[go: up one dir, main page]

JPS60115861A - Optical measuring method of liquid sample using analytical appliance of flat plate vessel form - Google Patents

Optical measuring method of liquid sample using analytical appliance of flat plate vessel form

Info

Publication number
JPS60115861A
JPS60115861A JP22518983A JP22518983A JPS60115861A JP S60115861 A JPS60115861 A JP S60115861A JP 22518983 A JP22518983 A JP 22518983A JP 22518983 A JP22518983 A JP 22518983A JP S60115861 A JPS60115861 A JP S60115861A
Authority
JP
Japan
Prior art keywords
reaction chamber
chamber
observation
optical path
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22518983A
Other languages
Japanese (ja)
Inventor
Nobuo Hiratsuka
平塚 信夫
Asaji Kondo
近藤 朝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP22518983A priority Critical patent/JPS60115861A/en
Publication of JPS60115861A publication Critical patent/JPS60115861A/en
Priority to US06/873,284 priority patent/US4753531A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To improve analyzing accuracy by utilizing the optical path parallel with the base of an analysis appliance to measure optically the liquid sample introduced into an absorption chamber after reaction in a reaction chamber. CONSTITUTION:An observation chamber 14 is provided with side wall parts 14a, 14b formed of transparent materials facing each other and fixed in relative position so as to supply a specified optical path. If the parts 14a, 14b are so constituted that the space therebetween indicates a specified optical path, the optical measurement to detect the absorption, scattering and reflection of light is particularly easily accomplished with high accuracy by utilizing the optical path (the optical path in the direction X-X) parallel with the base of the analysis appliance. The analyzing accuracy is thus improved.

Description

【発明の詳細な説明】 未発明は、液体試料中のアナライトを定量するための一
体型の平板状容器型分析器具を利用する光学的測定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical measurement method that utilizes an integrated flat container analytical instrument for quantifying analytes in liquid samples.

[技術分野および既存技術の説明] 液体試料、特に尿、唾液、血液などの生体液に含まれて
いる各種の成分(以下、アナライトという)の定量的な
分析を行なう方法として、これまでに湿式法および乾式
法が知られている。湿式法は以前より一般的に利用され
ている方法であり、たとえば、アナライトと、別に用意
した試薬とを試験管などの容器内で液相にて反応させて
す色などの検知可能な変化を発生させ、これをJilt
定する操作などにより実施されている。
[Description of technical field and existing technology] Until now, there has been a method for quantitatively analyzing various components (hereinafter referred to as analytes) contained in liquid samples, especially biological fluids such as urine, saliva, and blood. Wet methods and dry methods are known. The wet method is a method that has been commonly used for a long time, and involves, for example, reacting an analyte with a separately prepared reagent in a liquid phase in a container such as a test tube to produce a detectable change such as a red color. is generated and this is called Jilt
This is done through the specified operations.

しかし湿式法は、高い精度の定量が□r能であるとの利
点を持つ一方1分析操作に熟練を要し6がつ誰でもが緊
急に実施できるわけではないとの欠点があり、このため
、湿式法を簡易型容器を利用して実施すると7試みも既
になされている。
However, while the wet method has the advantage of being able to quantify with high precision, it has the disadvantage of requiring skill in the analytical operations and not being able to be carried out by anyone in an emergency. Seven attempts have already been made to implement the wet method using simple containers.

たとえば特公昭46−25596号公報には。For example, in Japanese Patent Publication No. 46-25596.

柔軟な重合体材料の小袋状の容器と、その一部に備えら
れた分析試薬貯蔵用区画、そして検査試ネ:1導入管と
からなる分析検査用パ・ンクが開示されている。
An analytical test pack is disclosed which comprises a pouch-like container of a flexible polymeric material, a portion of which is provided with an analytical reagent storage compartment, and a test sample inlet tube.

この分析器具は、柔軟な重合体材料の小袋状の容器反応
室と、その反応により生成した呈色などの検知可能な変
化を検出する室(本明細書では、観測室と名付ける)と
が同一であるところから、i測定も容易に変形するため
、この観測室にて透過光などを測定するには光路が一定
としがたいとの欠点があり、分析操作のための複雑な構
成の測定装置が必要であるので、この分析器具は、簡単
な構成の小さくて安価な測定装置によっては高い精度の
足付分析を実施することはできないとの問題がある。
This analytical instrument consists of a reaction chamber, a pouch-like container made of a flexible polymeric material, and a chamber (herein referred to as observation chamber) for detecting detectable changes such as coloration produced by the reaction. Therefore, since i-measurement is easily deformed, it is difficult to maintain a constant optical path when measuring transmitted light in this observation room, which requires a complicated measuring device for analysis operations. Therefore, this analytical instrument has a problem in that it is not possible to perform highly accurate foot analysis using a small and inexpensive measuring device with a simple configuration.

一方、に記の問題を考慮して、反応室と観測室とが相η
の間の液体流通が可能なように接続配置された、液体試
料中のアナライトを定量するための一体型の平板状容器
型分析器も既に開発されている。
On the other hand, considering the problem described in , the reaction chamber and the observation chamber are in phase η
Integrated flat vessel analyzers for quantifying analytes in liquid samples have also been developed, which are arranged in such a way that liquid flow between them is possible.

このような平板状容器型分析器具は本来分析操作のfl
fi易化を日桁して開発されたものであり、一般に使い
括て分析器具として使用されるため、必然的に厚さが数
ミリメートルといった小さな構造体として構成されるこ
とになる。そして従来の平板状容器型分析器具を用いる
分析操作における、反応室における反応を経て観測室に
導入された液体試ネ゛[の光学的A11l定は、該分析
器具の厚み方向に光路を取って実施されているところか
ら、この場合には光学的測定に利用される光路が短すぎ
るため、イr/f″rな7111I宇粘度が得られにく
いとの閤頭が訊った。
Such a flat container-type analytical instrument is originally a fl.
Since it was developed with the aim of making it easier to use and analyze data, and is generally used as an analytical instrument, it is inevitably constructed as a small structure with a thickness of several millimeters. In an analysis operation using a conventional flat container type analytical instrument, the optical A111 determination of the liquid sample introduced into the observation chamber after the reaction in the reaction chamber is performed by taking the optical path in the thickness direction of the analytical instrument. According to the practice, the optical path used for optical measurement is too short in this case, so it is difficult to obtain a 7111I viscosity of IR/f″r.

一方、乾式法は、試薬を含イ1するシート状の分析要素
(分析フィルムともいう)内に液体試ネ′1を導入して
、これにより該分析要素内で発生した呈色などの変化を
光学的に検知してアナライトの定量を行なうなどの操作
により実施されている。
On the other hand, in the dry method, a liquid sample 1 is introduced into a sheet-like analytical element (also called an analytical film) containing a reagent 1, and changes such as coloration occurring within the analytical element are detected. This is done by optically detecting and quantifying the analyte.

乾式法は分析操作が容易で、かつ小さなalll装定で
分析の自動化が可能であるとの利点を持つ一方、分析系
によっては、充分な分析精度がt’+られにくいとの欠
点がある。特に、血液のZ n S Oa#濁テスト 
(ZTT)および血油。チモールJご瀾テスト(TTT
)などのような、液体試ネ4中のアナライトが形成する
混濁物を定量するような目的には乾式法は適していない
ほかに液体試料の光学的測定はシート状分析要素の厚さ
方向に光路をとって実施されるところから、この場合に
も光学的測定に利用される光路が短かすぎるため、充分
な測定精度が得られにくいとの問題点があった。
While the dry method has the advantage of easy analytical operation and the ability to automate the analysis with a small all-in-one device, it has the disadvantage that it is difficult to achieve sufficient analytical accuracy t'+ depending on the analytical system. In particular, blood ZnS Oa# turbidity test
(ZTT) and blood oil. Timor J test (TTT)
), the dry method is not suitable for the purpose of quantifying the turbidity formed by the analyte in a liquid sample4. Since this method is carried out by taking an optical path, there is also a problem in that the optical path used for optical measurement is too short, making it difficult to obtain sufficient measurement accuracy.

[発明の要旨] 本発明ハ、特に生体液などの府仏M *U rr今オ釣
ているアナライトを重機するための一体型の平板状容器
型分析器具を用いる測定方法において、その分析精度の
向上に寄与する光学的測定方法を提供することを目的と
するものである。
[Summary of the Invention] The present invention is particularly directed to a measurement method using an integrated flat container-type analysis instrument for heavy machinery to analyze analytes such as biological fluids. The purpose of this invention is to provide an optical measurement method that contributes to the improvement of

本発明は、反応室と観測室とが相互の間の液体流通が可
能なように接続配置された、液体試料中のアナライトを
定限するための一体型の平板状容器型分析器具を用いて
分析を行なう操作において1反応室における反応を経て
観測室に導入された液体試料の光学的測定を分析器具の
底面に平行(略平行も含む)な光路を利用して行なうこ
とを特徴とする方法からなるものである。
The present invention uses an integrated plate-shaped container-type analytical instrument for limiting the analyte in a liquid sample, in which a reaction chamber and an observation chamber are connected so that liquid can flow between them. In the analysis operation, optical measurement of a liquid sample introduced into an observation chamber after a reaction in one reaction chamber is carried out using an optical path parallel (including substantially parallel) to the bottom surface of the analytical instrument. It consists of a method.

すなわち、平板状容器型分析器具を用いる分析方法にお
ける光学的測定方法では、分析器具の平面に垂直な方向
に光路を取るよりも、分析器具の底面に平行な方向に光
路と取ることにより長い光路を設定することができるた
め、本発明に従う光学的測定によって分析精度の向上が
実現する。
In other words, in an optical measurement method in an analytical method using a flat container-type analytical device, the optical path is taken in a direction parallel to the bottom surface of the analytical device rather than in a direction perpendicular to the plane of the analytical device, resulting in a longer optical path. can be set, the optical measurement according to the present invention improves the analytical accuracy.

[発明の詳細な記述] 本発明の実施に有利に使用することができる平板状容器
型分析器具としては、下記の特徴のうち少なくともひと
つを有する分析器具を挙げることができる。
[Detailed Description of the Invention] As a flat container type analysis instrument that can be advantageously used in carrying out the present invention, an analysis instrument having at least one of the following characteristics can be mentioned.

(I)反応室の壁の少なくとも一部をフレキシブルな材
料から構成し、かつ反応室内に弾性を示す多孔質体を収
容することにより、反応室のフレキシブルな壁部分に外
部から間欠的に応力を付枦した場合に、該フレ午シプル
壁部分と多孔質体とが連携して復元性を有する変形を示
すようにネれていること。
(I) By constructing at least a portion of the wall of the reaction chamber from a flexible material and housing a porous material exhibiting elasticity within the reaction chamber, stress is intermittently applied from the outside to the flexible wall portion of the reaction chamber. When applied, the flexible wall portion and the porous body are bent so as to exhibit resilient deformation in cooperation with each other.

(II)観測室の側面には、相対位置が固定されて一定
の光路を供給するようにされた、向い合う透明材料製の
壁部分が備えられていること。
(II) The sides of the observation room are provided with opposing wall sections made of transparent material whose relative positions are fixed and which provide a constant light path.

(III)反応室と観測室との間には液の流れに関して
実質的な隔壁が存在しないこと。
(III) There is no substantial partition between the reaction chamber and the observation chamber regarding the flow of liquid.

上記の特徴の全てを含む構成からなる平板状容器型分析
器具の例は添付図面に示されている。
An example of a plate-shaped container-type analysis device having a configuration including all of the above-mentioned features is shown in the accompanying drawings.

以下に、添付図面に例示された平板状容器型分析器具を
用いる分析方法を例にとって本発明の詳細な説明する。
The present invention will be described in detail below, taking as an example an analysis method using a flat container-type analysis instrument illustrated in the accompanying drawings.

第1−A図は、平板状容器型分析器具の構成の例を示す
ための剥視図であり、第1−B図は、第1−A図の分析
器具の1−1線に沿った縦断面図である。ただし第1−
A図では、分析器具が上部のシート状壁(蓋)部分を取
り外された状態で示されている。
Figure 1-A is a perspective view showing an example of the configuration of a flat container-type analytical instrument, and Figure 1-B is a perspective view taken along line 1-1 of the analytical instrument in Figure 1-A. FIG. However, the first
In Figure A, the analytical instrument is shown with the upper sheet-like wall (lid) portion removed.

第1−A図と第1−B図とに示されている分析器Jl 
l Qは、ポリエチレン、ポリプロピレン、ポリスチレ
ン、ポリメタクリル酸エステル系樹脂。
Analyzer Jl shown in Figures 1-A and 1-B
l Q is polyethylene, polypropylene, polystyrene, polymethacrylate ester resin.

ポリアクリル酸エステル系樹脂、ビスフェノールAのポ
リカルボネート、ポリ塩化ビニルなどのような硬質の、
あるいは比較的変形しにくい合成樹脂材料、またはガラ
ス板などから形成された平面状の容器部11と上部のシ
ート状上部壁部12とから構成されており、全体として
平板状容器の形態にある。容器部11の内部には1反応
室13と観測室14とが相互の間の液体流通が可能なよ
うに接続配置されている。そして反応室13の内部には
りi力性を有する多孔質体15が収容されている。この
目的に用いられる多孔質体としては、たとえばポリアミ
ド、酢酸HIi維素構脂、ポリ塩化ビニル、ポリエチレ
ン、ポリプロピレン、ポリウレタンなどの樹脂材料を多
孔質に形成した構造体を利用することができる。あるい
は、織lIi、不織/I+、フェルト、紙、またこれら
の材ネ゛lと多孔質樹脂構造体との複合材料なども用い
ることができる。
Hard materials such as polyacrylate resin, bisphenol A polycarbonate, polyvinyl chloride, etc.
Alternatively, it is composed of a flat container part 11 made of a synthetic resin material that is relatively difficult to deform, or a glass plate, and an upper sheet-like upper wall part 12, and is in the form of a flat container as a whole. Inside the container section 11, a reaction chamber 13 and an observation chamber 14 are connected to each other so that liquid can flow therebetween. A porous body 15 having elasticity is housed inside the reaction chamber 13. As the porous body used for this purpose, for example, a structure made of a porous resin material such as polyamide, HIi acetate fibrous resin, polyvinyl chloride, polyethylene, polypropylene, polyurethane, etc. can be used. Alternatively, woven lIi, non-woven/I+, felt, paper, or a composite material of these materials and a porous resin structure can also be used.

なお多孔質体は、後述する変形機能を考慮するとシーI
・状であることが望ましい。
In addition, considering the deformation function described later, the porous body has a sea I
・It is desirable that the shape be the same.

なお、第1−A図では−L部のシーI・状壁部12が分
離された状態で示されているが、このシー)・状の壁部
12は、実際は第1−B図に示されているように容器部
11の」−に水密的に付設されて、一体型の平板状容器
型分析器具10を形成している。
In addition, in FIG. 1-A, the sea I-shaped wall portion 12 of the -L portion is shown in a separated state, but this sea-shaped wall portion 12 is actually shown in FIG. 1-B. As shown, it is attached to the container part 11 in a watertight manner to form an integrated flat container-type analysis instrument 10.

シート状上部壁部12は、ポリエチレンテレフタレート
、ポリアミドなどの合成樹脂、各種のエラストマー、ア
ルミニウム、銅、ステンレススチールなどの金属あるい
は類似の柔軟な材料で、薄いシート状にした場合に柔軟
性を示すフレキシブルな材料(自己復元性を示すエラス
トマー、エラストマーと金属シートとの複合材料が特に
好ましい)からなる比較的薄いシートの形態とされてい
て、このシート状の−L部壁部12に外部から応力を伺
1j−シた場合に容易に変形するようにされている。従
って、反応室のシート状上部壁部12に外部から間欠的
に応力を付与した場合には、このフレキシブルなシート
状の」二部壁部12と多孔質体15とが連携して復元性
を有する変形を繰り返し小すことになる。このシート状
上部壁部12と多孔質体15との連携による復元性を有
する変形は、その繰り返しにより、反応室に導入された
液体試ネ゛]と試薬との充分な混合を可能にし、従って
液体試料中のアナライトと試薬との迅速な接触をI+(
能にする。なお、これまでの説明ではシート状ト1 i
′:r′部12をフレキシブルな材料から構成した例を
示したが、シート状−1ニ部壁部12を物理的な変形を
殆ど示さない硬質な材料から構成するか、あるいは厚い
壁部とし、一方で、容器部11の底部をフレキシブルな
材料から構成してもよい。あるいは、シート状上部壁部
12と容器部11の底部の双方をフレキシブルな材料か
ら構成することもできる。
The sheet-like upper wall portion 12 is made of synthetic resin such as polyethylene terephthalate or polyamide, various elastomers, metal such as aluminum, copper, stainless steel, or a similar flexible material, and is a flexible material that exhibits flexibility when formed into a thin sheet. It is in the form of a relatively thin sheet made of a material (particularly preferably an elastomer exhibiting self-restoring properties or a composite material of an elastomer and a metal sheet), and the sheet-like −L portion wall portion 12 is not subjected to external stress. It is designed so that it can be easily deformed when it is damaged. Therefore, when stress is applied intermittently from the outside to the sheet-like upper wall portion 12 of the reaction chamber, the flexible sheet-like two-part wall portion 12 and the porous body 15 cooperate to improve the resilience. The deformation that exists will be repeatedly reduced. This resilient deformation caused by the cooperation between the sheet-like upper wall 12 and the porous body 15 enables sufficient mixing of the liquid reagent introduced into the reaction chamber and the reagent by repeating the deformation. I+(
make it possible. In addition, in the explanation so far, the sheet-like sheet 1 i
Although the example in which the ′:r′ portion 12 is made of a flexible material has been shown, the sheet-like two-part wall portion 12 may be made of a hard material that hardly exhibits physical deformation, or may be made of a thick wall. On the other hand, the bottom of the container portion 11 may be made of a flexible material. Alternatively, both the sheet-like upper wall portion 12 and the bottom of the container portion 11 may be made of flexible material.

また、上記のフレキシブルな材おlとして自己復元性の
高い材料、たとえば、エラストマーシー1・あるいはエ
ラストマーシートと金属薄板シートとの複合材料などを
用いた場合には、1−記の多孔質体の使用を省略するこ
とも可能である。
In addition, when a material with high self-restoring properties is used as the above-mentioned flexible material, such as elastomer sheet 1 or a composite material of an elastomer sheet and a thin metal sheet, the porous material described in 1-1. It is also possible to omit its use.

液体試料は一般にシート状り面壁部12に設けられてい
る試料注入口16から反応室13に導入される。液体試
料としては血液(全面、血漿または血清)等をそのまま
用いることができるほか、稀釈した液体試料を用いるこ
とができる。液体試jI]の稀釈方法として、あらかじ
め稀釈液で液体試料を稀釈する方法と、液体試ネ゛1と
稀釈液を(先後は適宜に定めることができる)別々に反
応室に導入する方法のうちから適宜に選択して実施する
ことができる。液体試料に含まれているアナライトと反
応して直接的あるいは間接的に呈色などの検知Or能な
変化をもたらす試薬は、予め反応室13に収容しておく
か、あるいは試ネ1注入r、Jl 6から分析操作面な
どに反応室13に導入する。ただし、反応室13におけ
るアナライトと試薬との反応を迅速かつ確実に行なうた
めには、試薬を予め多孔質体内に含浸または試薬を予め
反応室の内壁などに塗布、印刷等による付着などの方法
で貯蔵させておくことが望ましい。用いる試薬は、乾燥
状j匠’i (固体)、半乾爆状態(ゼリー状等)、ま
たは液状いずれでも用いることができる。固体試料はT
(i粒や粉末の形態にあってもよい。なお、試料注入口
16は通常、試料が反応室13内に導入されたのち、試
料注入口蓋18により閉じられる。
A liquid sample is generally introduced into the reaction chamber 13 through a sample inlet 16 provided in the sheet-like wall 12 . As the liquid sample, blood (whole surface, plasma, or serum) can be used as it is, or a diluted liquid sample can be used. There are two methods for diluting the liquid sample: one is to dilute the liquid sample with a diluent in advance, and the other is to separately introduce the liquid sample 1 and the diluent (the latter can be determined as appropriate) into the reaction chamber. It is possible to select and implement the method as appropriate. A reagent that directly or indirectly causes a detectable change such as coloration by reacting with the analyte contained in the liquid sample must be stored in the reaction chamber 13 in advance, or the reagent must be stored in the reaction chamber 13 in advance, or , Jl 6 into the reaction chamber 13 from the analytical operation surface. However, in order to quickly and reliably react the analyte and reagent in the reaction chamber 13, it is necessary to impregnate the reagent into the porous body in advance, apply the reagent to the inner wall of the reaction chamber, or attach it by printing, etc. It is preferable to store it in The reagent used may be in a dry state (solid), semi-dry state (jelly-like, etc.), or liquid. Solid sample is T
(It may be in the form of i-grains or powder. The sample injection port 16 is normally closed by the sample injection port lid 18 after the sample is introduced into the reaction chamber 13.

観4111室14は、反応室13におけるアナライトと
試薬との接触により発生した呈色などの検知可能な変化
を示す試料溶液を受容して、その変化を1:とじて光学
的手段により検知してアナライトの遁1 j、jを行な
うために利用される部分である。
The observation chamber 14 receives a sample solution exhibiting a detectable change such as coloration caused by contact between the analyte and the reagent in the reaction chamber 13, and detects the change by optical means. This is the part used to perform Analyte's Release 1 j, j.

この観測室14には、相対位置が固定されて一定の光路
を供給するようにされた向い合う透明材料製の側面壁部
分14a、14bが備えられていることが望ましい。こ
れらの透明な側面壁部分の14aと14bとの間の間隔
が一定な光路を示すように構成した場合には、従来の縦
方向、すなわち平板状分析器具lOの平面に屯直な方向
に光路を設定した光学的測定方法の代りに、分析器其の
底面に平行な光路(たとえば、第1−A図におけるx−
x方向の光路)を利用することにより、光の吸収、散乱
、反射などを検知する光学的測定が特に容易にかつ高精
度に行なうことができる。光路は厳密に観測室の底面に
11a行である必要はないし、また側壁に垂直である必
要もない。
The observation chamber 14 is preferably provided with opposing side wall portions 14a, 14b of transparent material whose relative positions are fixed and which provide a constant light path. If the space between these transparent side wall portions 14a and 14b is configured to indicate a constant optical path, the optical path will be directed in the conventional longitudinal direction, that is, in a direction perpendicular to the plane of the flat analytical instrument IO. Instead of an optical measurement method with an optical path set parallel to the bottom of the analyzer (e.g.
By using the x-direction optical path), optical measurements for detecting absorption, scattering, reflection, etc. of light can be performed particularly easily and with high precision. The optical path does not need to be strictly in line 11a at the bottom of the observation room, nor does it need to be perpendicular to the side wall.

反応室13と観測室14との間には液の流れに関して、
実質的な隔壁が存在しないことが望ましい。これは、た
とえば、反応室13と観測室14との間には、外部から
の通常の人為的圧力(たとえば、分析操作担当者の手ま
たはJlll定装置の即用手段により反応室にグーえら
れる抑圧など)では制御することができない隔壁機能(
たとえば、毛細管作用、半透膜による透析作用など)が
設けられていないことを意味しており、この要件により
、反応室に導入された液体試料と試薬との混合操作の実
に詩には、観測室も反応室の一部として機能するため、
目的の混合が容易かつ充分に行なわれるとの利点がある
。また必要なアナライトと試薬との接触が行なわれたの
ちには速やかに試料溶液を観測室に移動させることがで
きるため、分析操作の迅速化がさらに容易となるとの利
点もある。
Regarding the flow of liquid between the reaction chamber 13 and the observation chamber 14,
It is desirable that there be no substantial partition walls. This means, for example, that between the reaction chamber 13 and the observation chamber 14, normal artificial pressure from the outside (for example, pressure applied to the reaction chamber by the hands of an analytical operator or by means of a Jllll constant apparatus) is applied. septum function (such as suppression) that cannot be controlled by
For example, capillary action, dialysis action through semipermeable membranes, etc.) are not provided, and this requirement makes it difficult to observe the mixing operation of the liquid sample and reagent introduced into the reaction chamber. Since the chamber also functions as part of the reaction chamber,
There is an advantage that the desired mixing can be carried out easily and sufficiently. Another advantage is that the sample solution can be quickly moved to the observation chamber after the necessary analyte and reagent have come into contact with each other, making it easier to speed up the analysis operation.

ただし、反応室と観測室との間には相互間の実質的に自
由な液体流通を妨げられない限り、たとえば、固体の移
動を妨げるための網、あるいは濾過用シートなどを付設
することも可能である。
However, it is also possible to install a net or a filter sheet between the reaction chamber and observation chamber to prevent the movement of solids, as long as it does not impede substantially free liquid flow between them. It is.

第1−A図と第1−8図に示された平板状容器型分析器
具では、反応室と観測室とが実質的に同一・1L面」二
にある構成の例が示されているが、反応室と観測室の位
置関係はこの構成に限られるものではなく、たとえば、
第2図に示されているように、反応室と観測室とを積層
状に配置することもできる。
In the flat container-type analytical instruments shown in Figures 1-A and 1-8, an example of a configuration in which the reaction chamber and observation chamber are substantially the same and located on the 1L plane is shown. , the positional relationship between the reaction chamber and observation chamber is not limited to this configuration; for example,
As shown in FIG. 2, the reaction chamber and the observation chamber can also be arranged in a stacked manner.

第2図は、積層状に配置された反応室24と観測室25
とからなる形態の平板状容器型分析器具20の縦断面図
を示す図である。
Figure 2 shows a reaction chamber 24 and an observation chamber 25 arranged in a stacked manner.
It is a figure which shows the longitudinal cross-sectional view of the flat container type analytical instrument 20 of the form which consists of.

分析器具20は、第1−A図と第1−8図の場合と同様
に、平面状の容器部21と1一部のフレキシブルな材料
からなるシート状上部壁部22とから構成されており、
全体としてqi板状容器の形態にある。容器部?■の内
部には、反応室23と観測室24とが相互の間の実質的
に自由な液体流通が可能なように開口部27を介して積
層状に接続配置されている。反応室23の内部には弾性
を示す多孔質体25が収容されている。
As in the case of FIGS. 1-A and 1-8, the analytical instrument 20 is composed of a flat container portion 21 and a sheet-like upper wall portion 22 made of a partially flexible material. ,
It is in the form of a qi plate-shaped container as a whole. Container part? Inside (2), a reaction chamber 23 and an observation chamber 24 are connected in a stacked manner through an opening 27 so as to allow substantially free fluid flow between them. A porous body 25 exhibiting elasticity is housed inside the reaction chamber 23 .

上記の第2図に示した積層体の形態にある分析器具を利
用した分析操作1士、前述の例の場合と殆ど同じである
。すなわち、試料注入口26から液体試料を導入したの
ち、試料注入口26を試料注入口蓋28で閉じ、反応室
23にて、フレキシブルなシート状上部壁部22に間欠
的な圧力を外部からかけ、弾性多孔質体25と連携して
の復元性を示す変形を繰り返しもたらすことにより、液
体試料と試薬とを充分に混合してアナライトと試薬との
反応を発生させ、次いで試料液体を観測室24に移動さ
せて光学的な測定を行なう方法が利用される。
The analysis operation using the analysis instrument in the form of a laminate shown in FIG. 2 is almost the same as in the previous example. That is, after introducing a liquid sample from the sample injection port 26, the sample injection port 26 is closed with the sample injection port lid 28, and in the reaction chamber 23, intermittent pressure is applied from the outside to the flexible sheet-like upper wall portion 22. By repeatedly bringing about deformation exhibiting restorability in cooperation with the elastic porous body 25, the liquid sample and reagent are sufficiently mixed to cause a reaction between the analyte and the reagent, and then the sample liquid is transferred to the observation chamber 24. A method is used in which optical measurements are performed by moving the

この第2図に示した分析器具2oにおいては、光路を分
析器具2oの底面に平行または略平行な方向(たとえば
、121NにおけるX−X方向、あるいは底面に平行で
、がっX−X方向に垂直な方向)に設定することが容易
となり、光学的測定用の長い光路を確保することができ
るため1分析器度の向上が容易に実現される。
In the analysis instrument 2o shown in FIG. 2, the optical path is directed in a direction parallel or approximately parallel to the bottom of the analysis instrument 2o (for example, in the This makes it easy to set the analyzer in the perpendicular direction, and it is possible to secure a long optical path for optical measurements, thereby easily achieving an improvement of one analyzer degree.

なお、これまでの説明においては添付図面に示したf板
状容器型分析器具を例にとって本発明の4¥徴および構
成を示したが、本発明の実施に際しては、そのような構
成とは異なる構成を有する各種の・「板状容器型分析器
具を利用することが可能であることは勿論である。
In the explanation so far, the four features and configuration of the present invention have been shown by taking the plate-shaped container type analytical instrument shown in the attached drawings as an example, but when implementing the present invention, it is necessary to use a configuration different from such a configuration. Of course, it is possible to use a variety of plate-shaped container-type analysis instruments having various configurations.

なお、平板状容器型分析器具を利用して分析することの
できる試料および試料に含まれるアナライトには特に限
定はなく、従来の湿式法あるいは乾式法などの分析操作
の対象とされている各種の試料およびアナライトを分析
対象とすることができる。
There are no particular limitations on the samples and analytes contained in the samples that can be analyzed using the flat container type analytical instrument, and various types of samples that are subject to conventional analytical operations such as wet or dry methods. samples and analytes can be analyzed.

そのような分析系の例としては、以下の分析系を挙げる
ことができる。
Examples of such analysis systems include the following analysis systems.

i)多孔質体にバルビツールとバルビッールナトリウム
とを含有させ、これを硫酸亜鉛水溶液で洗浄したのち反
応室内に収容し、次いで血清(液体試料)を反応室に導
入し充分に攪拌したのち。
i) A porous body was made to contain barbiturate and barbiturate sodium, and after being washed with an aqueous zinc sulfate solution, it was placed in a reaction chamber, and then serum (liquid sample) was introduced into the reaction chamber and thoroughly stirred. after.

試料溶液を観測室にて測定波長660nmにて光学測定
するような操作により液体試料中のZTT値をめる系。
A system that calculates the ZTT value in a liquid sample by optically measuring the sample solution at a measurement wavelength of 660 nm in an observation room.

11)チモール、バルビツールおよびパルビタールナト
リウムとを含む水溶液を反応室ド部壁面に塗布乾燥させ
て反応室内に収容し、血清(液体試料)を反応室に導入
し充分に混合したのち、試料溶液を観測室にて中心波長
660nmの可視光にて光路長における透過光学濃度を
J11定し比色法により液体試料中のTT、T値をめる
系。
11) An aqueous solution containing thymol, barbiturate, and parbital sodium is applied to the wall of the reaction chamber, allowed to dry, and placed in the reaction chamber. Serum (liquid sample) is introduced into the reaction chamber and mixed thoroughly, and then the sample solution is added. In the observation room, the transmitted optical density at the optical path length is determined using visible light with a center wavelength of 660 nm, and the TT and T values in the liquid sample are calculated using the colorimetric method.

111)多孔質体に抗B−リポ蛋白抗体を含有させ、こ
れを反応室内に収容し、B−リポ蛋白を含有する液体試
料を反応室に導入し充分に攪拌して免疫反応を進行させ
たのち、生じた混濁液を観測室にて光学測定するような
操作により液体試料中のB−リポ蛋白含有量を定量する
系。
111) Anti-B-lipoprotein antibody was contained in a porous material, this was housed in a reaction chamber, and a liquid sample containing B-lipoprotein was introduced into the reaction chamber and thoroughly stirred to allow the immune reaction to proceed. This system then quantifies the B-lipoprotein content in a liquid sample by optically measuring the resulting turbid liquid in an observation room.

1t)ADP、AMP、クレアチンリン酸、グルコース
−6−燐酸、脱水素酵素、グルコース、ヘキソキナーゼ
およびNADを含む水溶液を反応室内壁面に塗布乾燥さ
せて反応室内に収容し、血清(液体試料)と脱イオン蒸
留水を反応室に導入し充分に程合して、血清中のクレア
チニンキナーゼにより生じたNADHを含む溶液を観測
室にて中心波長340nmの近紫外光にて光路長におけ
る透過光学濃度を測定するような操作により該NADH
またはクレアチンホスホキナーゼを定量する系。
1t) An aqueous solution containing ADP, AMP, creatine phosphate, glucose-6-phosphate, dehydrogenase, glucose, hexokinase, and NAD is applied to the wall surface of the reaction chamber, dried, and stored in the reaction chamber. Introduce ion-distilled water into the reaction chamber and allow it to warm up sufficiently, then measure the transmitted optical density at the optical path length of the solution containing NADH produced by creatinine kinase in serum in the observation chamber using near-ultraviolet light with a center wavelength of 340 nm. The NADH is
Or a system for quantifying creatine phosphokinase.

【図面の簡単な説明】[Brief explanation of drawings]

第1−A図は、本発明の実施に用いることができる平板
状容器型分析器具の構成の例を示す斜視図であり、第1
−B図は、第1−A図の分析器具のI−I線に沿った縦
断面図である。ただし第1−A図では、分析器具が」二
部のシート状壁(蓋)部分を取り外された状態で示され
ている。 第2図は、本発明の実施に用いることができる平板状容
器型分析器具の別の構成の例を示す図である。 10.20.30:平板状容器型分析器具11.21.
31:容器部 12.22.32 : J二部のシート状1tt部13
.23.33:反応室 14.24.34:観測室 15.25.35:多孔質体 16.26.36:試料注入【」 18.28:試料注入自着 27:開口部 特許出願人 富士写真フィルム株式会社代理人 弁理士
 柳川泰男
FIG. 1-A is a perspective view showing an example of the configuration of a flat container-type analytical instrument that can be used for carrying out the present invention, and FIG.
Figure 1-B is a longitudinal sectional view taken along line I-I of the analytical instrument of Figure 1-A. However, in FIG. 1-A, the analytical instrument is shown with its two sheet-like wall (lid) parts removed. FIG. 2 is a diagram showing an example of another configuration of a flat container-type analytical instrument that can be used to implement the present invention. 10.20.30: Flat container type analytical instrument 11.21.
31: Container part 12.22.32: Sheet-like 1tt part 13 of J2 part
.. 23.33: Reaction chamber 14.24.34: Observation chamber 15.25.35: Porous body 16.26.36: Sample injection 18.28: Sample injection Self-attachment 27: Opening Patent applicant Fuji Photo Film Co., Ltd. Agent Patent Attorney Yasuo Yanagawa

Claims (1)

【特許請求の範囲】 1゜反応室と観測室とが相互の間の液体流通が++[能
なように接続配置された、液体試料中のアナライトを定
j諜するための一体型の平板状容器型分析器具を用いて
分析を行なう操作において、反応室における反応を経て
観測室に導入された液体試料の光学(fy測測定分析器
具の底面に平行な光路を利用して行なうことを特徴とす
る方法。 2゜観測室の少なくとも相対する二面の側面壁部分が硬
質の透明材料から構成されていて、これにより固定され
た光路を形成するようにされた平板状容器型分析器具を
用いることを特徴とする特許請求の範囲第1項記載の光
学的測定方法。 3゜反応室と観測室とが実質的に同一平面上にあるf板
状容器型分析器具を用いることを特徴とする特許請求の
範囲第1項記載の光学的測定方法。 4゜反応室と観測室と積層状に配置されている平板状容
器型分析器具を用いることを特徴とする特許請求の範囲
第1項記載の光学的測定方法。 5゜平板状容器型分析器具が、 反応室の壁の少なくとも一部が自己復元性を示すフレキ
シブルな材料から構成されており、観測室の側面には、
相対位置が固定されて一定の光路を供給するようにされ
た、向い合う透明材料製の壁部分が備えられており、そ
して、反応室と観測室との間には液の流れに関して実質
的な隔壁が存在しない ものであることを特徴とする特許請求の範囲第1項記載
の光学的測定方法。 6゜平板状容器型分析器具が、 反応室の壁の少なくとも一部をフレキシブルな材料から
構成し、かつ反応室内にりi性を示す多孔質体を収容す
ることにより、反応室のフレキシブルな壁部分に外部か
ら間欠的に応力を伺学した場合に、該フレキシブル壁部
分と多孔質体とがi+li携して復元性を有する変形を
示すようにされており。 観測室の側面には、相対位置が固定されて一定の光路を
供給するようにされた、向い合う透明材料製の壁部分が
備えられており、そして、反応室と観測室との間には液
の流れに関し′て実質的な隔壁が存在しない ものであることを特徴とする特許請求の範囲第1イ1記
戦の光学的測定方法2
[Scope of Claims] 1. An integrated flat plate for determining an analyte in a liquid sample, the reaction chamber and the observation chamber being connected and arranged such that liquid communication between them is possible. In the operation of performing analysis using a container-type analysis instrument, the optical path of the liquid sample introduced into the observation chamber after the reaction in the reaction chamber (fy measurement) is characterized by using an optical path parallel to the bottom of the measurement analysis instrument. 2. Using a flat container-type analysis instrument in which at least two opposing side walls of the observation chamber are made of a hard transparent material, thereby forming a fixed optical path. The optical measurement method according to claim 1, characterized in that a plate-shaped container-type analytical instrument is used in which the reaction chamber and the observation chamber are substantially on the same plane. The optical measuring method according to claim 1. The optical measurement method according to claim 1, characterized in that a flat container-type analysis instrument having a 4° reaction chamber and an observation chamber arranged in a stacked manner is used. An optical measurement method of 5゜ flat container-type analytical instrument, in which at least a part of the wall of the reaction chamber is made of a flexible material that exhibits self-righting properties, and the side of the observation chamber is
Opposed wall sections of transparent material whose relative positions are fixed to provide a constant light path are provided, and between the reaction chamber and the observation chamber there is a substantial separation with respect to liquid flow. The optical measuring method according to claim 1, characterized in that there is no partition wall. The 6゜flat container-type analytical instrument has at least a portion of the wall of the reaction chamber made of a flexible material, and a porous material exhibiting ionic properties is accommodated in the reaction chamber, so that the flexible wall of the reaction chamber is When stress is intermittently applied to the portion from the outside, the flexible wall portion and the porous body exhibit resilient deformation in association with i+li. The sides of the observation chamber are equipped with opposing wall sections made of transparent material whose relative positions are fixed and which provide a constant light path, and between the reaction chamber and the observation chamber there are Claim 1-1 Optical measurement method 2, characterized in that there is no substantial partition wall regarding the flow of liquid.
JP22518983A 1983-11-29 1983-11-29 Optical measuring method of liquid sample using analytical appliance of flat plate vessel form Pending JPS60115861A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22518983A JPS60115861A (en) 1983-11-29 1983-11-29 Optical measuring method of liquid sample using analytical appliance of flat plate vessel form
US06/873,284 US4753531A (en) 1983-11-29 1986-06-04 Flat container type analytical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22518983A JPS60115861A (en) 1983-11-29 1983-11-29 Optical measuring method of liquid sample using analytical appliance of flat plate vessel form

Publications (1)

Publication Number Publication Date
JPS60115861A true JPS60115861A (en) 1985-06-22

Family

ID=16825355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22518983A Pending JPS60115861A (en) 1983-11-29 1983-11-29 Optical measuring method of liquid sample using analytical appliance of flat plate vessel form

Country Status (1)

Country Link
JP (1) JPS60115861A (en)

Similar Documents

Publication Publication Date Title
EP1447665B1 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
JP2941063B2 (en) Capillary micro cuvette
US5597532A (en) Apparatus for determining substances contained in a body fluid
FI81677C (en) MEMBRANKYVETT.
CA2297965C (en) Analytical cartridge
JP5837262B2 (en) Biochemical analysis cartridge with improved operability
US3733179A (en) Method and apparatus for the quantitative determination of blood chemicals in blood derivatives
JPS5968650A (en) Cuvette for measuring compound in liquid through spectropho-tometry
JP4956533B2 (en) Cartridge, residual liquid removal method and automatic analyzer
US6602719B1 (en) Method and device for detecting analytes in fluids
KR100662021B1 (en) Bio cartridge
CN103391995A (en) Blood separation system and method for a dry test strip
US4753531A (en) Flat container type analytical instrument
JPH01254867A (en) Dry type whole blood analysis element
US20150316533A1 (en) Methods and systems for point-of-care coagulation assays by optical detection
KR101104400B1 (en) Biosensor for Measuring Biological Material
WO2017040820A1 (en) Systems and methods for reagentless test strips
JPS60115861A (en) Optical measuring method of liquid sample using analytical appliance of flat plate vessel form
WO2000078998A1 (en) Apparatus and method for determining substances contained in a body fluid
JPH0456256B2 (en)
JPS60115860A (en) Analytical appliance of flat plate vessel form
Baniya et al. Lab‐on‐a‐chip for hydrogen sulphide detection—Part I: Sulphide separation from plasma sample
US20220341919A1 (en) Test strip assembly for analysing bodily fluids and devices thereof
CONSTANȚA et al. ASPECTS REGARDING THE OPTICAL PRINCIPLES OF BIOCHEMISTRY ANALYZERS WITH DRY REAGENTS.
RU2496104C1 (en) Optical cartridge