[go: up one dir, main page]

JPS60107881A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS60107881A
JPS60107881A JP21397983A JP21397983A JPS60107881A JP S60107881 A JPS60107881 A JP S60107881A JP 21397983 A JP21397983 A JP 21397983A JP 21397983 A JP21397983 A JP 21397983A JP S60107881 A JPS60107881 A JP S60107881A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
width
mesa stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21397983A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakayama
義則 中山
Shinji Tsuji
伸二 辻
Motonao Hirao
平尾 元尚
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21397983A priority Critical patent/JPS60107881A/en
Publication of JPS60107881A publication Critical patent/JPS60107881A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高出力の半導体レーザの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a high-output semiconductor laser.

〔発明の背景〕[Background of the invention]

活性層に接していわゆる光ガイド層を設ける構造をもつ
半導体レーザは、数多く検討されているが、活性層幅を
光ガイド層幅よりも小さくかつ再現性よく制御すること
が必要であるが、これまでの製造方法では、これらを満
足させることは困難であった。
Many semiconductor lasers have been studied that have a structure in which a so-called optical guide layer is provided in contact with the active layer, but it is necessary to control the active layer width to be smaller than the optical guide layer width and with good reproducibility. It has been difficult to satisfy these requirements using the manufacturing methods up to now.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高出力でしかも横モードの安定化された
半導体レーザを容易に歩留りよく製造できる製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method that can easily manufacture a high-output semiconductor laser with stabilized transverse mode at a high yield.

〔発明の概要〕[Summary of the invention]

光ガイド層を設けた高出力半導体レーザの特性Fi、以
下の2点により大きく左右される。第1は、活性層幅の
寸法制御であり、第2は光ガイド層の幅が活性層幅に対
して充分に広くとることである。
The characteristics Fi of a high-power semiconductor laser provided with an optical guide layer are greatly influenced by the following two points. The first is to control the width of the active layer, and the second is to ensure that the width of the light guide layer is sufficiently wide relative to the width of the active layer.

これまでの製造方法では上記2点を満足させることは国
難であった。本発明では%材料選択および異方性エッチ
により活性層直上まで再現性よく制御できかつメサスト
ライプの側面を基板に対して垂直にすることにより活性
層幅の寸法制御を容易にした点が特徴である。メサの垂
直加工については、半導体材料によシ化学エッチおよび
反応性ガスによるドライエッチ等いろいろな手法が考え
られる。例えば%ZnPでは塩酸系のエツチング液が有
効であり%G a A 8ではCC12Fmガスによる
ドライエツチングが有効となる。
With conventional manufacturing methods, it has been a national problem to satisfy the above two points. The present invention is characterized in that it can be controlled with good reproducibility up to just above the active layer by material selection and anisotropic etching, and the width of the active layer can be easily controlled by making the sides of the mesa stripe perpendicular to the substrate. be. For vertical processing of mesas, various methods can be considered, such as chemical etching using semiconductor materials and dry etching using reactive gases. For example, for %ZnP, a hydrochloric acid based etching solution is effective, and for %G a A of 8, dry etching using CC12Fm gas is effective.

〔発明の実施例〕 以下、本発明の一実施例を第1図により説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to FIG.

第1図は、本発明による半導体レーザ装置の作製工程を
順に示した断面図である。なお、各図はレーザ光に対し
垂直な面での断面図である。第1図(a)に示す様にn
 −I n P (100)基板1上に液相エピタキシ
ャル成長法によりn−’工npバッファ層(厚さ0.5
〜24m)2、n In1−!G axAst−yPy
光ガイド層(x=0.25.y=0.55 :厚さ1〜
2μm)3、アンドープIn1−x G axA81−
y Py 活性層(x=0.3. y=0.4 :厚さ
0.15μm)4、p−I n Pクラッド層5%pI
 ’1−110 azA81−y Pyキャップ層(x
 =0.2. y =0.6 ;厚さ0.15μm)6
を順次成長させる。キャップ層としてはオーミックコン
タクトをとりやすくすることを目的とした4元層とした
。次に第1図(b)に示す様に、エツチング保護膜7を
ストライプ状に形成した後にInGaAsp の材料選
択エツチング液であるH鵞80a : HlO: H鵞
0! +:!4 : 1 : 1にてキャップ層6を除
去する。その後、第1図(C)に示す様にInPIC対
して材料選択性のあるHCl : HsPOa=4:1
にてクラッド層を除去する。この際にHCl系のエツチ
ング液ではメサの側面が(1103面になる異方性をも
っているので、活性層直上まで垂直なメサ形状を作成で
きる。その後、活性層をプロムメタール(1vot%]
にて除去し光ガイド層を露出させ、第1図(d)の様な
メサ形状を得ることができる。この際活性層の幅はエツ
チング保護膜7の幅と同じであり、活性層幅はこのエツ
チング保護膜7の幅により精密に制御できる。次に液相
エピタキシャル成長によ!>’s p Inp層8゜n
 −I n P層9 % pInl−tGaxA!11
−y Py層(X=0.2. y=0.6)10にて埋
込んだ(第1図(e)】。埋込み層を多層としたのは、
もれ電流を少なくするためと、オーミックコンタクトを
よくするためである。
FIG. 1 is a cross-sectional view sequentially showing the manufacturing steps of a semiconductor laser device according to the present invention. Note that each figure is a cross-sectional view taken on a plane perpendicular to the laser beam. As shown in Figure 1(a), n
-I n P (100) An n-' np buffer layer (thickness 0.5
~24m) 2,n In1-! G axAst-yPy
Light guide layer (x=0.25.y=0.55: thickness 1~
2 μm) 3, undoped In1-x G axA81-
y Py active layer (x=0.3. y=0.4: thickness 0.15 μm) 4, p-I n P cladding layer 5% pI
'1-110 azA81-y Py cap layer (x
=0.2. y = 0.6; thickness 0.15 μm) 6
grow sequentially. The cap layer is a quaternary layer intended to facilitate ohmic contact. Next, as shown in FIG. 1(b), after forming the etching protection film 7 in a stripe shape, a material selective etching solution of InGaAsp, HO80a:HlO:HO0! +:! The cap layer 6 is removed at a ratio of 4:1:1. Thereafter, as shown in FIG. 1(C), HCl: HsPOa = 4:1, which has material selectivity for InPIC.
The cladding layer is removed. At this time, since the HCl-based etching solution has anisotropy in which the side surfaces of the mesa are (1103 planes), it is possible to create a mesa shape that is perpendicular to just above the active layer.
By removing the light guide layer and exposing the light guide layer, a mesa shape as shown in FIG. 1(d) can be obtained. At this time, the width of the active layer is the same as the width of the etching protection film 7, and the width of the active layer can be precisely controlled by the width of the etching protection film 7. Next, liquid phase epitaxial growth! >'s p Inp layer 8゜n
-InP layer 9% pInl-tGaxA! 11
-y Py layer (X = 0.2. y = 0.6) 10 was embedded (Fig. 1 (e)).
This is to reduce leakage current and improve ohmic contact.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光ガイド層付半尋体レーザにおいて活
性層幅の制御精度を±0.5μm以内に抑えることがで
き、また光ガイド層幅5を活性層幅に比べ充分広くとれ
るので%^小出力横モードが安定化された特性の素子が
歩留り良く作製できる。
According to the present invention, it is possible to suppress the control accuracy of the active layer width within ±0.5 μm in a semicircular laser with a light guide layer, and the light guide layer width 5 can be made sufficiently wider than the active layer width, so that ^Elements with characteristics in which the small power transverse mode is stabilized can be manufactured with a high yield.

また実施例に示した組成だけでな(0(x(1゜0<y
<1の範囲で適用できる。その他InGaAsP系のみ
ならずたとえば■−■族化合物半導体たるQaAtAs
系の半導体レーザにも適用することができる。
Moreover, not only the composition shown in the example (0(x(1°0<y
Applicable within the range <1. In addition to InGaAsP, for example, QaAtAs which is a ■-■ group compound semiconductor
It can also be applied to other semiconductor lasers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明によるレーザ装置の製造
方法の工程説明図である。 −
FIGS. 1(a) to 1(e) are process explanatory diagrams of a method for manufacturing a laser device according to the present invention. −

Claims (1)

【特許請求の範囲】[Claims] 1、所定の半導体基板の上部に第1.第2.第3および
第4の半導体層が順次接してなる光とじ込め領域を少な
くとも有し、第1および第4の半導体層は第2および第
3の半導体層の屈折率において小さく、第3の半導体層
の屈折率は第2の半導体層のそれより大きく、且第2お
よび第4の半導体IVIの禁制帯幅は第3の半導体層の
それより大きく、少なくとも第1および第4の半導体層
は互いに応対導電型を有する如くに沙なくとも設けられ
、前記とじ込め領域はメサストライプ状に構成され、そ
のメサストライプの側壁が第5の半導体層で埋め込ま扛
、レーザ光の進行方向と直交する断面で且光とじ込め領
域内に存する接合面と平行な方向の前記第2の半導体の
幅が前記第3の半導体層のそれより広くなされた半導体
レーザ装置のメサストライプ形成において、第4層に対
して選択的で且異方的なエツチングにより基板に垂直な
側面全もっメサストライプを形成しストライプ外の領域
では第3層を露出させる工程、該メサストライプ外の領
域の第3層を除去し第2層を露出させる工程を有するこ
と全特徴とする半導体レーザ装置、の製造方法。
1. A first . Second. The third and fourth semiconductor layers have at least a light trapping region in which they are in contact with each other, the first and fourth semiconductor layers are smaller in refractive index than the second and third semiconductor layers, and the third semiconductor layer is smaller in refractive index than the third semiconductor layer. the refractive index of the second semiconductor layer is larger than that of the second semiconductor layer, and the forbidden band width of the second and fourth semiconductor layers IVI is larger than that of the third semiconductor layer, and at least the first and fourth semiconductor layers correspond to each other. The confinement region is formed in a mesa stripe shape, and the sidewalls of the mesa stripe are buried with a fifth semiconductor layer, and the confinement region has a cross section perpendicular to the traveling direction of the laser beam. In forming a mesa stripe of a semiconductor laser device in which the width of the second semiconductor in the direction parallel to the junction plane existing in the light confinement region is wider than that of the third semiconductor layer, the width of the second semiconductor layer is selected for the fourth layer. A step of forming a mesa stripe on the entire side surface perpendicular to the substrate by selective and anisotropic etching, and exposing the third layer in the area outside the stripe, and removing the third layer in the area outside the mesa stripe to form the second layer. 1. A method for manufacturing a semiconductor laser device, which comprises a step of exposing a semiconductor laser device.
JP21397983A 1983-11-16 1983-11-16 Manufacture of semiconductor laser Pending JPS60107881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21397983A JPS60107881A (en) 1983-11-16 1983-11-16 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21397983A JPS60107881A (en) 1983-11-16 1983-11-16 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60107881A true JPS60107881A (en) 1985-06-13

Family

ID=16648232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21397983A Pending JPS60107881A (en) 1983-11-16 1983-11-16 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60107881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220392A (en) * 1985-07-18 1987-01-28 Sharp Corp Semiconductor laser element
US5748659A (en) * 1994-11-22 1998-05-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220392A (en) * 1985-07-18 1987-01-28 Sharp Corp Semiconductor laser element
US5748659A (en) * 1994-11-22 1998-05-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Similar Documents

Publication Publication Date Title
US5111469A (en) Semiconductor laser
JPH05304334A (en) Fabrication of semiconductor laser
US3883219A (en) Dielectric optical waveguide
JPS60107881A (en) Manufacture of semiconductor laser
JPS62283686A (en) Manufacture of semiconductor laser
JPS6223191A (en) Manufacture of ridge type semiconductor laser device
JPS59125686A (en) Semiconductor laser
JPS5857770A (en) Semiconductor laser element
JPS596588A (en) Semiconductor laser
JPS6179288A (en) Semiconductor laser
JPH0136989B2 (en)
JPS61150393A (en) Semiconductor laser and its manufacturing method
JPS5830186A (en) Manufacture of optical semiconductor element
JPS6361793B2 (en)
JPS63287079A (en) Manufacture of semiconductor laser
JPS59181020A (en) Etching of semiconductor device
JPS6159888A (en) Semiconductor light emitting device and manufacture thereof
JPS58154287A (en) semiconductor light emitting device
JPS60136281A (en) Manufacture of semiconductor laser
JPS6239088A (en) Semiconductor laser
JPS6281085A (en) Etching mask
JPS6289384A (en) Manufacture of semiconductor laser
JPH02178987A (en) Semiconductor laser element
JPH01124280A (en) Semiconductor laser
JPH0680864B2 (en) Semiconductor laser