[go: up one dir, main page]

JPS60114801A - Reflection preventing film - Google Patents

Reflection preventing film

Info

Publication number
JPS60114801A
JPS60114801A JP58222420A JP22242083A JPS60114801A JP S60114801 A JPS60114801 A JP S60114801A JP 58222420 A JP58222420 A JP 58222420A JP 22242083 A JP22242083 A JP 22242083A JP S60114801 A JPS60114801 A JP S60114801A
Authority
JP
Japan
Prior art keywords
film
refractive index
low
layer
chalcogens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58222420A
Other languages
Japanese (ja)
Other versions
JPH0561601B2 (en
Inventor
Takeo Miyata
宮田 威男
Takuhiro Ono
小野 拓弘
Takashi Iwabuchi
岩渕 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58222420A priority Critical patent/JPS60114801A/en
Publication of JPS60114801A publication Critical patent/JPS60114801A/en
Publication of JPH0561601B2 publication Critical patent/JPH0561601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain reflection preventing film having high light resistance usable also for CO2 laser by forming lead fluoride film on chalcogens glass film having a specified refractive index, and forming zinc sulphide film or selen sulphide film on the chalcogens glass film. CONSTITUTION:A material having high refractive index i.e. chalcogens glass 2 which is in amorphous state and having low absorptance, good adhesion and >=2.6 refractive index, is first vapor-deposited on a KRS-5 substrate 1 having 2.37 refractive index with extremely precisely polished surface suitable to optical purpose. Then, PbF2 3 of low refractive index as low as ca. 1.6 and low absorptance is vapor-deposited. Thereafter, a high refractive material 4 i.e. ZnS of 2.2 refractive index or ZnSe of 2.4 refractive index is vapor-deposited thereon in order to protect the chalcogens glass PbF2 of low resistance to environment from the influence of the environment. By this method, a reflection preventing film comprising three-layered structure having low absorptance, high light resistance, and high resistance to environment, is provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は沃化タリウム(iI)と臭化タリウム(TAE
r)との混晶、たとえばK RS −sと呼ばれる材料
で作られた赤外用光学部品(ウィンドウ。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to thallium iodide (iI) and thallium bromide (TAE).
Infrared optical components (windows) made of a material called KRS-s, for example, a mixed crystal with KRS-s.

レンズ、オプティカルファイバーなど)用の反射防止膜
(で関するものである。
It relates to anti-reflection coatings for lenses, optical fibers, etc.

従来例の構成とその問題点 KH2−5は、屈折率が2.37 (波長1o、5μm
nにおいて)と大きいために反射損失が入出力端を合せ
て約28%もある。これを減らすには端面に反射防止膜
をコーティングすることが望ましい。
The structure of the conventional example and its problems KH2-5 has a refractive index of 2.37 (wavelength 1o, 5μm
n), the reflection loss at the input and output ends is about 28%. To reduce this, it is desirable to coat the end face with an anti-reflection film.

しかしKH2−5に無反射コートする技術は歩だ確立さ
れておらず、文献もほとんど無い。
However, the technology for applying an anti-reflection coating to KH2-5 has not yet been established, and there is almost no literature on it.

この様な状況において最近KR3−sが炭酸ガスレーザ
メス用の導光、路(オプティカルファイバー)として実
用化されるに至り、その透過率向上を目的とした反射防
止膜の要望が高まって来た。
Under these circumstances, KR3-s has recently been put into practical use as a light guide (optical fiber) for a carbon dioxide laser scalpel, and there has been an increasing demand for an antireflection film for the purpose of improving its transmittance.

この導光路端面に使用される反射防止膜は炭酸ガスレー
ザ光が照射されるという点でまず通常の赤外用の窓、レ
ンズ等のそれに比べ高い耐光力が要求される。さらに導
光路の場合には一般にレーザ光を集光して端面に入射さ
せるため表面でのパワー密度は通常のレーザ用光学部品
の場合より2桁位大きなものとなる。例えばesoW出
力時には、導光路入力端でのパワー密度は20KW/c
tAにも達する。従って導光路端面上の反射防止膜は耐
環境性、耐はく離性のみならず、極度に大きな耐光力が
要求される。
Since the antireflection coating used on the end face of the light guide is irradiated with carbon dioxide laser light, it is first required to have higher light resistance than that of ordinary infrared windows, lenses, etc. Furthermore, in the case of a light guide, the laser light is generally focused and incident on the end face, so the power density at the surface is about two orders of magnitude larger than that of a normal laser optical component. For example, when outputting esoW, the power density at the input end of the light guide is 20KW/c.
It also reaches tA. Therefore, the antireflection film on the end face of the light guide is required to have not only environmental resistance and peeling resistance, but also extremely high light resistance.

耐光力を向上させるには、まずいかに吸収の少ない反射
防止膜を実功、するかにかかっている。
Improving light resistance depends first on creating an anti-reflection coating with low absorption.

従来、炭酸ガスレーザ用透明光学部品の素材であるセレ
ン化亜鉛(ZnSe)、ヒ素化ガリウム(GaAs)や
塩化カリウム(KCff)等の反射防止膜は、単層膜構
造、二層膜構造、三層膜構造等が試みられている。それ
以上の多層でも反射防止膜は構成出来るが蒸着膜形成時
の作業容易性に難点が生じだシ、レーザ光に対する膜厚
増加に伴う吸収増大を招いたりするという問題が生ずる
ので特殊な場合を除き反射防止1漠の層数は三層が限度
とされている。
Conventionally, anti-reflection films made of zinc selenide (ZnSe), gallium arsenide (GaAs), potassium chloride (KCff), etc., which are materials for transparent optical parts for carbon dioxide lasers, have single-layer, double-layer, or three-layer structures. Membrane structures, etc. are being tried. Although it is possible to construct an anti-reflection film with more layers than this, there will be problems with ease of work when forming the vapor-deposited film, and there will be problems such as increased absorption of laser light as the film thickness increases, so it is not recommended in special cases. With the exception of anti-reflection, the number of layers is limited to three.

単層膜構造が最も製作上容易である。光学の理論によれ
ば、屈折率nが光学部品素材の屈折率n8の平方根Fす
に等しいという条件を満足すれば、光学的厚みnd =
λ/4(λ=1o、eμmの場合、nd=2.66μm
)で基板上に蒸着した場合の反射率は零になり単層反射
防止膜となる。
A single-layer film structure is the easiest to manufacture. According to optical theory, if the condition that the refractive index n is equal to the square root F of the refractive index n8 of the material of the optical component is satisfied, then the optical thickness nd =
λ/4 (for λ=1o, eμm, nd=2.66μm
), the reflectance becomes zero when deposited on a substrate, resulting in a single-layer antireflection film.

自然界には、この様な条件を満足してくれるものは非常
に限られる。KH2−s素材の屈折率nの平方根、r 
= 、r丁、37 +1.54 に近い屈折率の材料と
しては第1表の様なものがある。
There are very few things in nature that satisfy these conditions. The square root of the refractive index n of the KH2-s material, r
Materials with a refractive index close to = , r, 37 + 1.54 are listed in Table 1.

第1表 KH2−es用単層反射防止膜第1表より判る
様に単層反射防止膜では反射率を零にすることは出来ず
1%程度の反射が残る。
Table 1 Single-layer anti-reflection film for KH2-es As can be seen from Table 1, the single-layer anti-reflection film cannot reduce the reflectance to zero and a reflection of about 1% remains.

ThF4の場合には耐環境性には優れているが、吸収が
大きい欠点が有る。PbF2の場合吸収は少ないが耐環
境性に欠点がある。すなわち、PbF2蒸着膜は水に対
して弱く、あやまって表面に水をかけたりすると膜にひ
び割れが生じたり、散乱が増加する。
ThF4 has excellent environmental resistance, but has the disadvantage of high absorption. In the case of PbF2, absorption is low, but there is a drawback in environmental resistance. That is, the PbF2 vapor-deposited film is weak against water, and if water is accidentally applied to the surface, the film will crack or scattering will increase.

一方、5chus terの二層膜構造の条件式を満足
する2種類の誘電体物質の組合せを考えると理論的に反
射率を零にすることが出来る。その様な組合せをさがす
と第2表の様になる。
On the other hand, if we consider a combination of two types of dielectric materials that satisfy the conditional expression of the 5-chuster two-layer film structure, it is possible to theoretically reduce the reflectance to zero. If you search for such combinations, you will find something like Table 2.

第2表 KH2−ts用二層反射防止膜第2表から判る
様に二層構造の場合、理論的に反射率を零にすることは
出来るが吸収が大きいという欠点を有す。
Table 2 Two-layer antireflection film for KH2-ts As can be seen from Table 2, in the case of a two-layer structure, it is possible to theoretically reduce the reflectance to zero, but it has the drawback of high absorption.

Mouchratの三層膜構造の条件式を満足する組合
せとして試作されたAs2Se3/PbF2/AlI2
Se3なる反射防止膜は面当りの吸収率は0.02%の
オーダーと低く、単層、二層の反射防止膜より耐光力も
向上する。
As2Se3/PbF2/AlI2 was prototyped as a combination satisfying Mouchrat's three-layer film structure conditional expression.
The anti-reflection film made of Se3 has a low absorption rate on the order of 0.02% per surface, and has better light resistance than single-layer or double-layer anti-reflection films.

しかしながら一般にカルコゲナイドガラスは、高温に長
時間さらされると酸化され吸収が増加するという欠点と
、機械的にやわらかいために、クリーニング時に表面に
傷がつきやすいという欠点を有していた。
However, chalcogenide glass generally has the disadvantage that it is oxidized and absorbs more when exposed to high temperatures for a long period of time, and its surface is easily scratched during cleaning because it is mechanically soft.

このように、反射率が零で、耐環境性にすぐtb長寿命
でかつ吸収の少ない耐光力の高い反射防止膜は従来得ら
れなかった。
As described above, it has not been possible to obtain an antireflection film with zero reflectance, environmental resistance, long life, low absorption, and high light resistance.

発明の目的 本発明はKH2−5の様な沃化タリウム(Tl)と具化
タリウム(T2Br )からなる混合よりなる赤外透過
材料に対して耐環境性にすぐれ、長寿命で、かつ吸収の
少ない従って耐光力の高い炭酸ガスレーザ用にも使用出
来る反射防止膜を提供するものである。
Purpose of the Invention The present invention provides an infrared transmitting material made of a mixture of thallium iodide (Tl) and thallium thallium (T2Br) such as KH2-5, which has excellent environmental resistance, long life, and absorption properties. The object of the present invention is to provide an antireflection film that can be used for carbon dioxide lasers, which has a small amount of light resistance and therefore has high light resistance.

発明の構成 本発明はKH2−5面にまず吸収の少なくかつ密着性の
良いアモルファス状態を示す屈折率(n3)が2.6以
上のカルコゲナイドガラスである高屈折率物質を蒸着し
、次に吸収の少ない屈折率(n2)が約1.6なる低屈
折率物質であるPbF2を蒸着し、さらにこれらのカル
コゲナイドガラスやPbF2の耐環境性の悪さを保護す
る目的で屈折率(nl)が2.2なる高屈折率物質であ
るZnS あるいは屈折率(nl)が2.4なるZn5
eを蒸着してなる三層膜構造の吸収の少ない従って耐光
力のある、かつまた耐環境性のすぐれた反射防止膜を提
供する。
Structure of the Invention The present invention first deposits a high refractive index material, which is chalcogenide glass with a refractive index (n3) of 2.6 or more, on the KH2-5 surface, which exhibits an amorphous state with low absorption and good adhesion, and then deposits a high refractive index material on the KH2-5 surface. PbF2, which is a low refractive index material with a refractive index (n2) of about 1.6, is deposited, and in order to protect the poor environmental resistance of these chalcogenide glasses and PbF2, a material with a refractive index (nl) of 2. ZnS is a material with a high refractive index of 2, or Zn5 has a refractive index (nl) of 2.4.
To provide an antireflection film having a three-layer film structure formed by vapor-depositing E, which has low absorption and therefore has light resistance and excellent environmental resistance.

実施例の説明 以下本発明の実施例について詳細に説明する。Description of examples Examples of the present invention will be described in detail below.

第1図はKH2−s面上における本発明による波長10
.6μm用三層反射防止膜の構造図である。
Figure 1 shows the wavelength 10 according to the present invention on the KH2-s plane.
.. It is a structural diagram of a three-layer antireflection film for 6 μm.

図中1は表面が超精密に光学研磨された屈折率nsが2
.37のKH2−5基板である。2は屈折率n3が2.
6以上のカルコゲナイドガラス膜であり、3は屈折率n
2が約1.6なるPbF2膜である。4は屈折率n1 
が2.2なるZnSか、nlが2.4なるZn5e膜で
ある。第2図は代表的な本発明による反射防止膜の反射
率波長依存性を示す図である。
1 in the figure has a surface that has been optically polished to ultra-precision and has a refractive index ns of 2.
.. 37 KH2-5 board. 2 has a refractive index n3 of 2.
6 or more chalcogenide glass film, where 3 is the refractive index n
It is a PbF2 film where 2 is approximately 1.6. 4 is the refractive index n1
It is a ZnS film with nl of 2.2 or a Zn5e film with nl of 2.4. FIG. 2 is a diagram showing the reflectance wavelength dependence of a typical antireflection film according to the present invention.

以上の条件で6組℃三層反射防止膜のそれぞれの膜厚を
Mouchratの関係式(Applied 0pti
csvo2.16. A10. P2722)を満足す
る様にめた結果を第3表に示す。
Under the above conditions, the film thickness of each of the six sets of three-layer anti-reflection coatings is calculated using Mouchrat's relational formula (Applied 0 pti
csvo2.16. A10. Table 3 shows the results obtained to satisfy P2722).

以下余白 いずれの実施例においても、反射防止膜の一面あたりの
吸収は約0.02%であり、単層、二層構造のうちで一
番吸収率の少ないPbF2単屓反射防止膜の0.05%
より少ない。
In each of the examples below, the absorption per surface of the anti-reflection film is about 0.02%, and the absorption per surface of the PbF2 single-layer anti-reflection film, which has the lowest absorption rate among single-layer and double-layer structures, is about 0.02%. 05%
Fewer.

さらに以上の実施例では空気にふれる最外層が酸化しに
くいZnS、あるいはZ n S 、eよりなっており
内部のカルコゲナイドガラスやPbF2膜を保護する役
目をはたしているため従来の三層反射防止膜(As2S
e3/PbF2/AS2Se3)より耐環境性にすぐれ
ている。
Furthermore, in the above embodiments, the outermost layer exposed to air is made of ZnS or ZnS, e, which is difficult to oxidize, and serves to protect the chalcogenide glass and PbF2 film inside, so it is different from the conventional three-layer antireflection film ( As2S
e3/PbF2/AS2Se3) has better environmental resistance.

次に本発明における、カルコゲナイドガラスの屈折率n
3 を2.6以上と特定した理由について第3図をもと
に説明する。
Next, in the present invention, the refractive index n of chalcogenide glass
The reason why 3 was specified as 2.6 or more will be explained based on Fig. 3.

第3図は本発明による反射防止膜の最外層であるZnS
又はZn5eの膜厚と最内層であるカルコゲナイドガラ
スの屈折率の関係を示す図である。図中、5はGe28
Sb12Se60(nl。、6〜2二6)、6ばAll
2S03(n1o、6〜2.8)、7(dGe3oA8
1□Te5oSe23(”10.6〜3.1)である。
Figure 3 shows ZnS, which is the outermost layer of the antireflection film according to the present invention.
Alternatively, it is a diagram showing the relationship between the film thickness of Zn5e and the refractive index of chalcogenide glass, which is the innermost layer. In the figure, 5 is Ge28
Sb12Se60 (nl., 6-226), 6baAll
2S03(n1o, 6-2.8), 7(dGe3oA8
1□Te5oSe23 (“10.6 to 3.1)”.

空気等に直接ふれる最外層のZnS、Zn5e膜は上で
説明したように内部のPbF2.やカルコゲナイドガラ
スを保護する役目をしているので少なくとも約0.2μ
m 以上の膜厚が必要となる。第3図の意味するところ
は三層反射防止膜の条件を満足してかつ最外層の膜厚が
約0.2μm 以上であるためには一番下のカルコゲナ
イドガラスの屈折率が2.6以上ないとこれらを満足し
ないことを意味している。
As explained above, the outermost ZnS, Zn5e film, which is in direct contact with air, etc., has an inner PbF2. and chalcogenide glass, so it is at least about 0.2μ.
A film thickness of m or more is required. What Figure 3 means is that in order to satisfy the conditions for a three-layer anti-reflection film and for the thickness of the outermost layer to be approximately 0.2 μm or more, the refractive index of the bottom chalcogenide glass must be 2.6 or more. If you don't have them, it means you won't be satisfied.

発明の効果 以上のように本発明は屈折率が2.6以上のカルコゲナ
イドガラス/PbF2/ZnSあるいはZn5eなる構
成のKH2−5用三層反射防止膜で、次のような効果を
有する。
Effects of the Invention As described above, the present invention is a three-layer antireflection film for KH2-5 having a composition of chalcogenide glass/PbF2/ZnS or Zn5e with a refractive index of 2.6 or more, and has the following effects.

1 反射防止膜の波長10.6μ+/l炭酸ガスレーザ
光による吸収率は0.02%のオーダーと低く、単層P
bF2反射防止膜の0.05%よりすぐれているため耐
光力も向上する。
1 The absorption rate of the anti-reflection film for carbon dioxide laser light with a wavelength of 10.6μ+/l is as low as 0.02%, and the single-layer P
Since it is better than 0.05% of the bF2 antireflection film, the light resistance is also improved.

2 最外層がカルコゲナイドガラスで構成される三層反
射防止膜にくらべ、熱的、化学的に安定でかつ機械的に
も強いZnSやZn5e を使用しているため内部のカ
ルコゲナイドガラス膜やPbF 膜を化学的にや\物理
的に保護しているま ため、耐環境性にすぐれ、長寿命である。
2 Compared to the three-layer anti-reflection film whose outermost layer is made of chalcogenide glass, ZnS and Zn5e, which are thermally and chemically stable and mechanically strong, are used, so the inner chalcogenide glass film and PbF film are Because it is chemically and physically protected, it has excellent environmental resistance and has a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による反射防止膜の実施例を示す断面
図、第2図は本発明による反射防止膜の代表的な反射率
波長依存性を示す図、第3図は本発明による反射防止膜
の最外層の膜厚と最内層の屈折率の関係を示す特性図で
ある。 1・・・・・・被蒸着基板、2・・・・・・カルコゲナ
イドガラス膜、3・・・・・・PbF2膜、4・・・・
・・ZnSあるいはZn5e膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第 2121 5皮長(、u yy2) 第:3図
FIG. 1 is a cross-sectional view showing an example of the anti-reflection film according to the present invention, FIG. 2 is a diagram showing typical reflectance wavelength dependence of the anti-reflection film according to the present invention, and FIG. 3 is a cross-sectional view showing an embodiment of the anti-reflection film according to the present invention. FIG. 3 is a characteristic diagram showing the relationship between the thickness of the outermost layer and the refractive index of the innermost layer of the prevention film. 1... Substrate to be evaporated, 2... Chalcogenide glass film, 3... PbF2 film, 4...
...ZnS or Zn5e film. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2121 5 Skin length (, u yy2) Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)屈折率が2.6以上のカルコゲナイドガラス膜上
に弗化鉛(PbF2)膜を、その上に硫化亜鉛(ZnS
 )膜あるいはセレン化亜鉛(Zn5e )膜を形成し
てなる反射防止膜。 ?)硫化亜鉛膜又はセレン化亜鉛膜の膜厚が0.2μ?
n以上である特許請求の範囲第1項記載の反射防止膜。
(1) A lead fluoride (PbF2) film is placed on a chalcogenide glass film with a refractive index of 2.6 or more, and a zinc sulfide (ZnS) film is placed on top of the chalcogenide glass film with a refractive index of 2.6 or more.
) film or a zinc selenide (Zn5e) film. ? ) Is the film thickness of the zinc sulfide film or zinc selenide film 0.2μ?
The antireflection film according to claim 1, wherein the antireflection film is n or more.
JP58222420A 1983-11-25 1983-11-25 Reflection preventing film Granted JPS60114801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58222420A JPS60114801A (en) 1983-11-25 1983-11-25 Reflection preventing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222420A JPS60114801A (en) 1983-11-25 1983-11-25 Reflection preventing film

Publications (2)

Publication Number Publication Date
JPS60114801A true JPS60114801A (en) 1985-06-21
JPH0561601B2 JPH0561601B2 (en) 1993-09-06

Family

ID=16782104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222420A Granted JPS60114801A (en) 1983-11-25 1983-11-25 Reflection preventing film

Country Status (1)

Country Link
JP (1) JPS60114801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683196A4 (en) * 2017-09-12 2021-06-02 Nippon Electric Glass Co., Ltd. CHALCOGENIDE GLASS MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683196A4 (en) * 2017-09-12 2021-06-02 Nippon Electric Glass Co., Ltd. CHALCOGENIDE GLASS MATERIAL
US11643357B2 (en) 2017-09-12 2023-05-09 Nippon Electric Glass Co., Ltd. Chalcogenide glass material

Also Published As

Publication number Publication date
JPH0561601B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
Hass et al. Mirror coatings for low visible and high infrared reflectance
EP0027331A2 (en) Multilayer mirror for reflecting radiation at a preselected wavelength
JPS60502173A (en) Anti-reflection coating for optical components made of organic materials
US4988164A (en) Anti-reflection film for synthetic resin optical elements
US5688608A (en) High refractive-index IR transparent window with hard, durable and antireflective coating
CA2294194A1 (en) Low absorption coatings for infrared laser optical elements
JPS6135521B2 (en)
JPH0552923B2 (en)
JPS60114801A (en) Reflection preventing film
JPH0520721B2 (en)
JPS5895301A (en) Laser total reflector
JPH0777601A (en) Two-wavelength antireflection film
JPS6161641B2 (en)
JPH08310840A (en) Reflection preventing film
JPH0442737B2 (en)
JPS60245775A (en) Antireflecting film
JPH0152721B2 (en)
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JPS6187104A (en) Reflection preventive film
JPS5453549A (en) Multilayer thin film optical system
JPS6161642B2 (en)
Baumeister et al. Mechanical stress compensation in multilayer dichroic mirrors for the 16 µm spectral region
JPS6259281B2 (en)
JPS6214801B2 (en)
JPS6128963B2 (en)