[go: up one dir, main page]

JPS60115199A - Quadruple pole particle accelerator - Google Patents

Quadruple pole particle accelerator

Info

Publication number
JPS60115199A
JPS60115199A JP58222032A JP22203283A JPS60115199A JP S60115199 A JPS60115199 A JP S60115199A JP 58222032 A JP58222032 A JP 58222032A JP 22203283 A JP22203283 A JP 22203283A JP S60115199 A JPS60115199 A JP S60115199A
Authority
JP
Japan
Prior art keywords
electrodes
particle accelerator
frequency
quadruple
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58222032A
Other languages
Japanese (ja)
Other versions
JPH0558240B2 (en
Inventor
訓之 作道
克己 登木口
小池 英己
岡田 修身
徳郎 斉藤
小笹 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58222032A priority Critical patent/JPS60115199A/en
Priority to EP84904176A priority patent/EP0163745B1/en
Priority to US06/763,133 priority patent/US4801847A/en
Priority to PCT/JP1984/000557 priority patent/WO1985002489A1/en
Priority to DE8484904176T priority patent/DE3477528D1/en
Publication of JPS60115199A publication Critical patent/JPS60115199A/en
Publication of JPH0558240B2 publication Critical patent/JPH0558240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はRF Q (Radio Freqnency
Quadrupole)イオン加速器に係り、特に種々
のイオンを効率良く、任意のエネルギーに加速する四重
種粒子加速器の改良に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to RF Q (Radio Frequency)
The present invention relates to quadrupole ion accelerators, and particularly to improvements to quadruple seed particle accelerators that efficiently accelerate various ions to arbitrary energies.

〔発明の背景〕[Background of the invention]

従来のRPQイオン加速器の構造を第1図に示す。四重
極電極1,2,3.4の向き合った面が凸凹に波打って
おり、その様子を垂直断面と水平断面で示したのが第2
図である。第2図(a)は垂直断面を示し、第2図(b
)は水平断面を示す。これらの電極には高周波が印加さ
れ、電極1と3が■のとき電極2と4はθであり、電極
1と3が○のとき電極2と4は■になる。又、第2図か
られかるように、電極1.3と電極2,4は凸凹の位相
が180°ずれており、このため、例えば電極l。
The structure of a conventional RPQ ion accelerator is shown in FIG. The facing surfaces of the quadrupole electrodes 1, 2, 3.4 are unevenly undulating, and this is shown in the second vertical and horizontal cross sections.
It is a diagram. Figure 2(a) shows a vertical section, Figure 2(b)
) indicates a horizontal section. A high frequency is applied to these electrodes, and when electrodes 1 and 3 are ■, electrodes 2 and 4 are θ, and when electrodes 1 and 3 are O, electrodes 2 and 4 are ■. Further, as can be seen from FIG. 2, the phase of the concave and convex portions of the electrode 1.3 and the electrodes 2 and 4 are shifted by 180 degrees, and therefore, for example, the phase of the concave and convex portions of the electrode 1.3 is shifted by 180°.

3が■で電極2.4がeのとき、第2図に示すように、
中心軸上に、軸方向の電界が生ずる。矢印6.7.8は
電界の方向を示す。電極にかかる電圧の極性が逆圧なっ
たときには、第2図の電界の方向も逆になる。今、第2
図の左からこの四重極電界の中に入ってきたイオンが、
丁朋、常に右方ヘの加速電界を受けるようなスピード、
および位相で入ってくると、そのままエネルギーが単調
に増加する。また、初め減速を受けるような位相のとき
に入ったイオンは、次の加速電界のとき、後から来た粒
子の中にバンチングされ、あとは単調に加速される。こ
のように、几FQでは、どのような高周波位相で入って
くるイオンも最終的には有効に加速でき、また、垂直お
よび、水平方向の高周波電界による強収束作用が利用で
きる。そのと共に高周波の空胴共振器を形成していた。
When 3 is ■ and electrode 2.4 is e, as shown in Figure 2,
An axial electric field is generated on the central axis. Arrows 6.7.8 indicate the direction of the electric field. When the polarity of the voltage applied to the electrodes is reversed, the direction of the electric field in FIG. 2 is also reversed. Now, the second
Ions entering this quadrupole electric field from the left side of the figure are
Dingho, at such a speed that he is constantly receiving an accelerating electric field to the right.
When it enters with the phase , the energy increases monotonically. In addition, ions that enter the particle at a phase in which they are initially decelerated are bunched into later particles when the accelerating electric field is applied, and are then monotonically accelerated. In this way, in the FQ, incoming ions with any high-frequency phase can be effectively accelerated in the end, and the strong focusing effect of the high-frequency electric fields in the vertical and horizontal directions can be utilized. At the same time, a high-frequency cavity resonator was formed.

第3図に従来のR,FQの断面を示す。9は高周波電力
をこの空胴共振器へ供給するための高周波ケーブルであ
る。中心導体の先端10はループアンテナ状の結合器に
なっている。この共振器の共振周波数はその幾何学的な
寸法で決まってしまうため、周波数を変えることはでき
ない。例えば、100MH2のH“加速器の例では長さ
約1.5 m l直径0.5m位である。もしこれを使
って別のイオン種を加速する帯金には、イオンのエネル
ギーはeVン加速電圧、mはイオン質jkz vはイオ
ンのスピード)であるから、入射スピードをH+の場合
と同じにするには入射エネルギーを質量mK比例して増
大してやる必要があシ、また出射エネルギーも質量mに
比例して増大する。つまり、Hlを1MeVまで加速す
るRFQではA8”は75MeVになってしまう。
Figure 3 shows the cross section of conventional R and FQ. 9 is a high frequency cable for supplying high frequency power to this cavity resonator. The tip 10 of the center conductor is a loop antenna-like coupler. The resonant frequency of this resonator is determined by its geometric dimensions and cannot be changed. For example, a 100MH2 H" accelerator has a length of about 1.5 ml and a diameter of 0.5 m. If this is used to accelerate another ion species, the energy of the ions will be eV voltage, m is the ion quality (jkz v is the speed of the ion), so in order to make the incident speed the same as in the case of H+, it is necessary to increase the incident energy in proportion to the mass mK, and the output energy also increases with the mass mK. In other words, in RFQ that accelerates Hl to 1 MeV, A8'' becomes 75 MeV.

このような特性はイオン打込機のように色々なエネルギ
ーで色々なイオンを打込むという目的には向かない。
Such characteristics are not suitable for the purpose of implanting various ions with various energies like an ion implanter.

また、観点を変えて、As+専用のIMeV加速器をR
FQで作るためには、周波数はそのままで、長さをl/
75にするか、または長さはそのままで高周波の周波数
をl/75にするしかない。
Also, from a different perspective, we have developed an IMeV accelerator exclusively for As+.
To make it with FQ, the frequency remains the same and the length is changed to l/
75, or leave the length as is and set the high frequency to 1/75.

前者の場合は、電極表面の凹凸の周期長がl/75にな
るため、電極加工上の問題がある。また、後者の場合は
空胴共振器の共振条件を合わせるために、加速管の直径
を約75倍にする必要があシ、−いずれも非現実的であ
る。
In the former case, the periodic length of the unevenness on the electrode surface is l/75, which poses a problem in electrode processing. Moreover, in the latter case, in order to match the resonance conditions of the cavity resonator, it is necessary to increase the diameter of the accelerating tube by about 75 times - both of which are unrealistic.

また、第1図の従来方式の構造では長時間運転中にイオ
ンスパッタなどで加速管内壁が汚れてきた場合、空胴共
振器のQ値が下がシ、所定の高周波電圧が発生できなく
なることがある。
In addition, in the conventional structure shown in Figure 1, if the inner wall of the accelerator tube becomes contaminated by ion spatter during long-term operation, the Q value of the cavity resonator will drop, making it impossible to generate the specified high-frequency voltage. There is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記問題点を解決することによシ、種々
のイオンを数百KeVから数MeVまでの任意のエネル
ギーに加速できるイオン加速器を提供するものであシ、
これによυ高電圧、大電流のイオン打込器が実現できる
The purpose of the present invention is to solve the above problems and provide an ion accelerator that can accelerate various ions to any energy from several hundred KeV to several MeV.
This makes it possible to realize an ion implanter with high voltage and large current.

〔発明の概要〕[Summary of the invention]

上述のごとく、従来の方式では周波数が変えられないこ
と、周波数を下げた場合には加速管が大きくなりすぎる
こと、および空胴共振器のα値を保ちにくいことが欠点
であったから、本発明は、これらを解決するには四重極
粒子加速器に外部共振回路を設けたものである。
As mentioned above, the disadvantages of the conventional method are that the frequency cannot be changed, that the accelerator tube becomes too large when the frequency is lowered, and that it is difficult to maintain the α value of the cavity resonator. To solve these problems, the quadrupole particle accelerator is equipped with an external resonant circuit.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第4図を用いて説明する。 An embodiment of the present invention will be described using FIG. 4.

四重極電極1/ 、2/ 、a/ 、 4/は絶縁物1
1を介して加速管5から絶縁されている。また加速管5
の外部にインダクタンスLのコイル12と容量CIの可
変コンデンサ13とから成る共振回路が設置されている
。この場合の等価回路を第5図ニ示ス。この等価回路に
おいて、コンデンサ17は四重極電極1′、3′と2′
、4′間の浮遊容量C2である。したがって、この共振
回路の共振出力周波数に同調されている。また発振器1
6の出力は増巾器15で増巾されたあと、カップリング
コイル14を通してこの共振回路に供給される。
Quadrupole electrodes 1/, 2/, a/, and 4/ are insulators 1
It is insulated from the accelerator tube 5 via the tube 1. Also, acceleration tube 5
A resonant circuit consisting of a coil 12 with an inductance L and a variable capacitor 13 with a capacitance CI is installed outside. The equivalent circuit in this case is shown in Figure 5. In this equivalent circuit, capacitor 17 is connected to quadrupole electrodes 1', 3' and 2'.
, 4' is the stray capacitance C2. Therefore, it is tuned to the resonant output frequency of this resonant circuit. Also, oscillator 1
The output of 6 is amplified by an amplifier 15 and then supplied to this resonant circuit through a coupling coil 14.

これにより1.イオン種が変わっても、それに応じて周
波数を変えてやれば、出力エネルギーを任意に決めるこ
とができる。
As a result, 1. Even if the ion species changes, the output energy can be determined arbitrarily by changing the frequency accordingly.

更にこの方式の改良として、発振器16の周波数設定と
、コイル12と可変コンデンサ13および電極間容量1
7から成る共振回路の周波数設定を連動して行われる機
構にすることができる。
Furthermore, as an improvement of this method, the frequency setting of the oscillator 16, the coil 12, the variable capacitor 13, and the interelectrode capacitance 1
It is possible to use a mechanism in which the frequency setting of the resonant circuit consisting of 7 is performed in conjunction with each other.

また、外部共振回路から増巾器工5に正帰還をかけるこ
とによシ、発振回路を構成することができるので、この
場合は発振器16を省略することができる。
Further, since an oscillation circuit can be constructed by applying positive feedback to the amplifier 5 from the external resonant circuit, the oscillator 16 can be omitted in this case.

また外部回路を複数個設けることにより、複数個の周波
数の正弦波を電極に重畳できるので、その結果として、
例えば矩形波に近い波形にすることもでき、加速効率を
上げることができる。
In addition, by providing multiple external circuits, sine waves of multiple frequencies can be superimposed on the electrodes, and as a result,
For example, a waveform close to a rectangular wave can be used, and acceleration efficiency can be increased.

本発明の別の実施例を第6図に示す。直流絶縁用のコン
デンサ18.19は、直流電源20により、゛電極X/
、a/と電極2/、a/の間に直流電圧を与えるための
ものである。コンデンサ18゜19の容量は高周波電圧
を電極1/ 、2/ 、3/。
Another embodiment of the invention is shown in FIG. The DC insulation capacitors 18 and 19 are connected to the electrodes X/
, a/ and the electrodes 2/, a/ to apply a DC voltage between them. The capacitance of capacitors 18 and 19 allows high frequency voltage to be applied to electrodes 1/, 2/ and 3/.

4′に与えるになんら支障ないよう十分大きい値を選ん
でいる。これらにより電極1/、3/と2/ 、 4/
の間には直流電圧と高周波電圧を重畳して印加すること
ができる。従って、軸方向の高周波電界の他に、軸と直
角方向には四重極マスフィルターと同じ電界が生じるた
め、イオンの加速と質量分析を同時に行なうことができ
る。
A sufficiently large value is selected so that there is no problem in giving it to 4'. With these electrodes 1/, 3/ and 2/, 4/
A DC voltage and a high frequency voltage can be applied in a superimposed manner between the two. Therefore, in addition to the high-frequency electric field in the axial direction, an electric field similar to that of a quadrupole mass filter is generated in the direction perpendicular to the axis, so that ion acceleration and mass analysis can be performed simultaneously.

なお、第4図および第6図の外部共振回路の周波数同調
用としては可変コンデンサのかわシに可変インダクタン
スを使っても同様の効果が得られることは、電気回路理
論から明らかである。
It is clear from electric circuit theory that a similar effect can be obtained by using a variable inductance instead of a variable capacitor for frequency tuning of the external resonant circuits shown in FIGS. 4 and 6.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、RFQ加速器の高効率を維持したまま
で、イオン種、エネルギーを任意に設定できるため、高
エネルギー大電流イオン打込み機としての応用が可能と
なる。
According to the present invention, the ion species and energy can be arbitrarily set while maintaining the high efficiency of the RFQ accelerator, so that it can be applied as a high-energy, large-current ion implanter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のRFQ加速器の構造を示す図、第2図は
几FQ加速器の動作を説明する図、第3図は従来のRF
Q加速器の電気回路的構造および高周波の供給方法を示
す図、第4図は本発明の実施例を示す図、第5図は本発
明の電気的等価回路を示す図、第6図は別の実施例を示
す図である。 1、2.3.4.1’、2’、3’、4’・・・四重極
電極、5・・・加速管、6,7.8・・・軸上の軸方向
電界成分を示す矢印、9・・・同軸ケーブル、lO・・
・ループアンテナ、11・・・絶縁物、12・・・イン
ダクタンス、13・・・可変コンデンサ、14・・・カ
ップリングコイル、15・・・増巾器、16・・・発振
器、17・・・電極間の浮遊容i、18.19・・・コ
ンデンサ、20・・・直第 2 図 ta) 第 4− 図 第 5 図 1( 央研究所内
Figure 1 is a diagram showing the structure of a conventional RFQ accelerator, Figure 2 is a diagram explaining the operation of the FQ accelerator, and Figure 3 is a diagram showing the structure of a conventional RFQ accelerator.
A diagram showing the electrical circuit structure of the Q accelerator and a high frequency supply method, FIG. 4 is a diagram showing an embodiment of the present invention, FIG. 5 is a diagram showing an electrical equivalent circuit of the present invention, and FIG. 6 is a diagram showing another example. It is a figure showing an example. 1, 2.3.4.1', 2', 3', 4'...quadrupole electrode, 5...acceleration tube, 6,7.8...axial electric field component on the axis Arrow showing, 9... Coaxial cable, lO...
- Loop antenna, 11... Insulator, 12... Inductance, 13... Variable capacitor, 14... Coupling coil, 15... Amplifier, 16... Oscillator, 17... Stray capacitance i between electrodes, 18.19... Capacitor, 20... Line 2 Figure ta) Figure 4 - Figure 5 Figure 1 (Inside the Central Research Institute

Claims (1)

【特許請求の範囲】 1、四重極電極の向き合った面を波打たせた構造の粒子
加速器において、高周波共振回路を加速管の外に設置す
ることを特徴とする四重種粒子加速器。 2、特許請求の範囲第1項に於いて、共振回路を複数個
設け、これにより複数個の異った周波数の高周波電界を
重畳して電極に印加することを特徴とする四重種粒子加
速器。 3、%許請求の範囲第1項または第2項に於いて、共振
周波数可変としたことを特徴とする四重種粒子加速器。 4、特許請求の範囲第1項において、四重極電極に直流
と交流を重畳して印加できるようにしたことを特徴とす
る四重種粒子加速器。
[Scope of Claims] 1. A quadruple seed particle accelerator having a structure in which opposing surfaces of quadrupole electrodes are corrugated, characterized in that a high frequency resonance circuit is installed outside the acceleration tube. 2. A quadruple seed particle accelerator according to claim 1, characterized in that a plurality of resonant circuits are provided, whereby a plurality of high-frequency electric fields of different frequencies are superimposed and applied to the electrodes. . 3.% The quadruple seed particle accelerator according to claim 1 or 2, characterized in that the resonance frequency is variable. 4. A quadruple seed particle accelerator according to claim 1, characterized in that direct current and alternating current can be applied in a superimposed manner to the quadrupole electrodes.
JP58222032A 1983-11-28 1983-11-28 Quadruple pole particle accelerator Granted JPS60115199A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58222032A JPS60115199A (en) 1983-11-28 1983-11-28 Quadruple pole particle accelerator
EP84904176A EP0163745B1 (en) 1983-11-28 1984-11-22 Quadrupole particle accelerator
US06/763,133 US4801847A (en) 1983-11-28 1984-11-22 Charged particle accelerator using quadrupole electrodes
PCT/JP1984/000557 WO1985002489A1 (en) 1983-11-28 1984-11-22 Quadrupole particle accelerator
DE8484904176T DE3477528D1 (en) 1983-11-28 1984-11-22 Quadrupole particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222032A JPS60115199A (en) 1983-11-28 1983-11-28 Quadruple pole particle accelerator

Publications (2)

Publication Number Publication Date
JPS60115199A true JPS60115199A (en) 1985-06-21
JPH0558240B2 JPH0558240B2 (en) 1993-08-26

Family

ID=16776012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222032A Granted JPS60115199A (en) 1983-11-28 1983-11-28 Quadruple pole particle accelerator

Country Status (1)

Country Link
JP (1) JPS60115199A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192254A (en) * 1987-02-04 1988-08-09 Hitachi Ltd How to cool electronic devices
JPS63193499A (en) * 1987-02-04 1988-08-10 Hitachi Ltd quadrupole particle accelerator
JPH0227699A (en) * 1988-07-15 1990-01-30 Shimadzu Corp Acceleration energy control method for high-frequency quadruple-electrode accelerator
JPH03245500A (en) * 1990-02-21 1991-11-01 Hitachi Ltd Quadrupole particle accelerator and its operating method
US5086256A (en) * 1988-11-24 1992-02-04 The Agency Of Industrial Science And Technology External resonance circuit type radio frequency quadrupole accelerator
JPH04501480A (en) * 1988-10-24 1992-03-12 ザ ブリンクマン コーポレイション Portable light source switch
JPH04120400U (en) * 1991-04-11 1992-10-28 東芝機械株式会社 electrostatic deflector
US5796219A (en) * 1988-07-15 1998-08-18 Shimadzu Corp Method and apparatus for controlling the acceleration energy of a radio-frequency multipole linear accelerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192254A (en) * 1987-02-04 1988-08-09 Hitachi Ltd How to cool electronic devices
JPS63193499A (en) * 1987-02-04 1988-08-10 Hitachi Ltd quadrupole particle accelerator
JPH0227699A (en) * 1988-07-15 1990-01-30 Shimadzu Corp Acceleration energy control method for high-frequency quadruple-electrode accelerator
US5796219A (en) * 1988-07-15 1998-08-18 Shimadzu Corp Method and apparatus for controlling the acceleration energy of a radio-frequency multipole linear accelerator
JPH04501480A (en) * 1988-10-24 1992-03-12 ザ ブリンクマン コーポレイション Portable light source switch
US5086256A (en) * 1988-11-24 1992-02-04 The Agency Of Industrial Science And Technology External resonance circuit type radio frequency quadrupole accelerator
JPH03245500A (en) * 1990-02-21 1991-11-01 Hitachi Ltd Quadrupole particle accelerator and its operating method
JPH04120400U (en) * 1991-04-11 1992-10-28 東芝機械株式会社 electrostatic deflector

Also Published As

Publication number Publication date
JPH0558240B2 (en) 1993-08-26

Similar Documents

Publication Publication Date Title
US5504341A (en) Producing RF electric fields suitable for accelerating atomic and molecular ions in an ion implantation system
WO1996025757A9 (en) Producing rf electric fields suitable for accelerating atomic and molecular ions in an ion implantation system
US4181894A (en) Heavy ion accelerating structure and its application to a heavy-ion linear accelerator
JPS6280950A (en) ion source
JPS58212100A (en) Linear charged particle accelerator
US20220174810A1 (en) Resonator, linear accelerator configuration and ion implantation system having toroidal resonator
WO1985002489A1 (en) Quadrupole particle accelerator
US2834908A (en) Traveling wave tube
JP2000228299A5 (en) Resonator for linear accelerator of ion implanter
JPS60115199A (en) Quadruple pole particle accelerator
JPS6348447A (en) Method of removing noxious charged particle from measuring cell for icr spectrometer
US4093856A (en) Method of and apparatus for the electrostatic excitation of ions
CN119654969A (en) Drift tube electrode arrangement with DC optics
US3718865A (en) Device for accelerating charged atomic particles including a pair of high frequency resonators
US2673928A (en) Apparatus for imparting high energy to charged particles
US3255369A (en) Variable polarization saturable magnetic circuits
JP2617240B2 (en) Control method of acceleration energy in high frequency quadrupole accelerator
Symons et al. An experimental clustered-cavity TM Klystron
Arikawa Perfect Focusing Mass Spectrometer
JPH0562798A (en) External resonance type quadrupole particle accelerator
US3176234A (en) Synchronous mode amplifier without slow wave circuits
US5483130A (en) Structure for accelerating heavy ions with uniformly spaced quadrupole focusing (USQF)
US2611882A (en) Electron discharge device
Barnett et al. A wideband fundamental mode millimeter gyrotron TWA experiment
SU556698A1 (en) Cyclic accelerator