JPS60109729A - Charger - Google Patents
ChargerInfo
- Publication number
- JPS60109729A JPS60109729A JP21531383A JP21531383A JPS60109729A JP S60109729 A JPS60109729 A JP S60109729A JP 21531383 A JP21531383 A JP 21531383A JP 21531383 A JP21531383 A JP 21531383A JP S60109729 A JPS60109729 A JP S60109729A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- heat sink
- heat
- charger
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims description 9
- 230000017525 heat dissipation Effects 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009499 grossing Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 244000309466 calf Species 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 〔技術分野〕 本発明は、充電器に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a charger.
一般に蓄電池は低温で充放電を行なうと、その充電効率
は極度に低下する。これは硫酸等の電解液が低温になる
と粘度が上ること、拡散スヒードが遅くなることにより
、極板付近の電解液濃度が薄くなってしまうことに起因
するものであって、低温時には蓄電池がその機能を十分
に発揮できないために、例えば充電式丸鋸では切げ[初
期の晶負荷により丸鋸が停止したシ、切断枚数が少なく
なったりすることがよくある。Generally, when a storage battery is charged and discharged at low temperatures, its charging efficiency is extremely reduced. This is because the viscosity of electrolyte solutions such as sulfuric acid increases when the temperature drops, and the diffusion rate slows down, resulting in the electrolyte concentration near the electrode plates becoming thinner. For example, cordless circular saws often stop working due to the initial crystal load, and the number of pieces cut decreases.
従来、低温時に蓄電池を加熱保温する方法として、蓄電
池近傍にヒータを配置する方法がある。Conventionally, as a method of heating and keeping a storage battery warm at low temperatures, there is a method of arranging a heater near the storage battery.
例えば、実公昭46−55317号公報のものにあって
は、発熱抵抗体を別に設けているため、損失が大きく充
電時の消費電力が高くなり効率が悪いという問題がめる
。また、特公昭、52−7528号公報のものにあって
も、出力端子をヒータ替りにしており、充電時にし一夕
で消費される電力が大きく効率が悪いという問題がめっ
た。For example, in the device disclosed in Japanese Utility Model Publication No. 46-55317, since a heating resistor is provided separately, there is a problem that the loss is large and the power consumption during charging is high, resulting in poor efficiency. Further, even in the device disclosed in Japanese Patent Publication No. 52-7528, the output terminal is used in place of a heater, which often causes the problem that a large amount of power is consumed overnight during charging, resulting in poor efficiency.
また、放熱板の延出方向に複数個の磁性うロツクをjl
12設した蓄4池を充電する充電器にあっては、発熱部
品から離れた電池ブロックは熱の伝達量が少なく電池温
度が上昇せず過充電となる。一方発熱部品に近い電池プ
ロツ、りは熱の伝達量が多く電池温度が上昇し、充電不
足になるというように電池間に充!!址に差が生じ、電
池の性能を充分に発揮出来ないばかシでなく、寿命劣化
しやすいという欠点がある。In addition, a plurality of magnetic locks are placed in the extending direction of the heat sink.
In the case of a charger that charges 12 storage batteries, the amount of heat transferred to the battery block located away from the heat-generating components is small, and the battery temperature does not rise, resulting in overcharging. On the other hand, batteries that are close to heat-generating parts transfer a lot of heat, causing the battery temperature to rise and becoming insufficiently charged. ! There is a difference in battery life, which means that the battery's performance cannot be fully demonstrated, and it has the disadvantage that its life tends to deteriorate.
本発明は上述の点に鑑みて提供したものであって、電池
をあたためることにより充電効率を高めて低温時の充電
容量を多くするとともに、該電池を構成する電池フロッ
クに均一に熱が伝達するようにし、電池劣化を防止した
充電器を提供することを目的とするものでおる。The present invention has been provided in view of the above-mentioned points, and by heating the battery, charging efficiency is increased and the charging capacity at low temperatures is increased, and heat is uniformly transferred to the battery flock that constitutes the battery. The purpose of this invention is to provide a charger that prevents battery deterioration.
以下、本発明の実施例を図面により詳述する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第1図は具体回路図を示し、第5図は充電器本体Aの外
観図を示すものである。第1図において、(2)は被充
電用の電池であシ、この電池+210i充市制御回路+
IIKより充電制御でれる。(3)はり流電源′IX圧
を必要電圧まで降圧するトランスで、このトランス(3
)の2次出力はタイオー1DID2% コンヂシサC1
等で構成される整流平滑回路(5)により、全波整流さ
れて平滑される。(6)は電池(2)の電圧を検出する
電圧検出回路で、抵抗R1〜1り、で構成σれている。FIG. 1 shows a specific circuit diagram, and FIG. 5 shows an external view of the charger main body A. In Figure 1, (2) is a battery to be charged, and this battery + 210i charging control circuit +
Charging can be controlled from IIK. (3) A transformer that steps down the current power supply 'IX voltage to the required voltage.
) secondary output is 1DID2% conduit switch C1
The rectifying and smoothing circuit (5), which includes the following components, performs full-wave rectification and smoothing. (6) is a voltage detection circuit for detecting the voltage of the battery (2), and is composed of resistors R1 to R1.
(6a)は電圧検出回路(6)の出力端子である。整流
平滑回路(5)のプラス、マイナス間には、rは池(2
)、タイオードD4および発熱素子たるトラ:7ジスタ
ーrrの直列回路を接続して主回路を構成している。電
池(2)の正極側に電圧検出口# (61を接続し、さ
らに電圧検出回路(6)の出力端子(θa)は、電池(
2)を充電制御するべく I Cfi+の端子■に接続
している。また、ICt8)の端子■には基準電圧発生
用のツェナータイオードD、が接続され、端子■には、
タイマー回路の定数設定用コンデンサC2、サーミスタ
R4、抵抗R5R6が夫々接続され、上記各部品の他端
は整流平滑回路(6)のマイナス側に接続されている。(6a) is an output terminal of the voltage detection circuit (6). Between the positive and negative sides of the rectifying and smoothing circuit (5), r is a pond (2
), a diode D4, and a series circuit of 7 diodes rr serving as a heating element are connected to form the main circuit. Voltage detection port # (61) is connected to the positive electrode side of the battery (2), and the output terminal (θa) of the voltage detection circuit (6) is connected to the battery (
2) is connected to terminal ■ of I Cfi+ to control charging. In addition, a Zener diode D for generating a reference voltage is connected to the terminal (■) of ICt8), and the terminal (■) is connected to the
A constant setting capacitor C2, a thermistor R4, and a resistor R5R6 of the timer circuit are connected, respectively, and the other end of each of the above components is connected to the negative side of the rectifying and smoothing circuit (6).
IC+81の出力端子■は抵抗R8を介して前記トラン
ジスタTrのベースに接続されている。また、トランジ
スタ′rrのコレクタ・エミッタ間には抵抗R7が接続
しである。(8)は充電表示ランプである。The output terminal (2) of IC+81 is connected to the base of the transistor Tr via a resistor R8. Further, a resistor R7 is connected between the collector and emitter of the transistor 'rr. (8) is a charging indicator lamp.
第2図は、第1図の機能フロック図を示し、IC(8)
は主に電圧スイッチとV−I変換部等から構成でれてい
る。図中の]ンヂンサタイマはコンデンサC2、サーミ
スタR4、抵抗R,R6から成シ、電流制御部はトラン
ジスタTrと抵抗R7から成るものでるる。電圧スイッ
チは、電圧検出回路の出力電圧とツェナータイオードD
3のツェナー電圧とを比較するものであり、 −−
章ホ遼;ツェナー電圧の方が鳥いと、電圧スイッチによ
りコンデンサC2を充電し、V−I変換部からはコンデ
ンサC2の充電々圧に比例した電流信号が電流制御部の
トラ′J、;スタTrへ出力されるものである。また、
後述するように、電池(2)が充電されて、電圧検出回
路(6)の電圧の方が゛ツェナー電圧より高くなると、
]ンヂンサC2の電荷は放電さit、それに比例してV
−I変換部からの出力電流は減少する。FIG. 2 shows the functional block diagram of FIG.
It mainly consists of a voltage switch, a V-I converter, etc. The output timer shown in the figure consists of a capacitor C2, a thermistor R4, and resistors R and R6, and the current control section consists of a transistor Tr and a resistor R7. The voltage switch connects the output voltage of the voltage detection circuit and the Zener diode D.
If the Zener voltage is better, the capacitor C2 is charged by the voltage switch, and the voltage from the V-I converter is proportional to the charging voltage of the capacitor C2. The current signal thus obtained is output to the transistors Tr'J and Tr of the current control section. Also,
As will be described later, when the battery (2) is charged and the voltage of the voltage detection circuit (6) becomes higher than the Zener voltage,
] The electric charge of the sensor C2 is discharged, and V is proportional to it.
-The output current from the I converter decreases.
一方、充電器本体Aは第0図乃至第6図に71”−Tよ
うに、外殻を構成するハウジンタ(4)にてUrJ記充
電制御回路(1)を収納配設している。ハウジンj(4
)の端部には電池(2)着脱用の切欠(11)と凹所が
形成されている。この凹所を電池収納部(lO)として
l/)る。On the other hand, the charger main body A has a charging control circuit (1) shown in UrJ housed in a housing (4) constituting the outer shell, as shown at 71''-T in FIGS. 0 to 6. j(4
) is formed with a notch (11) and a recess for attaching and detaching the battery (2). This recess is designated as the battery storage area (l/).
へリジン3(4)内にはトランス(3)や充′市制御回
絡mを実装しだづリント基板θ々が配置され、まだ電力
を消費するトランジスタTrは放熱板(7)にf、1じ
等で固定されている。放熱板(7)は電池収納部(10
)に延長され、電池(2)の底面に接触するように対面
して1./)る。すなわち、第4図及び第6図に示すよ
うに放熱板(7)を電池収納部(10)の1氏面に後述
するように近接して配置している。ここで、放熱板(7
)と′rい、(2)との接触はトランジスタTrの近く
では少なく、1−ランジスタTrから遠のくにしだがっ
て増加するようにしている。すなわち、第8図に示すよ
うに放熱板(7)の上面には三角形状の上面開口の凹部
すηが2個並んで削設されており、該凹部aηの底辺が
トランジスタTr側に形成され、先端はトランジスタT
rとは離れた位置となるよ゛うに形成されている。つま
シ、電池(2)の底面と放熱板(7)の上面との接触部
分は、三角形状の四部り乃により、トランジスタTrK
近い程少なくなっている。従って、トランジスタTrか
らの放熱板(7)を介しての電池(2)への伝熱を均一
にしている。上ijL四部(1カが温度制御手段を構成
する。同、03)は充電制御回路+11と電池(2)と
を隔てる隔壁である。放熱板(7)は熱伝導性の良いア
ルミニウム板等で構成されるが、ハウジング(4)の電
池収納部(lO)をアル′E、箔で2色成形し、このア
ルミ箔の一部にトランジスタTrを接続固着してもよい
一0電池(2)を充電器不休AK着脱する場合に、電池
着脱用切欠(1すが設けられているために、電池(2)
の着脱が容易であるとともに、充電器本体Aを逆さKす
ると不安定になるため、放熱板(2)側を底面にして充
電器本体Aを置いて充電するので、電池(2)が放熱板
(7)より上方となって放熱板(7)で電池(2)を確
実に保温できるものである。Inside the helidine 3 (4), lint boards θ are placed where the transformer (3) and the power supply control circuit m are mounted, and the transistors Tr that still consume power are mounted on the heat sink (7). It is fixed at 1st, etc. The heat sink (7) is connected to the battery compartment (10).
) and facing the battery (2) so as to touch the bottom surface of the battery (2). /) Ru. That is, as shown in FIGS. 4 and 6, the heat sink (7) is arranged close to the 1-degree side of the battery storage section (10) as will be described later. Here, heat sink (7
) and (2), the contact with (2) is small near the transistor Tr, and increases as the distance from the transistor Tr increases. That is, as shown in FIG. 8, the upper surface of the heat dissipation plate (7) is cut with two triangular recesses aη having upper surface openings, and the bottom of the recesses aη is formed on the side of the transistor Tr. , the tip is a transistor T
It is formed so as to be located away from r. The contact area between the bottom surface of the battery (2) and the top surface of the heat sink (7) is connected to the transistor TrK by a triangular four-part line.
The closer you get, the less it becomes. Therefore, heat is uniformly transferred from the transistor Tr to the battery (2) via the heat sink (7). The upper ijL four parts (one part constitutes the temperature control means, 03) are partition walls that separate the charging control circuit +11 and the battery (2). The heat dissipation plate (7) is made of an aluminum plate with good thermal conductivity, but the battery compartment (lO) of the housing (4) is molded with two colors of Al'E and foil, and a part of this aluminum foil is made of aluminum. When attaching or detaching the battery (2), which may be fixedly connected to the transistor Tr, when attaching or detaching the battery (2) to the charger, the battery (2)
It is easy to attach and detach the battery, and since it becomes unstable if the charger body A is turned upside down, the battery (2) is placed with the heat sink (2) side on the bottom for charging. The battery (2) can be reliably kept warm by the heat dissipation plate (7) located above (7).
ここで、第3図及び第0図に示すように、充電器本体A
の底面と放熱板(7)の下面との間に、断熱材(ハ)を
介することにより空間Xを設けている。すなわち、放熱
板(7)は断熱材部を介してハウジンク(4)に支持さ
れているので、放熱板(7)の熱がハウジンク(4)に
伝達することなく、トランジスタ′rrで発生する熱の
ほぼ全てが電池(2)の加温に消費きれ、充電効率が高
いものである。まだ、ハウジンj(4)に放熱板(7)
の熱が伝達することがないので、ハウジンク(4)の外
面の温度が異常に高くなるということがなく、匣用者に
不快感を与えることもないものである。Here, as shown in Fig. 3 and Fig. 0, the charger main body A
A space X is provided between the bottom surface of the heat dissipation plate (7) and the lower surface of the heat sink (7) by interposing a heat insulating material (c). In other words, since the heat sink (7) is supported by the housing (4) via the heat insulating material, the heat generated by the transistor 'rr is prevented from being transferred to the housing (4). Almost all of the battery (2) can be consumed for heating the battery (2), resulting in high charging efficiency. The heat sink (7) is still attached to the housing j (4).
Since no heat is transferred, the temperature of the outer surface of the housing (4) does not become abnormally high, and the user does not feel uncomfortable.
次に、動作を説明する。電池(2)の電圧Vが第7図に
示すように、IC(8)の端子■に接続されるツェナー
タイオードD3のツェナー電圧で、投足キれる電圧V1
より、電圧検出回路(6)で検出烙れる電圧Vの方が小
さい時は、I Cf8)の端子■に接続きれたコンデン
サC2は充電され、且つ端子0より電流が出力され、ト
ランジスタTrがオンとなり、電池(2)に光電が開始
される。この充電が進むにつれて電池電圧Vは上昇し、
そして、この電池電圧■が設定電圧71以上に達すると
、IC+81の動作によシコンジン+jC2には充電々
流は流れなくなる。その結果、]ンヂンサC2はサーミ
スタRい抵抗R5R6を通じて放電を開始し、そして、
この放電によりコンデンサC2の電圧は徐々に低下する
。まだ、IC(8)の働きにより、このコンデンサC2
の電圧の低下に応じて、端子■の出力電流およびトラン
ジスタTrのベース電流は漸減することになり、その結
果、トランジスタTrも飽和状〜態から不飽和状態にな
る。そして、コンデンサC2の放電が進み、その電圧が
零になると、IC軸)の端子@の出力電流は零になり、
トランジスタTrはオフとなる。しかしながら、トラン
ジスタTr K 7列に接続した抵抗R7によって決ま
る低市流が流れるため、電池(2)への補充電々流を流
す。なお、第7図に示すように、電池電圧Vが設定電圧
71以上に達した時点t1から充電々流が一足の微少電
流になる時点t2までの時間は、コンデンサC2と、サ
ーミスタR4、抵抗R5R6の時定数により決まるもの
で、これらを任意に2足することKより、その時間を適
宜変えることができる。尚、第7図に示すIは電池(2
)への光電々流を示す。Next, the operation will be explained. As shown in Fig. 7, the voltage V of the battery (2) reaches a voltage V1 at which the voltage V of the battery (2) is cut off by the Zener voltage of the Zener diode D3 connected to the terminal ■ of the IC (8).
Therefore, when the voltage V detected by the voltage detection circuit (6) is smaller, the capacitor C2 connected to the terminal 2 of ICf8) is charged, current is output from the terminal 0, and the transistor Tr is turned on. As a result, photoelectricity starts to be applied to the battery (2). As this charging progresses, the battery voltage V increases,
Then, when this battery voltage (2) reaches the set voltage 71 or higher, the charging current no longer flows to the battery +jC2 due to the operation of the IC+81. As a result, the sensor C2 starts discharging through the thermistor R5R6, and
Due to this discharge, the voltage of capacitor C2 gradually decreases. However, due to the function of IC (8), this capacitor C2
As the voltage decreases, the output current of the terminal (2) and the base current of the transistor Tr gradually decrease, and as a result, the transistor Tr also changes from a saturated state to an unsaturated state. Then, as the discharge of capacitor C2 progresses and its voltage becomes zero, the output current at the terminal @ of the IC axis becomes zero,
Transistor Tr is turned off. However, since a low current determined by the resistor R7 connected to the 7th row of transistors Tr K flows, a supplementary charging current to the battery (2) flows. As shown in FIG. 7, the time from the time t1 when the battery voltage V reaches the set voltage 71 or higher to the time t2 when the charging current becomes a minute current is determined by the capacitor C2, thermistor R4, and resistor R5R6. It is determined by the time constant of K, and by adding two of these values K, the time can be changed as appropriate. In addition, I shown in FIG. 7 is a battery (2
) shows the photocurrent.
ここで、電池(2)への充電時、主回路には充′屯々流
が流れ、トランジスタTrKは損失が発生し、熱として
放出される。充電々流をI、l−ランジスタTのエミッ
タ・]レクタ間の電圧をVCKとすると、損失Pは次式
で示される。Here, when charging the battery (2), a large current flows through the main circuit, and a loss occurs in the transistor TrK, which is emitted as heat. Assuming that the charging current is I and the voltage between the emitter and the collector of l-transistor T is VCK, the loss P is expressed by the following equation.
p=ixvcE(ワット)
従って、トランジスタTrは発熱する。このトランジス
タTrで発生した熱は、放熱板(7)に伝樽し、電池(
2)の底面を放熱板(7)にて加温し、電池温度Cよ高
められ低温時においても確実に充電することができる。p=ixvcE (watts) Therefore, the transistor Tr generates heat. The heat generated by this transistor Tr is transferred to the heat sink (7) and the battery (
2) The bottom surface of the battery is heated by a heat sink (7), and the battery temperature is raised to C, allowing reliable charging even at low temperatures.
ところで、蓄電池(2)は第8、第9及び第10図に示
すよう忙、電池づ0ツク(18)を複数個放熱板(7)
の延出方向に並設して構成きれている。ここで、トラン
ジスタTrの熱は放熱板(7)の延出方向に伝達するの
で、トランジスタTrに近い稈放熱板(7)の表面の温
度は高くなっている。しかし1.放熱板(7)には凹部
θηが構成されているために、トランジスタTrに近い
程放熱板(7)と蓄電池(2)の紙面の接触面積が少な
いので、放熱板(7)から各電池ブロックθ萄に伝達す
る熱量は均一に出来るものである。したがって、電池ブ
ロック(I8)ごとに充電量が異なることはなく、蓄電
池(2)本来の放電性能と寿命を発揮出来る。By the way, as shown in Figs. 8, 9, and 10, the storage battery (2) is busy, with a plurality of batteries (18) connected to the heat sink (7).
They are arranged in parallel in the direction of extension. Here, since the heat of the transistor Tr is transferred in the extending direction of the heat sink (7), the temperature of the surface of the culm heat sink (7) near the transistor Tr is high. But 1. Since the heat sink (7) has a concave portion θη, the closer the transistor Tr is, the smaller the contact area between the heat sink (7) and the storage battery (2), so that each battery block can be removed from the heat sink (7). The amount of heat transferred to the θ calf can be made uniform. Therefore, the amount of charge does not differ for each battery block (I8), and the storage battery (2) can exhibit its original discharge performance and life.
ところで、一般に蓄電池(2)は第9図、第10図及び
第11図に示すように、複数の極板(14)をスペーサ
1J5)を−介して対面させ、同極板H(141間は、
連結部材(16) 116)’によって連結されている
。また、連結部材(181(16)’には極柱lA彌′
が突設され電槽シリの外部へ貫通している。このように
第10図で示すような電池ブロック(181が複数個並
設されて隔壁シフにより隔離されて、第8図に示すよう
な蓄電池(2)が構成されている。各電池づ0ツク(へ
)は電槽(財)の中に5面が密着するような状態で挿入
されている。尚、+23)は電槽伐υの中蓋、閾は上蓋
である。(社)は端子である第12図は他の実施例を示
し、電池(2)と放熱板(7)の対面する面積を発熱素
子たるトランジスタTrから遠ざかるにしたがって増加
芒せるようにしだものである。すなわち、放熱板(7)
の両側よりE角形状の温度制御手段たる折り返し部(2
G)を折曲j構成しだものであり、トラ−)、;スタT
rから遠ざかる程、折り返し部(支))の高さを高くシ
、電池(2)と対向する面積を大きくして電池(2)へ
の伝熱を均一にしている。尚、伐ηはトランジスタTr
を放熱板(7)に固足するだめのねじである。By the way, generally, as shown in FIGS. 9, 10, and 11, the storage battery (2) has a plurality of electrode plates (14) facing each other with spacers 1J5) interposed therebetween, and the same electrode plates H (141) ,
They are connected by a connecting member (16) 116)'. In addition, the connecting member (181 (16)' has a pole column lA'
protrudes and penetrates to the outside of the battery case. In this way, a plurality of battery blocks (181) as shown in FIG. 10 are arranged in parallel and separated by partition walls to form a storage battery (2) as shown in FIG. 8. (F) is inserted into the container (goods) with its five sides in close contact.+23) is the middle lid of the container, and the threshold is the top lid. Fig. 12 shows another embodiment of the terminal, in which the facing area of the battery (2) and the heat sink (7) can be increased as the distance from the transistor Tr, which is the heating element, increases. be. That is, the heat sink (7)
A folded part (2
G) is composed of folded J, and T
As the distance from r increases, the height of the folded portion (support) increases, and the area facing the battery (2) increases to make heat transfer to the battery (2) uniform. In addition, η is a transistor Tr
This is a screw that secures the heat sink to the heat sink (7).
不発明は上述のように充電回路において、電池を光電制
御する充電制御回路の放熱板から電池への熱放熱の分布
を均一にする温度制御手段を放熱板に付設したものであ
るから、′[は池の部分が発熱素子に近い部分とか、遠
い部分とかに関係なく、発熱素子の熱を放熱板を介して
電池に均一に伝達することで、低温時例おいても重油を
確実傾充分釦充電できる効果を奏する。まだ、電池を構
成する複数の電池ブロックに均一に熱を伝達し温度上昇
を均一に出来るので、電池ブロック聞に充電量の差がな
く、過充電、充電不足ということがなく、電池の寿命を
低下することがない効果を奏し、また、電池の加温・乃
至保温用のし−タ等が不要であるから、低温時において
も充電効率の良い充電器を安価かつ構造が簡単に得るこ
とができる効果を奏する。The non-invention is that in the charging circuit as described above, a temperature control means is attached to the heat sink to uniformly distribute the heat radiation from the heat sink to the battery in the charge control circuit that photoelectrically controls the battery. By uniformly transmitting the heat from the heating element to the battery via the heat sink, regardless of whether the pond is near or far from the heating element, heavy oil can be reliably pumped even at low temperatures. It has the effect of being able to charge. However, since heat can be evenly transferred to the multiple battery blocks that make up the battery, and the temperature rise can be made uniform, there is no difference in the amount of charge between the battery blocks, and there is no overcharging or undercharging, which extends the life of the battery. It has an effect that does not deteriorate, and since there is no need for a heater to heat or keep the battery warm, it is possible to obtain a charger with good charging efficiency even at low temperatures at a low cost and with a simple structure. Make the most of your efforts.
第1図は本発明の実施例の具体回路図、第2図は同上の
機能フロック図、第5図は同上の充電は本体の平面図、
第4図は同上の縦断面図、第5図は同上の破断正面図、
fJ6図は同上の横断面図、第7図は同上の動作税印1
図、第8図は同上の蓄電池と放熱板の関係を示す斜視図
、第9図(a) (b)は同上の電池づDツクの断面図
、正面図、第10図は同上の電池ブロックの斜視図、第
11図は同上の電池の内部構成を示す断面図、第1.2
図は同上の放熱板の他の実施例を示す斜視図である。
il+は充電制御回路、(2)は電池、(7)は放熱板
、0ηは凹部、Aは充電器゛本体、Xは空間を示す。
第6図
第7図
第9図
第1o図
b
第11図
第12図Fig. 1 is a specific circuit diagram of an embodiment of the present invention, Fig. 2 is a functional block diagram of the same as above, Fig. 5 is a plan view of the charging main body of the same as above,
Figure 4 is a longitudinal sectional view of the same as above, Figure 5 is a broken front view of the same as above,
Figure fJ6 is the cross-sectional view of the same as above, and Figure 7 is the movement tax stamp 1 of the same as above.
Figure 8 is a perspective view showing the relationship between the storage battery and the heat dissipation plate, Figures 9 (a) and 9 (b) are cross-sectional views and front views of the battery block shown above, and Figure 10 is the battery block shown above. Figure 11 is a sectional view showing the internal structure of the battery, Figure 1.2 is a perspective view of the battery.
The figure is a perspective view showing another embodiment of the heat sink same as above. il+ is a charging control circuit, (2) is a battery, (7) is a heat sink, 0η is a recess, A is a charger body, and X is a space. Figure 6 Figure 7 Figure 9 Figure 1 o Figure b Figure 11 Figure 12
Claims (1)
池を充電する充電器において、前記電池を充↑は制御す
る充電制御回路の放熱板から前記電池への熱放熱の分布
を均一にする温度制御手段を放熱板に付設して成ること
を特徴とする充電器。 (2)充電制御回路の発熱素子から遠ざかるに従ってr
は池と放熱板との接触面積を広くしたことを特徴とする
特許請求の範囲第1項記載の充電器。 (3)放熱板に凹部を設けたことを特徴とする特許請求
の範囲第2項記載の充電器。 (4)放熱板を電池の側面に対面させるとともに、電池
の側面に対面した放熱板の高さを発熱素子から遠ざかる
に従って高くしたことを特徴とする特許請求の範囲第2
項記載の′充電器。 (5)充電器本体と放熱板との間に空間を設けたことを
特徴とする特許請求の範囲第1項記載の充電器。[Scope of Claims] In a charger that charges a battery to be charged by detachably attaching it to the ill charger main body, charging the battery is caused by heat dissipation from a heat dissipation plate of a charging control circuit that controls the battery to the battery. A charger characterized in that a temperature control means is attached to a heat sink to make the distribution of heat uniform. (2) As the distance from the heating element of the charging control circuit increases, r
2. The charger according to claim 1, wherein the contact area between the battery and the heat sink is widened. (3) The charger according to claim 2, characterized in that a recess is provided in the heat sink. (4) The heat sink faces the side surface of the battery, and the height of the heat sink facing the side surface of the battery increases as the distance from the heat generating element increases.
'Charger as described in section. (5) The charger according to claim 1, characterized in that a space is provided between the charger main body and the heat sink.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21531383A JPS60109729A (en) | 1983-11-15 | 1983-11-15 | Charger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21531383A JPS60109729A (en) | 1983-11-15 | 1983-11-15 | Charger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60109729A true JPS60109729A (en) | 1985-06-15 |
Family
ID=16670246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21531383A Pending JPS60109729A (en) | 1983-11-15 | 1983-11-15 | Charger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60109729A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015173999A1 (en) * | 2014-05-14 | 2015-11-19 | 三洋電機株式会社 | Battery pack and electronic device |
-
1983
- 1983-11-15 JP JP21531383A patent/JPS60109729A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015173999A1 (en) * | 2014-05-14 | 2015-11-19 | 三洋電機株式会社 | Battery pack and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS586152Y2 (en) | battery storage device | |
US5225760A (en) | Rechargeable power pack | |
CN100426584C (en) | Battery charger | |
JP2002093393A (en) | Apparatus with elastic contact points | |
JP3679284B2 (en) | battery pack | |
JPS60109729A (en) | Charger | |
JP5019871B2 (en) | Cordless anchor | |
CN209169239U (en) | Battery compartment and charger | |
CN209678095U (en) | It is a kind of to utilize constant temperature saucer made of semiconductor refrigeration sheet | |
JPS5920250Y2 (en) | pocket hearth | |
JPH0723001Y2 (en) | Solar cell | |
CN213959790U (en) | Multifunctional lithium ion battery charger | |
CN221329972U (en) | Multifunctional mosquito dispeller | |
CN210016306U (en) | Intelligent battery charger | |
CN218274646U (en) | Single battery and battery module | |
CN215009645U (en) | A functional shoe power supply system | |
CN212546559U (en) | Rechargeable portable chafing dish | |
CN211382118U (en) | Hand warmer | |
JPH0327575Y2 (en) | ||
JPH054689Y2 (en) | ||
JP2000116018A (en) | Charger for charging a plurality of secondary batteries | |
JPH02114918A (en) | Warmth retaining plate | |
JPS6310624Y2 (en) | ||
JPS59188674U (en) | Abnormal overheating detection device for bipolar stacked fuel cells | |
JPS5991671U (en) | electrolytic cell |