
け回転させ、放射線源1−1〜1−320から放射線を
放射させる。被8+11定体4を通過してきた放射線は
放電i線検出器5−1〜5−320で検出され、これら
放射線検出器5−1〜5−320からの検出信号はデー
タ収集部10に収集させる。そうして、被検査体4が例
えば(180度十放射線源群1の放射線ファン角度α)
だけ回転すると検査は終了する。
The inspection of the object 4 to be inspected is performed while rotating the object 4, for example, in the direction of arrow 0). The object to be inspected 4 is rotated by a minute angle in one rotation operation, and radiation is emitted from the radiation sources 1-1 to 1-320. The radiation that has passed through the 8+11 constant body 4 is detected by the discharge i-line detectors 5-1 to 5-320, and the detection signals from these radiation detectors 5-1 to 5-320 are collected by the data collection unit 10. . Then, the inspected object 4 is set to, for example, (180 degrees + radiation fan angle α of radiation source group 1)
The inspection ends when it rotates.

データ収集部11に収集された投影データは画像再構成
部11に送出され、この画像再構成部11はデータを再
構成して二次元画像に復元する。この得られた二次元画
像は制御部12により映像信号に変換されてモニタテレ
ビジョン13に送られる。これによりそニタテレピジ。
The projection data collected by the data collection unit 11 is sent to the image reconstruction unit 11, which reconstructs the data and restores it to a two-dimensional image. The obtained two-dimensional image is converted into a video signal by the control section 12 and sent to the monitor television 13. This makes Sonita Telepiji.

ン13には、被検査体4の断層像が映し出される。A tomographic image of the subject 4 is displayed on the screen 13 .

このように本装置においては、放射線源1−1〜1−3
20色@たかも仮想焦点dから放射線が放射されている
ように配置した放射線源群1から被検査体4に放射線を
放射させ、この放射線を放射線検出器5−1〜5−32
0により検出して被検査体4の断層像を得るようにした
ので、放射線源の焦点を大きくせずに放射線源の放射線
強度を増大させることができる。っま、り本装置では、
放射線源1−1〜1−320の各放射線の強度が小さく
ても全体からみた放射線の強度は大きなものとなる。そ
して、この放射線の強度と同一の強度の放射線を1つの
放射線源で得ようとすれば、その放射線源の焦点は大き
くなってしまう。
In this way, in this apparatus, radiation sources 1-1 to 1-3
Radiation is emitted from the radiation source group 1 arranged so that the radiation is emitted from a virtual focus d in 20 colors, and the radiation is transmitted to the radiation detectors 5-1 to 5-32.
Since the tomographic image of the object 4 to be inspected is obtained by detecting at 0, the radiation intensity of the radiation source can be increased without increasing the focal point of the radiation source. Well, with this device,
Even if the intensity of each radiation from the radiation sources 1-1 to 1-320 is small, the intensity of the radiation as a whole is large. If one attempts to obtain radiation of the same intensity as this radiation with one radiation source, the focus of that radiation source will become large.

そして、本装置の放射線源群1をCTスキャナに適用す
ることによりCTスキャナにおける空間分解能を向上さ
せることができる。すなわち、放射線源群1からの放射
線は仮想焦点6から放射されている如くとなり、かつ放
射線の強度を強くすることができるからである。
By applying the radiation source group 1 of this apparatus to a CT scanner, the spatial resolution of the CT scanner can be improved. That is, the radiation from the radiation source group 1 appears to be radiated from the virtual focus 6, and the intensity of the radiation can be increased.

次に本発明の第2の実施例について第4図を参照して説
明する。第4図において20は放射線源群であり、21
は放射線検出群である。放射線源群20は、放射線源2
0h〜20gを、これら放射線源20&〜20gからの
放射線を収束させてこの放射線源群20から所定距離の
位置に焦点″Oaが形成されるように配置した構成とな
っている。放射線検出器群21は、焦点Oaを通った放
射線を検出するように放射線検出器21h〜21gをそ
れぞれ配置したものとなっている。なお、22a〜22
gは補正装置である。
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 4, 20 is a radiation source group, and 21
is the radiation detection group. The radiation source group 20 includes radiation sources 2
0h to 20g are arranged so that the radiation from these radiation sources 20 & 20g is converged to form a focal point "Oa" at a predetermined distance from the radiation source group 20. Radiation detector group 21, radiation detectors 21h to 21g are respectively arranged so as to detect radiation passing through the focal point Oa.In addition, 22a to 22
g is a correction device.

このように構成しても第1の実施例と同様の効果が得ら
れることはいうまでもない。さらにこの第2の実施例で
は、被検査体4の位置をeつからに)に移すことにより
CTスキャナにおける空間分解能を向上させることがで
きる。すなわち、被検査体4力;に)の位置にあると、
この位置に)での放射線間は密となるからである。
It goes without saying that even with this configuration, the same effects as in the first embodiment can be obtained. Furthermore, in this second embodiment, the spatial resolution of the CT scanner can be improved by moving the position of the object 4 to be inspected from e to e. In other words, when the object to be inspected is in the position of
This is because the distance between the rays at this position) is dense.

第1および第2の実施例では、補正装置7−1〜7−3
20.22a〜22gが設けられているので、各放射線
源1a〜le、20a〜20gの放射線強度のバラツキ
を許容値以内にすることができ、さらに各放射線源1−
1〜1−320 、20 a〜20gの放射線強度をか
ならずしも同一にする必要はない。
In the first and second embodiments, the correction devices 7-1 to 7-3
20.22a to 22g are provided, it is possible to keep the variation in radiation intensity of each radiation source 1a to le and 20a to 20g within the permissible value, and furthermore, each radiation source 1-
It is not necessary that the radiation intensities of 1 to 1-320 and 20a to 20g be the same.

なお、本発明は上記第1および第2の実施例に限定され
るものではない。例えば第2世代方式OCTスキャナに
も適用できる。第5図はこの第2世代方式OCTスキャ
ナに適用した場合の構成図である。放射線源群30は、
放射線源30−1〜30−5から構成され、これら放射
線源3θ−1〜30−5からの放射線が仮想焦点δaか
ら放射されているように設けられている。40は放射線
検出器群であって、40−J〜40−5は放射線検出器
、41−1〜4ノー5は補正装置である。また42.4
3はコリメータである。被検査体4の検査にあっては、
被検査体4を例えば矢印(ロ)の方向に移動(トラバー
ス動作)させ、このトラバース動作ごと放射線を放射し
てこれを検出しデータを得る。そして一方向のトラバー
ス動作終了後、被検査体4を所定角度ローテート動作さ
せてから矢印(ハ)方向にトラバース動作させる。この
ように動作させながらデータを収集する。したがって、
本装置は第2世代OCTスキャナにも適用でき空間分解
能の優れた断面像を得ることができる。
Note that the present invention is not limited to the first and second embodiments described above. For example, it can also be applied to second generation OCT scanners. FIG. 5 is a configuration diagram when applied to this second generation OCT scanner. The radiation source group 30 is
It is composed of radiation sources 30-1 to 30-5, and is provided so that the radiation from these radiation sources 3θ-1 to 30-5 is radiated from a virtual focus δa. 40 is a group of radiation detectors, 40-J to 40-5 are radiation detectors, and 41-1 to 4/5 are correction devices. Also 42.4
3 is a collimator. In the inspection of the inspected object 4,
The object to be inspected 4 is moved (traverse operation) in the direction of the arrow (B), for example, and radiation is emitted and detected during each traverse operation to obtain data. After completing the traverse operation in one direction, the inspected object 4 is rotated by a predetermined angle and then traversed in the direction of arrow (C). Collect data while operating in this way. therefore,
This device can also be applied to second-generation OCT scanners and can obtain cross-sectional images with excellent spatial resolution.

また、補正装置7a〜7e、22a〜22gを用いずに
放射線強度の補正を、放射線検出器5&〜5c、21a
〜21gの感度を調愁することによって行なってもよい
Moreover, the radiation intensity can be corrected without using the correction devices 7a to 7e, 22a to 22g, and the radiation intensity can be corrected by using the radiation detectors 5&~5c, 21a.
This may be done by adjusting the sensitivity to ~21 g.

さらに、各線源1a〜le、20a〜20gは1焦点0
10aから同一間隔をおいて配置する必要はなく、放射
線検出器5a〜5 e 、 21a〜21gに入射する
放射線量が同一になるよう配置すればよい。
Furthermore, each radiation source 1a-le, 20a-20g has one focal point 0
It is not necessary to arrange them at the same interval from the radiation detectors 10a, and it is sufficient to arrange them so that the amount of radiation incident on the radiation detectors 5a to 5e and 21a to 21g is the same.

上記実施例では、放射線源1a〜1 s t 20h〜
20gと放射線検出器5&〜5e、21’&〜21gと
を対応させているが、隣接する放射線源または複数個の
放射線源を同一の放射自に収納し、これにより形成され
る放射口の数と同じ個数だけ放射線検出器を設げてもよ
い。
In the above embodiment, radiation sources 1a to 1 s t 20h to
20g and radiation detectors 5&~5e, 21'&~21g are made to correspond, but the number of radiation ports formed by housing adjacent radiation sources or multiple radiation sources in the same radiation source The same number of radiation detectors may be provided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複数の放射線源を1焦点から放射線が
放射されるように配置した放射線源群からの放射線を検
出して被検査体の情報を得るようにしたので、放射線源
の焦点を大きくすることなく放射線源の強度を増大し得
、空間分解能とともに透過能力が向上する放射線計測装
置を提供できる。
According to the present invention, information on the object to be inspected is obtained by detecting radiation from a radiation source group in which a plurality of radiation sources are arranged so that radiation is emitted from one focal point. It is possible to provide a radiation measurement device in which the intensity of the radiation source can be increased without increasing the size, and the transmission ability as well as the spatial resolution can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焦点の大きさの違いによる放射線の放射を説明
するだめの模式図、第2図は本発明に係る放射線計測装
置の第1の実施例を示す構eft li、A婿Q I;
;+/−%ASu 舘Q If!71 If ;++a
昼M −t IIメータの具体的な構造図、第4図は本
装置の第2の実施例を示す構成図、第5図は本装置の変
形例を示す構成図である。 1・・・放射線源群、1−1〜1−320・・・放射線
源、3・・・コリメータ、4・・・被検査体、5・・・
放射線検出器群、5−1〜5−320・・・放射線検出
器、6・・・コ1Jメータ、7−1〜7−320・・・
補正装置、1o・・・データ収集部、11・・・画像再
構成部、12・・・ディスプレイ制御部、13・・・モ
ニタテレビジョン、2□0・・・放射線源群% ’ 2
0 a〜20 g−・・放射線源、2ノ・・・放射線検
出器群、2ja〜21g・・・放射線検出器。 出願人代理人 弁理士 鈴 江 武 彦第3図 (’a) (b) 第5図
FIG. 1 is a schematic diagram for explaining radiation emission due to differences in focus size, and FIG. 2 is a configuration showing a first embodiment of a radiation measuring device according to the present invention.
;+/-%ASu TateQ If! 71 If ;++a
A specific structural diagram of the daytime M-t II meter, FIG. 4 is a block diagram showing a second embodiment of the present device, and FIG. 5 is a block diagram showing a modification of the present device. DESCRIPTION OF SYMBOLS 1... Radiation source group, 1-1 to 1-320... Radiation source, 3... Collimator, 4... Inspection object, 5...
Radiation detector group, 5-1 to 5-320... Radiation detector, 6... 1J meter, 7-1 to 7-320...
Correction device, 1o...Data collection unit, 11...Image reconstruction unit, 12...Display control unit, 13...Monitor television, 2□0...Radiation source group %' 2
0 a to 20 g - Radiation source, 2 - Radiation detector group, 2ja to 21g - Radiation detector. Applicant's agent Patent attorney Takehiko Suzue Figure 3 ('a) (b) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 複数の放射線源を、これら放射線源から放射される放射
線がファン状にかり1焦点から放射されるように配置し
た放射線源群と、この放射線源群に被検畳体を介して対
向して設けられ、前記放射線源群から前記被検査体を透
過してきた放射線を検出する複数の放射線検出器勺を具
備し、前記複数の放射線検出器からの検出信号に基づい
て前記被測定体に関する情報を得る放射線計測装置。
A radiation source group in which a plurality of radiation sources are arranged so that the radiation emitted from these radiation sources is emitted from one focal point in a fan shape, and a radiation source group is provided opposite to this radiation source group via a test object. and a plurality of radiation detectors configured to detect radiation transmitted through the object to be inspected from the radiation source group, and obtain information regarding the object to be measured based on detection signals from the plurality of radiation detectors. Radiation measurement device.
JP58225721A 1983-11-30 1983-11-30 Radiant ray scintillator Pending JPS60117105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225721A JPS60117105A (en) 1983-11-30 1983-11-30 Radiant ray scintillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225721A JPS60117105A (en) 1983-11-30 1983-11-30 Radiant ray scintillator

Publications (1)

Publication Number Publication Date
JPS60117105A true JPS60117105A (en) 1985-06-24

Family

ID=16833770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225721A Pending JPS60117105A (en) 1983-11-30 1983-11-30 Radiant ray scintillator

Country Status (1)

Country Link
JP (1) JPS60117105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227350A3 (en) * 1985-12-03 1989-06-14 BICC Public Limited Company Monitoring of conductors in cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227350A3 (en) * 1985-12-03 1989-06-14 BICC Public Limited Company Monitoring of conductors in cable

Similar Documents

Publication Publication Date Title
US4384209A (en) Method of and device for determining the contour of a body by means of radiation scattered by the body
CN109953768B (en) Multi-source multi-detector combined CT system and method
US5519222A (en) 90 degree parallel path collimators for three head spect cameras
US3790799A (en) Radiant energy imaging with rocking scanning
USRE32961E (en) Device for measuring local radiation absorption in a body
JP2515973B2 (en) Projection radiographic system and radiation detector
US4433427A (en) Method and apparatus for examining a body by means of penetrating radiation such as X-rays
JP2001269331A (en) Computer tomograph for determining pulse movement- amount moving spectrum in inspection region
US7723674B2 (en) Attenuation correction for SPECT imaging using non-classical orbits of many small gamma cameras
EP2002286A2 (en) Effective dual-energy x-ray attenuation measurement
US4176279A (en) Tomograph for producing transverse layer images
JPS5844377B2 (en) Radiation absorption measurement device for three-dimensional objects
US4352018A (en) Apparatus for performing positron emission computed tomography
US4138611A (en) Fan beam CT apparatus with post-processing weighting of picture element signals
US4639599A (en) Ring type single-photon emission CT imaging apparatus
JPS5892974A (en) Radial computer tomography device
US20230404496A1 (en) Computed tomography apparatus, manufacturing method thereof and operating method thereof
JPS63256844A (en) X-ray device
KR102236154B1 (en) Angle-variable collimator and radiation detection device using the same
JPS62284250A (en) Industrial ct scanner
JPS60117105A (en) Radiant ray scintillator
US20090010381A1 (en) Computer tomograph and radiation detector for detecting rays that are elastically scattered in an object
RU2172137C2 (en) Method for computer tomography and device for medical diagnosis
JP3610655B2 (en) Positron ECT device
JPS6251622B2 (en)