[go: up one dir, main page]

JPS60114763A - Electrochemical discriminating and control method of cell - Google Patents

Electrochemical discriminating and control method of cell

Info

Publication number
JPS60114763A
JPS60114763A JP22138883A JP22138883A JPS60114763A JP S60114763 A JPS60114763 A JP S60114763A JP 22138883 A JP22138883 A JP 22138883A JP 22138883 A JP22138883 A JP 22138883A JP S60114763 A JPS60114763 A JP S60114763A
Authority
JP
Japan
Prior art keywords
cell
electrode
potential
cells
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22138883A
Other languages
Japanese (ja)
Other versions
JPH0634005B2 (en
Inventor
Tadashi Matsunaga
是 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58221388A priority Critical patent/JPH0634005B2/en
Publication of JPS60114763A publication Critical patent/JPS60114763A/en
Publication of JPH0634005B2 publication Critical patent/JPH0634005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To perform the mutual discrimination and identification of a cell (microorganism), by bringing cells into contact with an acting electrode and applying scanning potential to said cells while measuring the generated current value. CONSTITUTION:A cell suspension is filtered by a membrane filter 108 and cells 107 are held on the filter 108 while said membrane filter 108 is mounted to an acting electrode 105 and cyclical scanning potential is applied between the electrode 105 and an opposed electrode 104 to measure the generated current. The current-potential curve obtained by this method not only applies a max. current value (a peak current) proportional to a cell concn. but also shows a peak potential value different by the kind of a cell. By the specificity of this curve shape, information sufficient for identification of a microorganism such as bacteria is available.

Description

【発明の詳細な説明】 本発明は各種細胞の電気化学的識別乃至制御方法に係わ
り、より詳しくは微生物、動植物等の細胞の種類の新規
な制御乃至識別方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochemical identification or control method for various cells, and more particularly to a novel control or identification method for cell types such as microorganisms, animals, and plants.

F生物等の種類の分類学的識別乃至同定は臨床検査分野
を始めとして広汎な各種産業分野等に於いて極めて重要
な位置を占めているものであるが、その実施は所謂選択
培地を使用したコロニー計数法、顕微鏡直接観察法等に
依るものであるため着るしく煩雑且つ長時間を要するも
のとならざるを1グーなかった。
Taxonomic identification or identification of types of F organisms, etc., plays an extremely important role in a wide variety of industrial fields, including the field of clinical testing, but it is carried out using so-called selective media. Since this method relies on colony counting methods, direct observation methods using a microscope, etc., it is difficult, complicated, and takes a long time.

他方、本発明者らは先に生細胞が電極に直接接触すると
電流が得られる現象を発見し、この現象を利用した電気
化学的菌数計測法を提案した(Anal、 C1■o、
 AcLa、 98+ 25(1978);Appl、
Environ、Microbiol、、37. 1 
1 7(1979)及びEur、J、Appl、 Mi
crol〕io1. BioLecbnol、+10.
125(1980)ものであるが、細胞の種類、菌学的
性質等の識別更にはその機作等に関しては全然未11イ
明であった。
On the other hand, the present inventors previously discovered a phenomenon in which an electric current is obtained when living cells come into direct contact with an electrode, and proposed an electrochemical bacterial count counting method that utilizes this phenomenon (Anal, C1■o,
AcLa, 98+ 25 (1978); Appl.
Environ, Microbiol, 37. 1
1 7 (1979) and Eur, J., Appl, Mi.
crol]io1. BioLecbnol, +10.
125 (1980), but the identification of cell types, mycological properties, etc., as well as their mechanisms, were completely unknown.

上記に鑑み本発明者らは更に鋭意研究の結果、細胞と作
用電極との接触で得られる電流は、主として、細胞中に
存在する補酵素A(CoA)乃至類似、物等の活性物質
と電極間の電子の授受によるものであること、及び、所
謂サイクリックボルタメトリを始めとして微分パルスポ
ーラログラフ、位相弁別交流ポーラログラフ或いは矩形
波ポーラログラフ等々の手法に準じて細胞に走査電位を
印加し生起電流値を測定すれば極めて高精度に細胞の種
類が識別され得ることを知見し、本発明に到達したもの
である。特に、細胞に微分パルスポーラログラフ、位相
弁別交流ポーラログラフ或いは矩形波ポーラログラフ等
々の手法に準じて漸増直流走査電位とこれに重畳された
適切な微小電位とを印加し、4,4゛−ビピリジンによ
り増強される生起微分電流値を測定すれば極めて高精度
に細胞の種類が識別され得ることが知見された。
In view of the above, the present inventors further conducted extensive research and found that the current obtained by contact between a cell and a working electrode is mainly due to active substances such as coenzyme A (CoA) present in the cell or similar substances present at the electrode. This is due to the exchange of electrons between cells, and the generated current value can be calculated by applying a scanning potential to the cell according to methods such as so-called cyclic voltammetry, differential pulse polarography, phase discrimination AC polarography, or square wave polarography. The present invention was achieved based on the finding that cell types can be identified with extremely high accuracy by measurement. In particular, a gradually increasing DC scanning potential and an appropriate micropotential superimposed thereon are applied to the cells according to methods such as differential pulse polarography, phase discrimination AC polarography, or square wave polarography, and the voltage is enhanced by 4,4'-bipyridine. It has been found that cell types can be identified with extremely high accuracy by measuring the differential current value generated by the cell.

すなわち、上記方法により得られる電流−電位曲線乃至
微分電流値の極値を与える電位値(ピーク電位値)或い
は曲線パターン等は細胞の種類に応じて相互に相違する
のでこれにより各細胞(微生物)相互の弁別、同定が極
めて明瞭に達成され得るものとなる。
In other words, the current-potential curve obtained by the above method, the potential value (peak potential value) giving the extreme value of the differential current value, the curve pattern, etc. differ depending on the type of cell, and therefore each cell (microorganism) Mutual discrimination and identification can be achieved very clearly.

更に、メンブレン・フィルタ等の支持体上に細胞等を高
密度で集積し作用電極に当接すれば増強された電流値が
観測されるので、例えば測定対象が細胞希薄懸濁液等の
場合もこれをフィルタ処理して支持体(濾材)上に集積
、測定することにより明瞭判明な識別が可能となる。
Furthermore, if cells etc. are gathered at high density on a support such as a membrane filter and brought into contact with the working electrode, an enhanced current value will be observed, so this also applies when the measurement target is a dilute suspension of cells. Clear identification becomes possible by filtering, accumulating on a support (filtering medium), and measuring.

数カ、各種細胞は上記の通り固有のピーク電位を有する
が、逆にその電位近傍の電位を外から印加すれば呼吸活
性等の細胞活性が選択的且つ効果的に抑制制御され得る
という驚ろくべき事実も又、知見されたものであり、従
って本発明は細胞の電気化学的制御方法をも併せ提供す
るものである。
As mentioned above, several types of cells have their own unique peak potentials, but it is surprising that by applying a potential close to that potential from the outside, cellular activities such as respiratory activity can be selectively and effectively suppressed and controlled. This fact has also been discovered, and therefore, the present invention also provides a method for electrochemical control of cells.

以下、′本発明の構成等につきより詳細に分脱する。Hereinafter, the structure of the present invention will be explained in more detail.

測定乃至制御対象 細菌類、放線菌、カビ類、微細藻類、酵母類等の各種微
生物、赤血球、白血球、腫瘍細胞及び培養動植物細胞等
々の各種動植物細胞など、殆んど全ての微細生物が測定
乃至制御対象となり得る。
Almost all microorganisms can be measured or controlled, including various microorganisms such as bacteria, actinomycetes, molds, microalgae, and yeast, and various animal and plant cells such as red blood cells, white blood cells, tumor cells, and cultured animal and plant cells. It can be controlled.

ここに於いて、本発明方法に依ればこれら各種微細生物
の菌学的弁別、同定を始めとして、例えばグラム隘陽性
菌の分別、所謂Amesテストに於ける変異復帰又は非
復帰菌株の弁別等々、適切な測定条件を設定すれば極め
て広範囲に亘る識別、制御が可能となるものである。
Here, according to the method of the present invention, in addition to mycological discrimination and identification of these various microorganisms, for example, classification of Gram-positive bacteria, discrimination of mutation reversion or non-reversion bacterial strains in the so-called Ames test, etc. If appropriate measurement conditions are set, identification and control over an extremely wide range is possible.

細胞の識別乃至判定 サイクリックボルタメトリ等による細胞−電極間のピー
ク電位或いは電流−電位曲線の形状は、測定に用いられ
る細胞の細胞壁あるいは細胞膜の特性に起因するもので
あり、例えS La1)hylococcus epi
der+n1disに於けるピーク電位と上記グラム陰
性菌よりも複雑な細胞壁構造を有するE scl+er
 icl+ 1acoli及びSal+nonella
 typl+i+auriu+nのようなグラム陰性菌
に於けるピーク電位、電流−電位曲線との間には明確な
差異が見られる。
The shape of the peak potential or current-potential curve between a cell and an electrode in cyclic voltammetry or the like for cell identification or determination is due to the characteristics of the cell wall or cell membrane of the cell used for measurement. epi
E scl+er has a peak potential in der+n1dis and a cell wall structure more complex than the Gram-negative bacteria mentioned above.
icl+ 1acoli and Sal+nonella
A clear difference can be seen between the peak potential and the current-potential curve in Gram-negative bacteria such as typl+i+auriu+n.

従ってボルタメトリによる細胞−電極間のピーク電位等
を測定することにより多種多様の細胞の識別が可能とな
るものである。
Therefore, by measuring the peak potential between cells and electrodes by voltammetry, it is possible to identify a wide variety of cells.

また、前述の如く細胞−電極間の酸化還元電位或いは電
流−電位曲線の生成は、細胞壁中に存在するCoA等の
電気化学的活性物質に基づくものであるため、ピーク電
位等の測定に際しては生細胞をそのまま用いるのみでな
く、例えば、生細胞を超a波破壊処理して1qられる細
胞壁片を用いても識別可能となる。
Furthermore, as mentioned above, the generation of redox potential or current-potential curve between cells and electrodes is based on electrochemically active substances such as CoA present in the cell wall, so when measuring peak potential etc. Identification is possible not only by using cells as they are, but also by using, for example, cell wall fragments obtained by subjecting living cells to ultra-A wave destruction treatment.

測定諸条件及び適用分野 装置としては通常の各種ボルタメトリ用装置が使用され
得るものであるが、サイクリックボルタメトリ用装置の
1例につき模式説明図を示せば第1図の通りである。す
なわち、例示の装置は作用極1.t=J極2及び5SC
E等の参照極3を具備する電解セル4.ポテンシオスタ
ット5.線型走査乃至掃引電)原6及びXY記録計乃至
シンクロスコープ7より構成されている。ここに於いて
、電極としては通常の白金、金、銀。
Measurement Conditions and Field of Application Although various conventional voltammetry devices can be used as the device, FIG. 1 is a schematic explanatory diagram of one example of a cyclic voltammetry device. That is, the exemplary device has a working electrode 1. t=J pole 2 and 5SC
An electrolytic cell 4 comprising a reference electrode 3 such as E. Potentiostat 5. It consists of a linear scanning or sweeping current source 6 and an XY recorder or synchroscope 7. Here, the electrodes are ordinary platinum, gold, and silver.

炭等々の電極及びこれらを高分子等で被覆等の各種修飾
電極が使用され得、又、対極2の電位が安定不変である
場合は参照電極3を欠く通常のポーラログラフと同等の
回路構成で足りる。
Electrodes such as charcoal and various modified electrodes such as coating these with polymers etc. can be used, and if the potential of the counter electrode 2 is stable and unchanged, a circuit configuration equivalent to a normal polarograph lacking the reference electrode 3 is sufficient. .

尚、電解セルに関しては、本発明の方法に於いては、第
3図に示すとおり、測定対象である細胞(1(,17)
を保持する支持体乃至フィルタ(108)を装着した作
用電極(105)、対向電極(104)、及びガラスチ
ューブで仕切られた参照電極(106)をリン酸緩衝液
中に浸して成る電極システムが使JI7細胞の懸濁液を
メンブランフィルタによりろ過し細胞をフィルタ上に保
持させ、そのメンブランフィルタを作用極に装着し、電
極間に周期的走査(掃引)電位を印加して生起電流を測
定することによりなされるが、通常、その電位走査とし
ては時間に比例して電位を変化させる所謂線型走査(L
inearSIlleep)が好適に採用される。
Regarding the electrolytic cell, in the method of the present invention, as shown in FIG.
An electrode system is made up of a working electrode (105) equipped with a support or filter (108) that holds the electrode, a counter electrode (104), and a reference electrode (106) separated by a glass tube, immersed in a phosphate buffer solution. A suspension of JI7 cells is filtered through a membrane filter, the cells are retained on the filter, the membrane filter is attached to the working electrode, and a periodic scanning (sweep) potential is applied between the electrodes to measure the generated current. However, the potential scan is usually a so-called linear scan (L) that changes the potential in proportion to time.
inearSIlleep) is preferably adopted.

このようにして得られる電流−電位曲線(VolLa+
nmoHram)は、後に詳述する通り細胞濃度に比例
する極大電流値(ピーク電流)を与えるのみならず細胞
の種類により相違するピーク電位値等その曲線形状の特
異性により細菌等の微生物の同定に充分な情報をも与え
るものとなる。すなわち、従来技術と対比するとき本発
明方法に依れば、応答時間ひいては測定時間の茗るしい
短縮、走査電位によるため電極反応に於ける撹乱的諸要
因が排除され得るのでより精確な測定が可能となること
並びに細胞濃度(数)のみならずその種類の同定も同時
になされ得ること等々の実用上多大の利点が得られるも
のである。従って、本発明は発酵プロセスのリアル・タ
イム制御用センサ、水質の微生物汚染度の測定、赤血球
や白血球数の測定等々、広汎な各分野に於けるセンサ手
段として極めて有用なものと云い得る。
The current-potential curve obtained in this way (VolLa+
nmoHram) not only provides a maximum current value (peak current) that is proportional to the cell concentration, but also the specificity of its curve shape, such as the peak potential value that differs depending on the cell type, as will be detailed later. It also provides sufficient information. That is, when compared with the prior art, the method of the present invention significantly shortens the response time and measurement time, and because it uses a scanning potential, it eliminates various disturbing factors in the electrode reaction, allowing for more accurate measurements. This provides many practical advantages, such as being able to identify not only the cell concentration (number) but also the type of cells at the same time. Therefore, the present invention can be said to be extremely useful as a sensor means in a wide variety of fields, such as a sensor for real-time control of fermentation processes, measurement of the degree of microbial contamination of water, and measurement of red blood cell and white blood cell counts.

他方、細胞識別に特に有用な微分パルスポーラログラフ
用装置の1例につき模式説明図を示せば第2図の通りで
ある。
On the other hand, a schematic illustration of an example of a differential pulse polarography device particularly useful for cell identification is shown in FIG. 2.

すなわち、例示の装置はBPG(Basal P!an
e PyrolyLicC; ral+l+ i Lr
e )、HP G (高純度分光分析用カーボン)等の
炭素、白金、金、銀等々より成る作用電極11及び対極
12と5SCE(飽和塩化す) l)ウムカロメロ電極
)等の参照電極13を具備するセル14、パルスシーケ
ンサ15、ポテンシャルプログラマ16、ポテンシオス
タット17、ドロップメッカ1g、哄i/Eコンバータ
19、サンプルホルl’(τ)110及び同(τ’)1
11、ディ7Tレンスアンプリフイア112及びレフー
ダ113より構成されている。
That is, the exemplary device is a BPG (Basal P!an
e PyrolyLicC; ral+l+ i Lr
e), a working electrode 11 and a counter electrode 12 made of carbon such as HPG (high purity carbon for spectroscopic analysis), platinum, gold, silver, etc., and a reference electrode 13 such as 5SCE (saturated chloride electrode). cell 14, pulse sequencer 15, potential programmer 16, potentiostat 17, drop mecca 1g, i/e converter 19, sample hole l'(τ) 110 and sample hole l'(τ') 1
11, a D7T lens amplifier amplifier 112, and a refuder 113.

この場合、測定はセル14中の作用電極に細胞を保持し
たメンブランフィルタを装着し、電極間に微小電位の重
畳された漸増走査(掃引)電位を印加して生起電流を測
定することによりなされるが、通常、その電位走査とし
ては時間に比例して電位を変化させる所謂線型走査(L
inear Su+eep)が好適に採用される。
In this case, the measurement is performed by attaching a membrane filter holding cells to the working electrode in the cell 14, applying an incrementally increasing scanning (sweep) potential with a superimposed micropotential between the electrodes, and measuring the generated current. However, the potential scan is usually a so-called linear scan (L) that changes the potential in proportion to time.
inear Su+eep) is preferably adopted.

走査電位に重畳される微小電位としては、111ノ述の
通り微分電流値を与え得る適切な波形及び周期を有する
ものか適宜選択使用され得る。
As the minute potential to be superimposed on the scanning potential, one having an appropriate waveform and period capable of giving a differential current value as described in No. 111 may be selected and used as appropriate.

このようにして得られる電流−電位曲線(V o l 
La+++mo8ram )は細胞の種類によって相違
する明瞭なピーク電位値をJノえこれによりそれらの識
別を可能とするのみならずそのピーク波形の解析により
細菌等の微生物の電気化学的活性に関する情報をも与え
るものとなる。すなわち、従来技術と月比するとき本発
明方法に依れば各種細菌等の識別、同定が極めて短時間
且つ容易に達成されるものである。
The current-potential curve obtained in this way (V o l
La+++mo8ram) not only makes it possible to identify distinct peak potential values that differ depending on the type of cell, but also provides information on the electrochemical activity of microorganisms such as bacteria by analyzing the peak waveform. Become something. In other words, when compared with the conventional technology, the method of the present invention allows identification and identification of various types of bacteria to be achieved in an extremely short time and easily.

ここで、本発明方法に於ける細胞−電極間の電子伝達の
重要な賦活剤である4、4′−ビピリジン(4、4’ 
−bil+yridiuc:BP)の使用条件につ外要
約して示せば次の通りである。
Here, 4,4'-bipyridine (4,4'
The usage conditions of -bil+yridiuc:BP) are summarized as follows.

すなわち、本発明に於いてBPは緩(!+j液中に直接
添加されて或イハニトロセルローース膜等に固定されて
電極に装着されることにより細胞−電極間反応に関与す
るものとなる。尚、緩衝液中に於けるBl)の濃度は対
象細胞の種類によって変動するものであるが、一般には
数+nM〜10(L+M程度である。
That is, in the present invention, BP becomes involved in the cell-electrode reaction by being directly added to the solution, or by being fixed on a nitrocellulose membrane or the like and attached to the electrode. Note that the concentration of Bl) in the buffer solution varies depending on the type of target cells, but is generally about several + nM to 10 (L + M).

後Jl実験例にも示す通り、本発明の方法に於いてBP
共存下でボルタメトリを行なうことにより、各種細胞の
ピーク電流値の1.5〜2.5倍程度の増強及び波形の
鮮明化、微分電流値にあってはピークの先鋭化がもたさ
れるものとなる。
As shown in the later Jl experimental example, in the method of the present invention, BP
By performing voltammetry under coexistence, the peak current value of various cells is enhanced by about 1.5 to 2.5 times, the waveform becomes clearer, and the peak of the differential current value becomes sharper. becomes.

電)ガこ生成のメカニズム 細胞−炭素電極間の電子授受は補酵素の生成と密接な関
連を持つと考えられる。したがってピーク電流値は代謝
経路と関係していることが推定される。そこでS、ce
revisiaeの懸濁液(2,4X108cells
・+J ’)に代謝阻害剤であるロチノン(’7 、6
 +11M )、アンティマイシン(5,7+nAL 
青酸塩(11)、 0+nM)を各々添加してサイクリ
ンクボルタモグラムの電流値を測定したところ、ロチノ
ン、アンティマイシン、及び青酸塩の添加によってはピ
ーク電流値は減少せず、一方、亜ヒ酸塩の添加によって
4.8μAがら3.7μAの減少が観察された。ロチノ
ンは、N A D Hデヒドロゲナーゼに於ける電子授
受を特異的に阻害し、アンティマイシンはチトクロム1
】、0間の電子の移動を阻害し、青酸塩はチトクロムオ
キシグーゼと02との間の電子の移動を阻害する。一方
、亜ヒ酸増1はピルビン酸デヒドロデナーゼを阻害する
ことか知られている。従って、ピーク電流の生成はピル
ビン酸デヒドロケ′ナーゼとクエン酸回路に関係してい
ることか4fli定される。
Mechanism of electro)gae production Electron exchange between cells and carbon electrodes is thought to be closely related to the production of coenzymes. Therefore, it is presumed that the peak current value is related to the metabolic pathway. So S, ce
suspension of A. revisiae (2,4X108 cells
・+J') and the metabolic inhibitor rotinone ('7, 6
+11M), antimycin (5,7+nAL
When cyanide (11) (0+nM) was added and the current value of the cyclink voltammogram was measured, the peak current value did not decrease with the addition of rotinone, antimycin, and cyanide, whereas arsenite A decrease of 4.8 μA to 3.7 μA was observed with the addition of . Rotinone specifically inhibits electron transfer in NAD H dehydrogenase, and antimycin inhibits cytochrome 1
], 0, and cyanide inhibits the electron transfer between cytochrome oxyguse and 02. On the other hand, arsenite 1 is known to inhibit pyruvate dehydrodenase. Therefore, it is determined that the generation of peak current is related to pyruvate dehydrokenase and the citric acid cycle.

また、後期実験例1に示すように細胞壁にイr在する化
合物を超音波処理により溶出させ細胞及びその溶出液の
ピーク電流値を測定したところ細胞からのピーク電流値
は減少し、一方、溶出液のピーク電流値(ピーク電位値
: t、)、G 5 vs、 5SCE)は次第に増加
した。超音波処理によって細胞の数は影響されないので
、上記の結果は、細胞壁中の電気化学的に活性か物質が
超音波処理によって溶出し、電気化学的に検出されたこ
とを示す。溶出液の2 Ci (l n1nに於ける吸
収はアデニン環と関連を有し、細胞懸濁液を超1″J波
処理するとピーク電流値と共に増大する。アデニン環を
持つツーファクターであるN A l) H、N A 
D P )−1、I)”MNII、 、及びCo Aは
電気化学的に酸化され得るがN A D I−1とN 
A I’) P l−1に相当する:340冊に於ける
吸収及びFMNH2とF A D l−1、に相当する
4115〜450ntnに於ける吸収は、溶出液より慣
jられなかった。
In addition, as shown in Experimental Example 1 in the second stage, when the peak current value of the cells and their eluate was measured after eluting the compounds present in the cell wall by ultrasonication, the peak current value from the cells decreased; The peak current value (peak potential value: t, G 5 vs, 5SCE) of the solution gradually increased. Since the number of cells was not affected by sonication, the above results indicate that electrochemically active substances in the cell wall were eluted by sonication and detected electrochemically. The absorption at 2 Ci (ln1n) of the eluate is related to the adenine ring, and increases with the peak current value when the cell suspension is treated with ultra-1'' J waves. l) H,NA
DP)-1, I)"MNII, and CoA can be electrochemically oxidized, but NAD I-1 and N
A I') The absorption at 340 ntn corresponding to P l-1 and the absorption at 4115-450 ntn corresponding to FMNH2 and F A D l-1 were less common than the eluate.

炭素電極についてN A D HとN A D P l
−1の実験的半波電位は0.35−0.75V vs、
SCEの範囲であった。FMNII2 。
About carbon electrodes N A D H and N A D P l
-1 experimental half-wave potential is 0.35-0.75V vs.
It was within the scope of SCE. FMNII2.

とF7〜l) l−1、は、−f)、4V vs SC
Eに於いて電気化学的に酸化されることが報告されてい
る。BP(i(Basal PlanePyrolyL
ic (餐rapl+ i te)電極を用いてN A
 D H及びCoAのサイクリックポルタモグラムを1
;)たところ、N A D I−1のピーク電流値は、
0,35V vs、5SCE、CoAのピーク電流値は
、l)、G 5 V vs、5SCEに於いて各々観察
された。
and F7~l) l-1, -f), 4V vs SC
It has been reported that E is oxidized electrochemically. BP(i(Basal Plane PyrolyL
NA using ic (rapl + ite) electrodes
Cyclic portammogram of D H and CoA
;) As a result, the peak current value of N A D I-1 is
The peak current values of 0.35 V vs. 5SCE and CoA were observed at l), G 5 V vs. 5SCE, respectively.

CoAのピーク電位値は超η波処理した細胞からの溶出
液の夫とMILJ、しているので、溶出液中のCoAを
SLadtman eL alによる方法で酵素学的に
定量したところ3.610MのCo Aが検出された。
Since the peak potential value of CoA is similar to that of the eluate from cells treated with ultra-η wave treatment, the CoA in the eluate was enzymatically quantified by the method of SLadman eL al, and it was 3.610M Co. A was detected.

細胞を超音波処理するとCo Aの濃度は)容出液のピ
ーク電流値と共に増大するので溶出液から得られるピー
ク電流値の増大は、緩(!TIJ液中のCo Aの濃度
の増大に因ることが推定される1、一方、細胞壁に存在
するCoAは緩?!Ij液中にl容出するので細胞より
得られるピーク電流値は減少しだ。
When cells are sonicated, the concentration of Co A increases with the peak current value of the eluate, so the increase in the peak current value obtained from the eluate is due to the increase in the concentration of Co A in the TIJ fluid. On the other hand, since the CoA present in the cell wall is slowly released into the Ij fluid, the peak current value obtained from the cell decreases.

上記の結果は、細胞壁中に存在するCoAは、細胞−炭
素電極間の電子授受を仲介することを示す。溶出液より
得られるピーク電位値は、CoAのピーク電位値と類似
しており、細胞全体より得られる夫とは相違している。
The above results indicate that CoA present in the cell wall mediates electron transfer between the cell and the carbon electrode. The peak potential value obtained from the eluate is similar to that of CoA and different from that obtained from the whole cell.

ピーク電位値は、PHにより決まり、したがって上記の
現象は、緩衝液と細胞壁に於けるCoAを取り巻く環境
との間でのPHの差異に基づくものであると相定される
The peak potential value is determined by the PH, and therefore the above phenomenon is ascribed to the difference in PH between the buffer and the environment surrounding CoA in the cell wall.

、細胞活性の電気化学的制御 後記実験例に示す通り呼吸活性等の細胞活性はその細胞
に固有のピーク電位値を印加することにより選択的に制
御され得るものであるが、その実施に当っては細胞懸δ
:j液又はフィルタ」二集積細胞を作用電極と接触させ
てこれに所定ピーク電位を基準とした周期的走査電位や
定電tIy、を所定時間印加すれば足りるものである。
Electrochemical control of cell activity As shown in the experimental examples below, cell activities such as respiratory activity can be selectively controlled by applying a peak potential value specific to the cell. is cell suspension δ
It is sufficient to bring the accumulated cells into contact with the working electrode and apply a periodic scanning potential or a constant electric current tIy based on a predetermined peak potential for a predetermined period of time.

故にこの制御方法は、微生物の選択的活性制御という点
で醗醇工学、遺f云子工学等々の各分野に於いて有力手
段となり得る。
Therefore, this control method can be an effective means in various fields such as alcoholic engineering and genetic engineering in terms of selectively controlling the activity of microorganisms.

衷駐上U。Garrison U.

1、り)ly−r−X 4g1 ホ’)ヘプイ> ]8
+ K1−1,1−’(−)40.5B+Mg5O,・
7H200,’2Bを含有する培地] (,1f−I 
J(P 117゜0)にS、ccrcvisiaeを3
o′cで18時間bf気的条(′I下で培養した後、5
℃、81)OOX、で遠心分離にイ・jし採集した菌体
を0,1Mリン酸緩1Φj液(P I−1’7.0 )
で2度洗浄した。
1, ri)ly-r-X 4g1 e')hepui> ]8
+ K1-1,1-'(-)40.5B+Mg5O,・
Medium containing 7H200,'2B] (,1f-I
J (P 117°0) S, ccrcvisiae 3
After culturing under bf aerobic conditions ('I) for 18 h at o'c,
℃, 81) OOX, and centrifuged the collected bacterial cells in a 0.1 M phosphoric acid solution (PI-1'7.0).
Washed twice with

これを0.1M17ン酸緩N+j液(P l−17、(
+ ) + t、l Jニjl濁しく細胞濃度:9×1
0F′個/+nN)通気した。次に」−記培養菌体を3
0分間超音波処理し、5°C180(’、10 Xgで
遠心分離に付し、溶出液を得、細胞は集めて緩衝液に再
度懸濁させた。
This was mixed with 0.1M 17 phosphoric acid mild N+j solution (P l-17, (
+ ) + t,l Jnijl cloudy cell concentration: 9×1
0F' pieces/+nN). Next, add 3 cultured bacterial cells.
The eluate was obtained by sonication for 0 min and centrifugation at 5 °C at 180 (', 10 × g), and the cells were collected and resuspended in buffer.

この細胞及びその溶出液を試料として用いた。This cell and its eluate were used as a sample.

電解上)喧容積約25+nlり、ポテンシオスタット(
11okut。
(on electrolysis), the volume is approximately 25+nl, and the potentiostat (
11okut.

電工Model I−4A 3 (11)、線型走査電
源(Hokuto電工八4oJeへ I−I B I 
U 4)、及びXY記録計(理研電子 F35)を第1
図の通りに回路構成しこれをサイクリックボルタメトリ
用装置として使用した。尚、電解セルを構成する作用極
はBPG(Basal Plane Pyrolyti
c Grapl+1Le)電極であり、月極として白金
線電極、参照電極としては、塩化ナトリウム飽和−月未
電極(SSCE)を用いた。
Electric Works Model I-4A 3 (11), linear scanning power supply (Hokuto Electric Works 84oJe I-I B I
U 4) and the XY recorder (RIKEN F35)
The circuit was constructed as shown in the figure and used as a cyclic voltammetry device. The working electrode constituting the electrolytic cell is made of BPG (Basal Plane Pyrolyte).
c Grapl+1Le) electrode, a platinum wire electrode was used as the moon electrode, and a sodium chloride saturated-moon electrode (SSCE) was used as the reference electrode.

」二記すイクリンクボルタメトり用装置の電解セルに前
記各試料を注入し25±2°Cの条件下サイクリックポ
ルタモグラムを得、各試料のピーク電流値を経時的に測
定した。
Each of the samples was injected into the electrolytic cell of the Iclink voltammetry device described in Section 2, and a cyclic portamogram was obtained at 25±2° C., and the peak current value of each sample was measured over time.

結果を第4図(縦軸:ピーク電流値(μA);横軸二時
間(分)に示す。
The results are shown in FIG. 4 (vertical axis: peak current value (μA); horizontal axis: two hours (minutes)).

図中、曲線Uは溶出液及び同1〕はね11胞の各値であ
る。
In the figure, curve U is the value of the eluate and the 11 cells of the same sample.

図から明らかなように、電気化学的活性物質は細胞壁に
存在し、超音波処理により容易に溶出可能なものと認め
られる。 尚、ピーク電位は細胞(Wl+ole Ce
l l)0.74 V vs。
As is clear from the figure, it is recognized that the electrochemically active substance exists in the cell wall and can be easily eluted by ultrasonication. In addition, the peak potential is the cell (Wl+ole Ce
l l)0.74 V vs.

5SCE、ン容出fLo、G5\’vs、5SCEであ
る。
5SCE, output fLo, G5\'vs, 5SCE.

2、次にS L a d L IIIa n等の方法等
(E、 R,SLadLman et at、。
2, then the method of SLadLman et al.

J、13iol、 CI+em、、191 367(]
 !J51))により溶出液中の活性物質を検定した処
、cO/\Jp至その類似物質であることが確認された
ので、:(、’7mM CoAにつき前記と同様にサイ
クリックボルタメ1りを行なった処、そのピJり電位と
しては0.65〜’v9%5SCL:の値が((1られ
な。
J, 13iol, CI+em,, 191 367 (]
! When the active substance in the eluate was assayed using J51)), it was confirmed that it was a substance similar to cO/\Jp, so: When this was done, the value of the potential was 0.65 to 'v9%5SCL: ((1).

実験例2 第3図は、本発明の細胞識別に用いる電極システムの一
=・例を示すものである。この電極システムは、測定月
未である細胞(107)を支持する為のメンプランフィ
ル幻] 08 )を装着した表面積0 、17 can
2のB P G電極(4o5L 白金線より成る対向電
極(104L塩化カリウム飽和11水参照電極(SCE
)(106)、ポテンシオスタット(llokul、o
電」ニモテ゛ルllA3 (11)(102)、走査電
源(1−1oku 1.o電工モデルl113目)4)
@(1(、+ 1 )、及びX −”1’記録J1(埋
も)1電子 F 3 ’、> )(I fl 3 )よ
り成る。特に指定されている場合を除き、電極は、アル
ミナの水懸濁液を浸み込まぜたつや出し布で1魯いた。
Experimental Example 2 FIG. 3 shows an example of an electrode system used for cell identification according to the present invention. This electrode system has a surface area of 0, 17, which is equipped with membrane fillers (08) to support cells (107) that are not being measured.
2B P G electrode (4o5L counter electrode consisting of platinum wire (104L potassium chloride saturated 11 water reference electrode (SCE)
) (106), potentiostat (llokul, o
Electric model llA3 (11) (102), scanning power supply (1-1oku 1.o electrician model l113th) 4)
@(1(,+1), and Rub with a polishing cloth soaked with a water suspension.

上記3電極を有するガラス製の測定用セルを用い参11
t)電極は、先端が焼結ガラスの7リツトより成るガラ
スチューブに侵すことによってセルの主要部から隔離さ
れている。IE 5eller i −chia co
liは寒天培地で37°012時間培養した後、0.1
Mリン酸緩衝液(PH7,0)に懸濁させた。メンブラ
ンフィルタ(東洋メンブランフィルタ、TM−2タイプ
、ニトロセルロース、孔径0.45μ+11.径25+
am)の上に上述の培養細胞の懸濁7115 mlをわ
ずかに吸引しながら落した。次に、このメンブランフィ
ルタを炭素電極表面に接触させることにより7・ルア上
に保持された培養細胞もフィルタを介して炭素電極と接
触するようにした。電極システムをリン酸緩衝液中に挿
入し25±2℃でサイクリックポルタモグラムを得た。
Reference 11 using a glass measurement cell with the three electrodes mentioned above.
t) The electrodes are isolated from the main part of the cell by penetrating a glass tube whose tip consists of 7 liters of sintered glass. IE 5eller i-chia co
li was 0.1 after culturing on agar medium for 37°012 hours.
It was suspended in M phosphate buffer (PH7,0). Membrane filter (Toyo membrane filter, TM-2 type, nitrocellulose, pore size 0.45μ+11.diameter 25+
7115 ml of the suspension of the above-mentioned cultured cells was dropped on top of the cell suspension with slight suction. Next, by bringing this membrane filter into contact with the surface of the carbon electrode, the cultured cells held on 7.Lua were also brought into contact with the carbon electrode through the filter. The electrode system was inserted into phosphate buffer and cyclic portamograms were obtained at 25±2°C.

て0.72V(vs、5CE)で陽極波(anodic
 u+ave)が現われた。
anode wave (anodic wave) at 0.72V (vs, 5CE)
u+ave) appeared.

逆の走査の際、それに対応するような減少ピークは見ら
れなかった。
No corresponding decrease peak was observed during the reverse scan.

従って細胞の電極反応は不可逆的なものである。0.1
〜1.9X ] 0 ’eel Is−+n(1−’の
範囲ではピーク電流値は、メンブランフィルタ上の細胞
数に比例しでていた。この結果は、メンブランフィルタ
上のE、coliの細胞数はサイクリックボルタメトリ
のピーク電流値からめられることを示す。検出可能な最
小限度のE、coliの細胞数は5 X 107cel
ls−mN−’(FJ濁液換算)である。
Therefore, the cell's electrode reaction is irreversible. 0.1
~1.9 is determined from the peak current value of cyclic voltammetry.The minimum detectable number of E. coli cells is 5 x 107 cells.
ls-mN-' (in terms of FJ suspension).

実験例3 実験例2と同様の電極システムを用い、Bacillu
s 5ubL山is(グラム陽性)+ Lactoba
cillus fermcntum (グラム陽性)!
5LrepLococcus 5aHuis (グラム
陽性L S Lapbylococcus’ el+1
der+n1dis(グラム陽性)1.Escl+er
icl+ia coli(グラム陰性)ISal+II
onella Lypl+imurium(グラム陰性
)各々を前例と同様のメンブランフィルタ上に6X10
8個保持しそれぞれのサイクリックボルタメトリによる
ピーク電流値の現われる電位を測定した。結果は下記第
1表に示す通りである。
Experimental Example 3 Using the same electrode system as Experimental Example 2, Bacillus
s 5ubL mountain is (gram positive) + Lactoba
cillus fermcntum (gram positive)!
5LrepLococcus 5aHuis (Gram positive L S Lapbylococcus' el+1
der+n1dis (Gram positive)1. Escl+er
icl+ia coli (gram negative) ISal+II
onella Lypl + imurium (Gram negative) each onto the same membrane filter as in the previous example at 6X10.
Eight pieces were held and the potential at which the peak current value appeared was measured by cyclic voltammetry. The results are shown in Table 1 below.

第1表 ピーク電位(V vs 5CE) 旦、 5ubLilis+ L、 fermentum
、 5treptococcus 5aBuis+j国
吐1匹o笠[eμ1der1nidisの様なグラム陽
性菌の原形質膜は、ペプチドグリカン及びティコイル酸
より成る細胞壁(代表的なもので、厚さ250人)に囲
まれている。E、 coli及びS 、 typl+i
+nuriumの様なグラム陰性菌の細胞壁及び細胞膜
の構造はより複雑であり原形質膜は厚さ30Aのペプチ
ドグリカンの壁に取り囲まれ、その壁は、タンパク質、
脂質。
Table 1 Peak potential (V vs 5CE) 5ubLilis+L, fermentum
The plasma membrane of Gram-positive bacteria, such as Treptococcus nidis, is surrounded by a cell wall (typically 250 cells thick) composed of peptidoglycan and ticoyl acid. E. coli and S. typl+i
The structure of the cell wall and cell membrane of Gram-negative bacteria such as B. nurium is more complex, and the plasma membrane is surrounded by a 30A thick peptidoglycan wall, which is made up of proteins,
lipids.

及びリポポリサッカライドのモザイクである80Aの更
に外側のIIIに覆われている。上記の結果はサイクリ
ックボルタメトリのピーク電位値には細胞壁の構造が影
響することを示している。
and is covered by the outer part III of 80A, which is a mosaic of lipopolysaccharide. The above results indicate that the structure of the cell wall influences the peak potential value of cyclic voltammetry.

グラム陰性菌のピーク電流はグラム陽性菌の夫よりもプ
ラス(1111の電位に於いて現われtこ。
The peak current of Gram-negative bacteria appears at a potential of 1111 more positive than that of Gram-positive bacteria.

実験例4 」達四1±jus st市Li1is IFO3009
をNutrient BroLh(牛肉エキス1%、ペ
プトン1%)中で培養し、対数期に集菌し0.1M’j
ン酸緩衝液(PH7,0)で洗浄後、同緩衝液に懸濁し
細胞懸濁液(1、2X 109cells cIo−3
)を調製した。
Experimental example 4 ``Li1is IFO3009, Takashi 1±jus st city
was cultured in Nutrient BroLh (beef extract 1%, peptone 1%), harvested at logarithmic phase, and cultured at 0.1 M'j.
After washing with acid buffer (PH7, 0), suspend in the same buffer to obtain a cell suspension (1, 2X 109 cells cIo-3
) was prepared.

同様にして5acal+aro+IIyccs cer
evisiae (YRD培地:酵母エキス1%、ポリ
ペプシン2%、 グルコース2%)、LacLol+a
cillus fermeutum IFO3071(
NutrienLBrotl+)、Leuconost
oc +nescinteroidyq I F 03
 8 3 2(Toloato Juice BroL
l+ : )リプトン1%、酵1■エキス1%、トマト
ジュース20%)及びP、scl+ericl+ia 
coli(Nutrient Brotb)を夫々培養
し、対数期に集菌し前記緩衝液に懸濁して生菌数濃度1
.03X109.5’、 OX 1. (+8.1.3
X109及び1 、 OX 11) ” cells 
can−3の各懸濁液を調製した。
Similarly, 5acal+aro+IIyccs cer
evisiae (YRD medium: yeast extract 1%, polypepsin 2%, glucose 2%), LacLol+a
cillus fermeutum IFO3071(
NutrienLBrotl+), Leuconost
oc +nesinteroidyq I F 03
8 3 2 (Toloato Juice BroL
l+: ) Lipton 1%, yeast 1 extract 1%, tomato juice 20%) and P, scl+ericl+ia
E. coli (Nutrient Brotb) was cultured, collected in the logarithmic phase, and suspended in the buffer solution until the viable cell number concentration was 1.
.. 03X109.5', OX 1. (+8.1.3
X109 and 1, OX11)” cells
Each suspension of can-3 was prepared.

次にこれら細胞各懸濁液を前例と同様のメンブランフィ
ルタ上に各5nd!わずかに吸引しながら落とし、その
表面にこのメンブランフィルタを取りつけた作用電極B
 P Cぺ対向電極白金線及び参照電極5SCEを用い
て、走査電位0〜1 、 Ov(vs、S S CE 
)、サンプリング・タイム2 (l ms、変調電圧5
0mV及び100+nV、電位単掃引0.5mV/s、
測定温度25°Cの条件下、ディファレンシャル・パル
スボルタメトリを実施した。
Next, each of these cell suspensions was placed on the same membrane filter as in the previous example. Working electrode B was dropped with slight suction, and this membrane filter was attached to the surface of the working electrode B.
Scanning potential 0 to 1, Ov (vs, S S CE
), sampling time 2 (l ms, modulation voltage 5
0mV and 100+nV, potential single sweep 0.5mV/s,
Differential pulse voltammetry was performed at a measurement temperature of 25°C.

尚、装置は扶桑製作所製“ポーラログラフ312型゛を
使用した。第7図はB、 5ubtilisのボルタモ
ダラム図であり、0 、68 ’J (vs、 S”S
 CE)に極めて明瞭なピーク電位が認められる(図中
、符号(a)及び(1,)は変調電圧1(月1mv、5
0mvに夫々対応する)。
The device used was "Polarograph Model 312" manufactured by Fuso Seisakusho. Figure 7 shows the voltamodalum diagram of B.
CE) has a very clear peak potential (in the figure, symbols (a) and (1,) indicate the modulation voltage 1 (1 mv per month, 5
0 mv).

各細菌のピーク電位値を下記第2表に要約して示す。The peak potential values of each bacteria are summarized in Table 2 below.

同表からも明らかなように、本発明方法に依れば細菌相
互の識別が極めて明瞭且つ容易になされ得るもの)あり
、特にグラム陽性菌でるあE、 coliとその余の各
グラム陽性菌とが明瞭に区別され1!J−ることは注1
」に値するものである。
As is clear from the table, the method of the present invention allows bacteria to be distinguished from each other very clearly and easily. are clearly distinguished 1! J-Kotoha Note 1
” is worthy of this.

第2表 B、 5ubLilis o、68 S、 ccrevisiae O,74Lace、fe
rme+山on 0.75Lcuco、 +nescn
Leroides O,80以−凹環−0,85 牌I!昏 1、微生物 S、 cerevisiaeは、グルコース4g+ポリ
ペプトンIgyKH2PO4(1,5g及1/Mg5O
,+ 78200.2gを含む100社)培地(F’ 
H7,0)L:好気的1.:、30”012時間、Sa
l+l1onella Lyl+I山ouriu+o 
T A 100は、1gのポリペプトン及び肉エキスを
含む100+aNの培地で好気的に30 ’C15時間
、Escberichia coli K 12は、 
グルコース0.1To バクトートリプトンIg+ 酵
母エキスo、s、。
Table 2 B, 5ubLilis o, 68 S, ccrevisiae O, 74Lace, fe
rme+mountain 0.75Lcuco, +nescn
Leroides O, 80+-Concave ring-0,85 Tile I! 1, microorganism S, cerevisiae, glucose 4g + polypeptone IgyKH2PO4 (1,5g and 1/Mg5O
,+78200.2g) medium (F'
H7,0) L: Aerobic 1. :, 30”012 hours, Sa
l+l1onella Lyl+Iyamaouriu+o
T A 100 was grown aerobically for 30'C in a 100+aN medium containing 1 g of polypeptone and meat extract, Escberichia coli K 12 was
Glucose 0.1 To Bacto Tryptone Ig+ Yeast Extract o, s.

及びNacl 5gを含tr 100 mN+7)培地
(PH7,IJ)テ12時間30℃、好気的にLact
obacillus fermenLuu+ ATCC
9338は、トリプチケース18.トリゾ)・−スl)
、3g。
Lactate culture medium (PH7, IJ) containing 5 g of NaCl and Lactate was incubated aerobically at 30°C for 12 hours.
obacillus fermenLuu+ ATCC
9338 is triptych case 18. trizo)・-su l)
, 3g.

酸mエキス0.5gr KH2PO4O,3B+ K2
1−IPO40,3g+ (Nl−L)21−1−ci
LraLe (1,2g+ グルコース2g+ツイーン
80 0.1g、システィン−ハイドロクロラド0.0
2g、及[70,5a+N)溶液(M2SO4・711
2o。
Acid m extract 0.5gr KH2PO4O,3B+ K2
1-IPO40,3g+ (Nl-L)21-1-ci
LraLe (1,2g + glucose 2g + Tween 80 0.1g, cysteine-hydrochloride 0.0
2g, and [70,5a+N) solution (M2SO4・711
2o.

11.5%、FeSO4・7.H2O0,68%、Mn
SO4・2H202,4%含有)を含む10 (l I
olの培地(PII6.8)で嫌気的に37℃ 16時
間+ Bacillus st市Li115M1112
は、K2HPO411,4g+ KH2po410.6
g(NH<)2sO+ 0.2g+ Na:+ ciL
raLe l−1,16+ カサ゛ミ7酸0.5g+ 
グルコース0.5g及びMH8O4・7 H2Oを含む
100−の培地(P H7、0)テ好気的に30℃ 1
5時間。
11.5%, FeSO4・7. H2O0.68%, Mn
10 (l I
Anaerobically at 37°C for 16 hours in medium (PII6.8) + Bacillus st city Li115M1112
is K2HPO411.4g + KH2po410.6
g(NH<)2sO+ 0.2g+ Na:+ ciL
raLe l-1,16+ Kasami 7 acid 0.5g+
100-degree medium (PH7,0) containing 0.5 g of glucose and MH8O4.7H2O at 30°C aerobically.
5 hours.

各々培養した。Each was cultured.

2.4.4’−ビピリジン修飾電極 4.4’−ビビリ7ン1.56gを100 tn(!(
7) l夕7−ル溶液に溶がし、溶液の濃度を100m
Mとした。0.3μmnのアルミナ水懸濁液を浸み込ま
せたつや出し布であらかしめ磨いておいたBPG電極(
0,1’7cm2)を上記の溶液に浸し、1分間ゆっく
りと揺り動かした。
2.4.4'-bipyridine modified electrode 4.1.56 g of 4'-bipyridine was added to 100 tn (!(
7) Dissolve in a solution of 100ml and adjust the concentration of the solution to 100ml.
It was set as M. A BPG electrode (
0.1'7 cm2) was immersed in the above solution and gently rocked for 1 minute.

上記の様にしてB P G電極を操作前に毎回層外、そ
の都度4.4゛−ビピリジンによる修飾も行なった。
As described above, the BPG electrode was also modified with 4.4'-bipyridine extralayer before each operation.

3、測定方法 ポテンシオスタット(Hokuto電工、 モデルHA
301)。
3.Measurement method Potentiostat (Hokuto Electric Works, Model HA
301).

走査電源(Hokuto電工、 モデル1−IB104
)、及びXY記録it(理研電子、、F35)を用い、
4,4゛−ビピリジン修飾炭素電極に関し、サイクリッ
クボルタメトリを実施した。サイクリックボルタメトリ
のセルは容積25mN程度のガラス製セルであり、改造
された侶電極システムを有する。
Scanning power supply (Hokuto Electric Works, Model 1-IB104
), and using XY Record it (RIKEN DENSHI, F35),
Cyclic voltammetry was performed on the 4,4'-bipyridine modified carbon electrode. The cyclic voltammetry cell is a glass cell with a volume of approximately 25 mN and has a modified double electrode system.

対向電極は白金線であり、参照電極は、飽和甘木電極で
ある。参照電極は先端が焼結ガラスの7リツトより成る
ガラスチューブに浸すことによってセルの主要部から隔
離されている。メンブランフィルタ(東洋メンブランフ
ィルタ、タイプT M −2、ニトロセルロース、孔径
0.45μ「0径25+11111)上に測定対象であ
る各種細胞を1.lX109個保持し、このメンブラン
フィルタを前記4,4゛−ビピリジン修飾炭素電極に装
置した。
The counter electrode is a platinum wire and the reference electrode is a saturated Amagi electrode. The reference electrode is isolated from the main part of the cell by immersing the tip in a glass tube consisting of 7 liters of sintered glass. 1.1 x 109 cells of each type to be measured were held on a membrane filter (Toyo Membrane Filter, type TM-2, nitrocellulose, pore size 0.45μ "0 diameter 25 + 11111), and this membrane filter was - deviceed on a bipyridine-modified carbon electrode.

ポーラログラフ(扶桑製作所、 モデル312)及びX
Y記録計を用い、サイクリックポルタモグラムと同様の
条件で微分パルスポーラログラムを1iJな。
Polarograph (Fuso Seisakusho, Model 312) and X
Using a Y recorder, record a differential pulse polarogram at 1 iJ under the same conditions as the cyclic portamogram.

第6図はPH7,0に於けるSacclIaromyc
es cerevisiacに関するサイクリックポル
タモグラム及び微分パルスポルタモグラムを示す。図中
(A)はサイクリックポルタモグラム、(B)は微分パ
ルスポルタモグラムを示し、(、)は4゜4゛−ビピリ
ジン修飾電極に関し、(1〕)は4 、4 ’−ビビリ
ノンで修飾をしていない電極に関するものである。測定
は、標準的な条件で行なった。サイクリックポルタモグ
ラムは走査速度1(JmV/sに於いて得られ、微分パ
ルスポルタモグラムは、走査速度10mV/s、波高1
110 IIIV 、及びパルス幅20+nsに於いて
得られた。
Figure 6 shows SacclIaromyc at pH 7.0.
3 shows cyclic and differential pulse portamograms for E. cerevisiac. In the figure, (A) shows a cyclic portamogram, (B) shows a differential pulse portammogram, (,) is related to the 4゜4゛-bipyridine-modified electrode, and (1]) is 4,4'-bipyridine. This relates to an unmodified electrode. Measurements were performed under standard conditions. Cyclic portamograms were obtained at a scanning rate of 1 (JmV/s), and differential pulse portamograms were obtained at a scanning rate of 10 mV/s and a wave height of 1
110 IIIV and a pulse width of 20+ns.

プラス方向への最初の走査に際し、修飾電極、非修飾電
極共0.74V vs SCEに於いて陽極波(ano
dic u+avc)が観察された。サイクリックポル
タモグラムのピーク電位値と微分パルスボルタモグラム
リ夫は一致している。4゜4゛−ビピリジン修飾電極よ
り得られたピーク電流値は、非修飾電極より得られたピ
ーク電流値よりも高かった。細胞が不在の場合、ピーク
電流は生成しなかった。
During the first scan in the positive direction, an anode wave (ano wave) was applied at 0.74 V vs.
dic u+avc) was observed. The peak potential value of the cyclic voltammogram and the differential pulse voltammogram coincide. The peak current values obtained from the 4゜4゛-bipyridine modified electrode were higher than the peak current values obtained from the unmodified electrode. In the absence of cells, no peak current was generated.

前記各種微生物試料についてピーク電位を測定したとこ
ろE、 coli+ (1,72V+ S、 typh
iIIluriu+n、 (1,70V、 B。
When the peak potential was measured for the various microorganism samples, E, coli+ (1,72V+ S, typh
iIIluriu+n, (1,70V, B.

5ul)Lilis+ 0.68V、 L、fertn
enLutn、 0.68V vsSCEであった。
5ul) Lilis+ 0.68V, L, fertn
enLutn, 0.68V vs SCE.

実験例6 (方 法) B、5ubtilis Ml 112 Arg−15,
leu B8thi5 r−to−rec C4は5p
izizen Mediu+n 10 (h(1゜B、
 5ubti、lis Ml 112(PTLI 2)
は1μg/mnのTmp(trimeLI+opri+
n)を含んだ5pizizen Med:utnl O
0tnflに植菌し、37°C112時間好気的に培養
した。集菌後、0.1hi +Jン酸緩衝液(PH7,
0)に懸濁させ、菌体をBPG電極表面にメンブランフ
ィルタを用いて装着した。測定には20+nRH型セル
を用い、作用極にはBPG(0,17c+02)、対極
には白金線、参照電極には飽和井水カロメロ電極を用い
サイクリックボルタメトリにより電気化学的挙動を測定
し、電流−電位曲線をめた。電位走査速度は10+oV
・5eQ=に設定し、測定は25℃で行なった。
Experimental Example 6 (Method) B, 5ubtilis Ml 112 Arg-15,
leu B8thi5 r-to-rec C4 is 5p
izizen Mediu+n 10 (h(1°B,
5ubti, lis Ml 112 (PTLI 2)
is 1 μg/mn of Tmp (trimeLI+opri+
5pizizen Med: utnl O containing n)
The cells were inoculated into 0 tnfl and cultured aerobically at 37°C for 112 hours. After collecting bacteria, add 0.1hi + J acid buffer (PH7,
0), and the bacterial cells were attached to the surface of the BPG electrode using a membrane filter. A 20+nRH type cell was used for the measurement, BPG (0,17c+02) was used as the working electrode, a platinum wire was used as the counter electrode, and a saturated well water Calomero electrode was used as the reference electrode, and the electrochemical behavior was measured by cyclic voltammetry. A current-potential curve was drawn. Potential scanning speed is 10+oV
- The measurement was performed at 25° C. with a setting of 5eQ=.

(結 果) B、 5ubtilis Ml 112(Arg−15
+ leu’B8 thi5 r′−III−rec 
C4B、sul+Li1is NN 112(Pl−L
l 2)の電流−電位曲線をめた結果、下記第3表のよ
うに各細胞において特異的な電位にピーク電流が得られ
た。
(Results) B, 5ubtilis Ml 112 (Arg-15
+ leu'B8 thi5 r'-III-rec
C4B, sul+Li1is NN 112 (Pl-L
As a result of calculating the current-potential curve of 12), a peak current was obtained at a specific potential in each cell as shown in Table 3 below.

ピーク電位(\’ vs SCE) plasmids−f) 、 62 typhi+nuriu+n、 Proteus vu
lgarisをRogosa寒天培地で37°C116
時間、好気的に静置培養した。各々のコロニーをかき取
り、0,1Mリン酸緩衝液(PH7,0)に懸濁させ、
これをメンブランフィルタ上に滴下し、細菌をフィルタ
上にのせた。そして、これをB、P、G電極(Basa
l plane pyroliLicgraph i 
te)に直接っけ作用極とし、月極には白金線、そして
、参照電極には飽和甘木電極(S、C,E、)を用い、
0.1MIJン酸緩衝液(PH7,0)10Iolのは
いったH型セルを使ってサイクリックボルタメトリによ
り電気化学的挙動を測定し、i−5曲線をめた。
Peak potential (\' vs SCE) plasmids-f), 62 typhi+nuriu+n, Proteus vu
lgaris on Rogosa agar at 37°C.
The cells were incubated statically in an aerobic manner for an hour. Scrape each colony and suspend it in 0.1M phosphate buffer (PH7.0),
This was dropped onto a membrane filter, and bacteria were placed on the filter. Then, connect this to the B, P, and G electrodes (Basa
l plane pyroliLicgraph i
te) as the working electrode, a platinum wire as the lunar pole, and a saturated Amagi electrode (S, C, E,) as the reference electrode.
Electrochemical behavior was measured by cyclic voltammetry using an H-type cell containing 10 Iol of 0.1 MIJ acid buffer (PH7,0), and an i-5 curve was determined.

各試料−二ついてのビ、−り電位の測定結果を下記第4
表に示す。
The measurement results of the two potentials of each sample are shown in the fourth section below.
Shown in the table.

m4表 12時間好気的に培養したS 、cerevisiae
を集菌後、0.1M リン酸緩衝溶液(PH7,0)に
懸濁させ、菌体な単層でメンブランフィルタ上に固定化
した後、この菌体をBPG電極(作用極)上に装着した
。2SmffH型セルに0.1Mリン酸緩衝t(P)1
7.0)を入れ、対極には白金線、そして、参照電極に
は飽和甘木電極(S、C6E、)を用い、サイクリック
ボルタメトリによる電位走査を行なったところ、0 、
74 V vs、’S、C,E、付近に特異的な電流の
ピークが゛得られた。そこて゛細胞表面についている電
極活物質(CoA)を反応させるため0〜I V vs
 S、C,E、で電位走査を繰り返したところ、1回の
サイクリックで約40%、2回で960%、3〜10回
で約70%呼吸活性が阻害された。次に走査電位を種々
に変えサイクリックを3回ずつ行なったところ、0〜0
 、7 V又は0.8vまで電位走査したとき著しく呼
吸活性が阻害され、約40%まで活性が低下した。以上
の結果よりサイクリックボルタメトリのピーク電位(0
,74V vs s、C,E、M;を近で呼吸活性が阻
害されることが示唆された。そこでこの電位で定電位電
解を行ない電解時間と呼吸活性の阻害の関係を調べたと
ころ、時間とともに活性が阻害され、1o分で75%ま
で活性が減少した。そこで様々な電位で10分間定電位
電解を行ない、電位と活性阻害の関係を調べたところ、
()、7〜0,75V vs S、C,E、で最も効率
よく呼吸活性が阻害された。このとぎの電極表面のPH
を測定したところ、はぼ中性であり。このことがらこの
呼吸活性の阻害が電極表面のPHの変化によるものでは
ないことがわかった。また、電極表面を透析膜で覆った
り、細胞をプロトプラスF化して細胞表面に電極活性物
質かついていない状態にした場合、呼吸活性の阻害はほ
とんどみられなかった。これらのことがらこの呼吸活性
の阻害は細胞の表面についている電極活物質が電極表面
へ泳動することによってのみ起こるのではなく、電極活
物質か電極で反応することにより呼吸活性に影響を与え
ていることか明らかになった。また、Bacillus
 sul〕tilis(グラム陽性菌)、EsC1+e
ricl+ia coli(グラム陰性菌)を同様の方
法で定電位電解させたところ、それぞれのサイクリンク
ボルタメトリのピーク電位付近で最も効率よく呼吸活性
が阻害された。したがって特定の電位において特定の4
:I胞種のみ選択的に制御することもまた、可能である
m4 Table S. cerevisiae cultured aerobically for 12 hours
After collecting the bacteria, suspend them in 0.1M phosphate buffer solution (PH7,0), immobilize them on a membrane filter in a single layer of bacteria, and then attach the bacteria on the BPG electrode (working electrode). did. 2SmffH type cell with 0.1M phosphate buffer t(P)1
7.0), a platinum wire was used as the counter electrode, and a saturated Amagi electrode (S, C6E,) was used as the reference electrode, and potential scanning was performed by cyclic voltammetry.
Specific current peaks were obtained near 74 V vs.'S, C, and E. Therefore, in order to react with the electrode active material (CoA) attached to the cell surface, 0 to IV vs.
When potential scanning was repeated at S, C, and E, respiratory activity was inhibited by about 40% with one cyclic cycle, 960% with two cycles, and about 70% with 3 to 10 cycles. Next, when we changed the scanning potential variously and performed cyclic cycles three times each, the results ranged from 0 to 0.
, 7 V or 0.8 V, the respiratory activity was significantly inhibited, and the activity decreased to about 40%. From the above results, the peak potential of cyclic voltammetry (0
, 74V vs. s, C, E, M; was suggested to inhibit respiratory activity. Therefore, when constant potential electrolysis was performed at this potential and the relationship between electrolysis time and inhibition of respiratory activity was investigated, the activity was inhibited with time, and the activity decreased to 75% in 1 minute. Therefore, we performed constant potential electrolysis for 10 minutes at various potentials and investigated the relationship between potential and activity inhibition.
( ), 7-0.75V vs. S, C, E, the respiratory activity was most efficiently inhibited. PH of this temporary electrode surface
When measured, it was found to be neutral. This indicates that this inhibition of respiratory activity is not due to a change in PH on the electrode surface. Further, when the electrode surface was covered with a dialysis membrane or the cells were converted to protoplast F so that no electrode active substance was attached to the cell surface, almost no inhibition of respiratory activity was observed. These facts indicate that inhibition of respiratory activity does not occur only when the electrode active material attached to the surface of the cell migrates to the electrode surface, but also because the electrode active material reacts with the electrode, which affects respiratory activity. It became clear. Also, Bacillus
sul]tilis (Gram-positive bacterium), EsC1+e
When ricl+ia coli (Gram-negative bacteria) was subjected to constant potential electrolysis in a similar manner, respiratory activity was most efficiently inhibited near the peak potential of each cyclink voltammetry. Therefore, at a specific potential, a specific 4
It is also possible to selectively control only :I cell types.

実験例9 Bacillus 5ubtilis IFO3009
,Saccbaromycescerevisiae+
 Lactobacillus fer+oentu+
n I F○ 3071Leuconostoc ++
+esenteroides I F○ 3832. 
及びEscbericl+ia col i を夫々前
記実験例3と同様の条件で培養し、対数期に集菌し、生
菌数1.3X109cells/フイルタの各試料を調
製した。
Experimental Example 9 Bacillus 5ubtilis IFO3009
, Saccbaromyces cerevisiae+
Lactobacillus fer+oentu+
n I F○ 3071Leuconostoc ++
+esenteroides I F○ 3832.
and Escbericl+ia coli were cultured under the same conditions as in Experimental Example 3, and the bacteria were collected in the logarithmic phase to prepare each sample with a viable cell count of 1.3×10 9 cells/filter.

次にフィルタ上に保持したこれらの各試料につき、前記
実験例5で用いた4、4゛−ビピリジン修飾BPG電極
を使用し実験例4と同様の条件下、ディファレンシャル
・パルスボルタメトリを実施した。
Next, differential pulse voltammetry was performed on each of these samples held on the filter under the same conditions as in Experimental Example 4 using the 4,4'-bipyridine-modified BPG electrode used in Experimental Example 5 above.

各試料のピーク電位値を第5表に要約して示す。The peak potential values of each sample are summarized in Table 5.

同表からも明らかなように、本発明方法に依れば411
菌相互の識別か極めて明瞭且つ容易になされ得るもので
・ある。
As is clear from the same table, according to the method of the present invention, 411
Bacteria can be distinguished from each other very clearly and easily.

第5表 B、 5ubtilis (1,68 S、 cerevisiae O,74Lact、 f
ermenLum O,75Leuco、 +nese
nteroides 0.8 (IE、coli 0.
85
Table 5B, 5ubtilis (1,68 S, cerevisiae O,74Lact, f
ermenLum O,75Leuco, +nese
nteroides 0.8 (IE, coli 0.
85

【図面の簡単な説明】[Brief explanation of drawings]

添イ」第1乃至3図は本発明実施例で使用の装置の模式
説明図、第4乃至7図は、同実験説明図である。 4・・・電解セル、 5・・・ポテンシオスタット、6
・・・リニア・スィーブ電源、 7・・・XY記録計乃
至シンクロスコープ、 11・・・作用電極、 12・
・・対極、14・・・セル、 15・・・パルスシーケ
ンサ、17・・・ボテンシオスタノ)、112・・・デ
ィ77レンスアンプリフイア及び113・・・レコーダ
。 特許出願人 松 永 是 第1図 第2図 5 第3図 第4図 ^) 第5図 0 0.5 1.0 (y vs SCE) 第6図 0 0.5 1.0 (V vs Se5) 第7図 (V VS 5SCE )
Figures 1 to 3 are schematic explanatory diagrams of the apparatus used in the examples of the present invention, and Figures 4 to 7 are explanatory diagrams of the same experiment. 4... Electrolytic cell, 5... Potentiostat, 6
...Linear sweep power supply, 7.XY recorder or synchroscope, 11.Working electrode, 12.
. . . Counter electrode, 14 . Patent applicant: Matsunaga Figure 1 Figure 2 5 Figure 3 Figure 4 ^) Figure 5 0 0.5 1.0 (y vs SCE) Figure 6 0 0.5 1.0 (V vs Se5 ) Figure 7 (V VS 5SCE)

Claims (2)

【特許請求の範囲】[Claims] (1)支持体」二に集積された細胞乃至細胞壁片を作用
電極に当接し、走査電位を印加して生起する電流値を測
定することを特徴とする細胞の電気化学的識別方法。
(1) A method for electrochemical identification of cells, which comprises bringing cells or cell wall fragments accumulated on a support into contact with a working electrode, applying a scanning potential, and measuring the generated current value.
(2)細胞にそのピーク電位を基準とした所定電位を印
加することを特徴とする細胞活性の電気化学的制御方法
(2) A method for electrochemical control of cell activity, which comprises applying a predetermined potential to the cell based on its peak potential.
JP58221388A 1983-11-26 1983-11-26 Electrochemical identification of cells Expired - Lifetime JPH0634005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58221388A JPH0634005B2 (en) 1983-11-26 1983-11-26 Electrochemical identification of cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58221388A JPH0634005B2 (en) 1983-11-26 1983-11-26 Electrochemical identification of cells

Publications (2)

Publication Number Publication Date
JPS60114763A true JPS60114763A (en) 1985-06-21
JPH0634005B2 JPH0634005B2 (en) 1994-05-02

Family

ID=16765987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58221388A Expired - Lifetime JPH0634005B2 (en) 1983-11-26 1983-11-26 Electrochemical identification of cells

Country Status (1)

Country Link
JP (1) JPH0634005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281330A (en) * 1990-04-20 1994-01-25 Nippondenso Co., Ltd. Water purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102491A (en) * 1975-12-16 1977-08-27 Nasa Method and apparatus for detecting presence of microorganism in liquid sample
JPS5529940A (en) * 1978-08-23 1980-03-03 Kyowa Hakko Kogyo Co Ltd Method and apparatus for determining activity of microorganism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102491A (en) * 1975-12-16 1977-08-27 Nasa Method and apparatus for detecting presence of microorganism in liquid sample
JPS5529940A (en) * 1978-08-23 1980-03-03 Kyowa Hakko Kogyo Co Ltd Method and apparatus for determining activity of microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281330A (en) * 1990-04-20 1994-01-25 Nippondenso Co., Ltd. Water purifier

Also Published As

Publication number Publication date
JPH0634005B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4528270A (en) Electrochemical method for detection and classification of microbial cell
Matsunaga et al. Detection of microbial cells by cyclic voltammetry
Jain et al. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode
Matsunaga et al. Electrode system for the determination of microbial populations
JPS6224078B2 (en)
Yang et al. Electrochemical deposition of Prussian blue from a single ferricyanide solution
Nishikawa et al. Dye-coupled electrode system for the rapid determination of cell populations in polluted water
CN108663357A (en) A kind of atriphos electrogenerated chemiluminescence assay method
Matsunaga et al. Electrochemical classification of gram-negative and gram-positive bacteria
Jiang et al. Amperometric ethanol biosensor based on integration of alcohol dehydrogenase with Meldola's blue/ordered mesoporous carbon electrode
Laurinavicius et al. Amperometric glyceride biosensor
Tatsuma et al. Bifunctional Langmuir-Blodgett film for enzyme immobilization and amperometric biosensor sensitization
Blaedel et al. Characteristics of a rotated porous flow-through electrode
JPS60114763A (en) Electrochemical discriminating and control method of cell
JPH0691821B2 (en) Cell electrochemical control method
MIZUTANI et al. Ferrocene-Attached Bovine Serum Albumin as a Mediatior between Glucose Oxidase and an Electrode
Wu et al. Catalysis of oxygen reduction reaction by an iron-reducing bacterium isolated from marine corrosion product layers
JP3399580B2 (en) Microbial electrochemical control method and electron mediator used therefor
Chen et al. Electropreparation of Poly (benzophenone‐4) Film Modified Electrode and Its Electrocatalytic Behavior Towards Dopamine, Ascorbic Acid and Nitrite
Zhao et al. Electrocatalytic behavior and amperometric detection of morphine on ITO electrode modified with directly electrodeposited gold nanoparticles
Ikeda et al. Electrochemical monitoring of in vivo reconstitution of glucose dehydrogenase in Escherichia coli cells with externally added pyrroloquinoline quinone
CN113484388B (en) Method for screening helicobacter pylori urease inhibitor
JPH045440B2 (en)
JP4448223B2 (en) Bacteria detection method and detection apparatus
Eissazadeh et al. Measurement of some amino acid using biosensors based on silicon-based carbon nanotubes