[go: up one dir, main page]

JPS60103316A - optical mode filter - Google Patents

optical mode filter

Info

Publication number
JPS60103316A
JPS60103316A JP21084683A JP21084683A JPS60103316A JP S60103316 A JPS60103316 A JP S60103316A JP 21084683 A JP21084683 A JP 21084683A JP 21084683 A JP21084683 A JP 21084683A JP S60103316 A JPS60103316 A JP S60103316A
Authority
JP
Japan
Prior art keywords
mode filter
optical
optical waveguide
optical mode
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21084683A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Matsumura
宏善 松村
Shinji Sakano
伸治 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21084683A priority Critical patent/JPS60103316A/en
Publication of JPS60103316A publication Critical patent/JPS60103316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光導波路中を伝搬する各梱モードの内特定のモ
ードのみをフィルタリングする光モードフィルタに係り
、荷に光の反射を小さくするため通常の反射防止膜の役
割をもたせたテーパ状のモードフィルタに関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an optical mode filter that filters only a specific mode among the packing modes propagating in an optical waveguide. This invention relates to a tapered mode filter that also functions as an antireflection film.

〔発明の背景〕[Background of the invention]

光モードフィルタとは、例えば通常の偏光子の役目をす
るようなもので、光導波路中を伝搬するTM波とTE波
の内、TM波の光吸収を大きくしてg哀させ、TE波の
みを透過させる機能をもつ。
An optical mode filter is something that acts, for example, as a normal polarizer.Of the TM waves and TE waves that propagate in an optical waveguide, an optical mode filter increases the optical absorption of the TM waves and suppresses only the TE waves. It has the function of transmitting.

従来の光モードフィルタは、光導波路上に直接金属膜を
付けた構造か、または、一様な膜厚を持った誘電体バッ
ファ層を介して金属を付けた構造を取っていた。例えば
、理舖的な計X、例がyamamo t。
Conventional optical mode filters have a structure in which a metal film is directly attached to an optical waveguide, or a structure in which a metal is attached via a dielectric buffer layer having a uniform film thickness. For example, an example of a rational sum is yamamoto t.

等によfi IEEE、 Journal of Qu
antulnE’ e Ct r On iCS ) 
V O’ 、QB −11p729 (1975)に報
告されている。しかしながら、これらの光モードフィル
タでは、TM波とTE波の光の減衰にのみ注目し、光モ
ードフィルタと光導波路部との間の反射波については構
造的に考慮されていなかった。
etc. IEEE, Journal of Qu
antulnE' e Ctr On iCS)
V O' , QB-11p729 (1975). However, these optical mode filters focus only on the attenuation of TM waves and TE waves, and do not structurally consider reflected waves between the optical mode filter and the optical waveguide section.

通常光部品の端面は無反射コーティング妊れている。例
えばm1図に示すように、半導体レーザ1よシ光学基板
2上に形成きれた光導波路4に光が入射され元モードフ
ィルタ部Aに入る。上述の如く元モードフィルタ部はA
/、、Au等の金属膜3を光導e1.Nr4上に形成し
た構造になっている。
The end faces of optical components are usually coated with anti-reflection coating. For example, as shown in FIG. m1, light enters the optical waveguide 4 formed on the optical substrate 2 from the semiconductor laser 1 and enters the original mode filter section A. As mentioned above, the original mode filter section is A
/, , Au, etc. metal film 3 is light guided e1. It has a structure formed on Nr4.

半導不レーザと光モードフィルタ部へとの間にある光導
波部分BとするとA部とB部では伝搬する光の電磁界分
布が異なるため、A部とB部の境界で反射波が生じる。
Assuming that the optical waveguide section B is located between the semiconducting non-laser and the optical mode filter section, the electromagnetic field distribution of the propagating light is different between sections A and B, so reflected waves occur at the boundary between sections A and B. .

この反射波が半導体V−ザに帰還すると半導体レーザの
発振が不安定になシ発振スペクトルが変動する。特にV
 HF多重広帯域光通信の場合には単一モードレーザ(
例えば、BH,C8P、TJS、T8等の半導体レーザ
)が必装であり、反射光の除去対策が必須である。
When this reflected wave returns to the semiconductor laser, the oscillation of the semiconductor laser becomes unstable and the oscillation spectrum fluctuates. Especially V
In the case of HF multiplexed broadband optical communication, a single mode laser (
For example, a semiconductor laser such as BH, C8P, TJS, T8, etc.) is essential, and measures to remove reflected light are essential.

反射光の雑廿におよばず影響については各所で検討され
ている。−例として第2図(a)に示すように半導体レ
ーザ21の前に球レンズ22を置き、球レンズの半径R
と半導体レーザと球レンズの間Mclを変えた。こうす
る事にニジ半導体レーザ光の一部が球レンズで反射し半
導体レーザに帰還する光麓が変化するため、半導体レー
ザの発振がどこで不安頑になるかがわかる。第2図(b
)はその測建値であり、球し/ズ22の半径にほぼ不感
で、半導体レーザ21と球レンズ220間隔dが約0.
4態すなわち400μm以下時に発振が不安定になった
。この場合における反射帰還光量は一65dB以上でa
当する。これは半4体レーザ21の許容反射量は−60
〜−70dB以Fと通常いわれている匝と一部する。
The effects of reflected light on the general public are being studied in various places. - For example, as shown in FIG. 2(a), a ball lens 22 is placed in front of the semiconductor laser 21, and the radius of the ball lens is R.
and changed the Mcl between the semiconductor laser and the ball lens. By doing this, a part of the rainbow semiconductor laser light is reflected by the ball lens and the base of the light returning to the semiconductor laser changes, so it can be seen where the oscillation of the semiconductor laser becomes unstable. Figure 2 (b
) is the measured value, which is almost insensitive to the radius of the ball lens 22, and the distance d between the semiconductor laser 21 and the ball lens 220 is approximately 0.
The oscillation became unstable in the fourth state, that is, when the diameter was 400 μm or less. In this case, the amount of reflected feedback light is -65 dB or more, a
I guess. This means that the allowable reflection amount of the half-four body laser 21 is -60
It is generally said that the frequency is -70 dB or higher.

このように半導体レーザ21に一60dB以上の反射量
がるると発振スペクトルが変動する。このため前記第1
図に示したように領域Bと光モードフィルタ領域人の接
合面での反射を一60dB以トVこおさえなくてはなら
ない。通’g41図に示すように、光導波路4上に直接
金属膜3をつけると、七の現界面では約−40dB以上
の反射量が生じる。また直接金属膜をつけるのではなく
第3図に示すように誘電体バッファノー5をテーバ状に
もうけだ光モードフィルタが従来されている。しかしな
がら、テーパ状光モードフィルタの場合にオイテモテー
ハの角度やバッファ層の厚今によって一40dB以上の
反射量が生じる場合かめジ、いずれの場合においても半
導体レーザの発振が不安定でおった。
As described above, when the semiconductor laser 21 has a reflection amount of -60 dB or more, the oscillation spectrum fluctuates. Therefore, the first
As shown in the figure, the reflection at the junction between area B and the optical mode filter area must be suppressed by more than 60 dB. As shown in Figure 41, when the metal film 3 is directly attached to the optical waveguide 4, a reflection amount of about -40 dB or more occurs at the current surface of the optical waveguide 4. Furthermore, an optical mode filter has been conventionally used in which a dielectric buffer layer 5 is formed in a tapered shape as shown in FIG. 3, instead of directly attaching a metal film. However, in the case of a tapered optical mode filter, if a reflection amount of -40 dB or more occurs depending on the angle of the Oitemometer or the thickness of the buffer layer, the oscillation of the semiconductor laser becomes unstable in either case.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、光モードフィルタ端面からの反射を小
さくシ、半導体レー、ザの発振安定化を確約する光モー
ドフィルタの構造を提供することにある。
An object of the present invention is to provide a structure of an optical mode filter that reduces reflection from the end face of the optical mode filter and ensures stabilization of oscillation of a semiconductor laser.

〔発明の概安〕[Summary of the invention]

上記目的を達成するための本屍明の構成は、基板と、該
基板上に形成された光導波路と、該導波路上にそれより
も屈折率の低い平行及びテーパ状のバッフアノ曽を介し
て種層させた光吸収ノーとからなる。
The structure of the present invention to achieve the above object includes a substrate, an optical waveguide formed on the substrate, and a parallel and tapered buffer anode having a lower refractive index on the waveguide. It consists of a seed layer of light absorption.

本発明は上記構成になるので、光導波部を伝搬するTE
波とTM波の伝搬定数は実数でβυ光の伝搬損失が生じ
ない。しかし、金属のような光吸収の大きな媒質をその
上にもつ光導波錯甲を伝搬するTE波やTM波の伝搬定
数は汲素数である。
Since the present invention has the above configuration, the TE propagating through the optical waveguide
The propagation constants of the wave and the TM wave are real numbers, and there is no propagation loss of the βυ light. However, the propagation constant of a TE wave or a TM wave propagating through an optical waveguide complex having a medium with high light absorption, such as a metal, is a prime number.

この伝搬定数の走が大きいと反射が大きくなる。The greater the propagation constant, the greater the reflection.

符に実数と複素数の伝搬定数をもつ波の間での反射は大
きい。この解決とし前記第3図のかわシに本発明の一実
施例として第4図に示すエラに光導波部BKもバッファ
層と同様又は近い材料を用い、金属膜のよI)な光吸収
課員6をテーパ部のみならず平行のバッファ層部に用い
ればよい、理想的には平行のバッファ層部とテーパ状部
が連続的になめらかに変化し接合しているのがのぞまし
い。また平行のバッファ層部はi長オーダ程度の長さ以
上でられは特に問題はない。なお元導波湘部にバッファ
層が用いられない場合には後に第5図で示すようにバッ
ファ層をテーバ状にしてもほぼ同様である。
Reflection between waves with real and complex propagation constants is large. To solve this problem, the optical waveguide BK is also made of the same or similar material as the buffer layer in the gills shown in FIG. 6 may be used not only for the tapered portion but also for the parallel buffer layer portion. Ideally, it is desirable that the parallel buffer layer portion and the tapered portion change continuously and smoothly. Further, there is no particular problem if the parallel buffer layer portions have a length on the order of i length or more. Incidentally, when a buffer layer is not used in the original waveguide portion, substantially the same effect can be achieved even if the buffer layer is made into a tapered shape as shown later in FIG.

第4図を用いて詳細iC説明する。The iC will be explained in detail with reference to FIG.

光導波部Bを伝搬するTE波(ここではTE波について
説明するが同様に1゛M波についても成立する)が平行
な金属膜中に入った時に生じる反射波の大きさRは近似
的に で与えられる。ここでβ亀は実数値で光導波部Bを伝搬
する1゛E波の伝搬定数でわシβtは複素数で平行な金
属膜生金伝搬する′rE波の伝搬定数である。ここでバ
ッファ層7の厚みをd、光導波路4の厚みをa、基板2
の屈折率を口l、光導波路4の屈折率を02、バッファ
層7の屈折率をn3とし、その上の虐(例えば光導波部
の場合には空気層であり光モードフィルタ部では金属膜
6である)の屈折率をn4とする伝搬ボ数βは波数kを
用いて ・・・・・・・・・(2) の超越関数の根として示される。
The size R of the reflected wave generated when a TE wave propagating through the optical waveguide B (we will explain the TE wave here, but the same holds true for a 1゛M wave) enters a parallel metal film is approximately: is given by Here, βt is a real value, which is the propagation constant of the 1゛E wave propagating through the optical waveguide B, and βt is a complex number, which is the propagation constant of the 'rE wave propagating in parallel to the raw metal film. Here, the thickness of the buffer layer 7 is d, the thickness of the optical waveguide 4 is a, and the thickness of the substrate 2 is
Let the refractive index of the optical waveguide 4 be 02, and the refractive index of the buffer layer 7 be n3. The propagation wave number β, where n4 is the refractive index of 6), is expressed as the root of the transcendental function of (2) using the wave number k.

ここでバッファノー7の厚みdを太キくシていくと(2
)式は に収装し、屈折率n4の影響がなくなる。すなゎち光導
波部Bと光モードフィルタ部との境界での光の伝ti矩
赦がほぼ同一になる。
Here, if we increase the thickness d of Buffer No. 7 (2
) is reduced to , and the influence of the refractive index n4 disappears. In other words, the light transmission rectangle at the boundary between the optical waveguide section B and the optical mode filter section becomes almost the same.

以上の原理を用いれば、バーノファ層7の厚みdを厚く
することにより光導波部と光モードフィルタ部との境界
での光の反射を一60dB以トにすることができる。す
なわちこの厚みdは及び式(2) 、 、 (3)を満
足するdで与えられる。
Using the above principle, by increasing the thickness d of the burnoff layer 7, it is possible to reduce the reflection of light at the boundary between the optical waveguide section and the optical mode filter section to -60 dB or more. That is, this thickness d is given by d that satisfies equations (2), (3).

〔発明の実施クリ〕[Practice of invention]

以下本発明の具体的実施例を説明する。光学基板トして
は顕微鋭用スライドガラスを用い、約400C(DKN
Oa浴液中に約25分間浸水させた。K I”J Os
中のにイオンとスライドガラス中のNaイオンがイオン
変換し、その結果スフ1トガ22表面層に光4良鉗が形
成でき7辷。光源として波長1.3μIllの半導体レ
ーザを用い、光導波路Vこ入射式せると伝搬光が単一モ
ードである事が確認できた。光導波路上に厚み0.45
μmの5402からなるテーパ状バッファ層をスパック
リング法で作製した。テーパ部の作製には5i02スパ
ツタターゲツトと光導波路の中間に、ナイフェツジを光
導波路から12μmnの高さに挿入し、スパッタ膜のナ
イフェツジ下面への回り込み現象を利用して作製した。
Specific examples of the present invention will be described below. A microscope slide glass was used as the optical substrate, and the temperature was approximately 400C (DKN
It was immersed in the Oa bath solution for about 25 minutes. K I”J Os
The ions inside and the Na ions in the slide glass undergo ion conversion, and as a result, light rays are formed on the surface layer of the glass slide. When a semiconductor laser with a wavelength of 1.3 μIll was used as a light source and an optical waveguide V was used, it was confirmed that the propagating light was in a single mode. Thickness 0.45 on the optical waveguide
A tapered buffer layer having a diameter of 5402 μm was fabricated by a spuckling method. The tapered portion was fabricated by inserting a knife between the 5i02 sputter target and the optical waveguide at a height of 12 μm from the optical waveguide, and utilizing the phenomenon of the sputtered film wrapping around the lower surface of the knife.

作製したテーパ部と平行なバラノア漕部との境界はなめ
らかに変化していた。またテーパ部の長さは250μm
 ’T: ’l>うた。次に光の吸収帯にもちいる金属
膜としてA4を用い、テーパ部及び平行部に長さ300
μmにわたってスパッタ蒸着した。このようにして作製
した光モードフィルタの光の入出力端に波長1.3μm
の無反射コーティングをほどこした。半導体レーザとし
て波長1.3μm(D単一モード発振レーザを用いた。
The boundary between the fabricated taper part and the parallel Balanoa row part changed smoothly. Also, the length of the taper part is 250μm
'T: 'l>Uta. Next, use A4 as the metal film for the light absorption band, and have a length of 300mm for the tapered part and the parallel part.
Sputter deposited over μm. The wavelength of 1.3 μm is applied to the input and output ends of the optical mode filter manufactured in this way.
Anti-reflective coating applied. A wavelength of 1.3 μm (D single mode oscillation laser) was used as the semiconductor laser.

直線偏光のレージ“光を1度光導波路内でT Eモード
とT1〜(モードが同じ割合で励振されるように入射し
、光モードフィルタがらの反射にょる光振の不安定性と
モードフィルタ特注を調べた。その結果反射は約−70
dB程度でろ9半導体レーザの発振特性は変化し1ない
ことがわかった。また光モードフィルタ特性ケ示す′1
゛E波とTM波の消光比は35dBとなシ充分に光モー
ドフィルタ特性を示すことがわかった。
Linearly polarized light enters the optical waveguide so that the TE and T1 modes are excited at the same rate, and the instability of the optical oscillation due to reflection from the optical mode filter and the custom-made mode filter As a result, the reflection was approximately -70
It was found that the oscillation characteristics of the semiconductor laser did not change even by about dB. Also, the characteristics of the optical mode filter are shown.
It was found that the extinction ratio of E wave and TM wave is 35 dB, which shows sufficient optical mode filter characteristics.

〔発明の効果〕〔Effect of the invention〕

本実施例によれば、光導波路中に作製した光モードフィ
ルタからの反射波を小はくすることが出来、半導体レー
ザの発振を安定にする効果がろる。
According to this embodiment, the reflected waves from the optical mode filter fabricated in the optical waveguide can be reduced, and the effect of stabilizing the oscillation of the semiconductor laser can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光モードフィルタと半導体レーザを組合
わせたことによる反射波の発生を示す図、第2図は半導
体レーザの発振の不安定領域を示すだめの実験値、第3
図は従来法を改善したテーバ状薄膜偏光子の構成図、第
4図、及び第5図は本発明の一実施り0としての光モー
ドフィルタの概略構成図である。 l・・・半導体レーザ、2・・・光学基板、3・・・金
属膜、4・・・光導波路、5・・・テーパ状バッファ層
、6・・・光第 (口 第 2 図 (d) If1隔dc四
Figure 1 shows the generation of reflected waves by combining a conventional optical mode filter and a semiconductor laser, Figure 2 shows experimental data showing the unstable region of semiconductor laser oscillation, and Figure 3
The figure is a block diagram of a tapered thin film polarizer that is an improvement over the conventional method, and FIGS. 4 and 5 are schematic diagrams of the structure of an optical mode filter as one embodiment of the present invention. l...Semiconductor laser, 2...Optical substrate, 3...Metal film, 4...Optical waveguide, 5...Tapered buffer layer, 6...Optical layer (Figure 2 (d) ) If1 interval dc4

Claims (1)

【特許請求の範囲】 1、基板と、該基板上に形成坏れた光導波路と、該導波
路上にそれよシも屈折率の低い平行及びテーパ状のバッ
ファ層を介して積層式せた光吸収層を設けたことを特徴
とする光モードフィルタ。 2、特許請求の範囲第1項において、上記バッファノー
の厚みdは、本文中で示した式(2)、 (3)、 (
5)を満足するように決定されたものであることを特徴
とする光モードフィルタ。
[Claims] 1. A substrate, an optical waveguide formed on the substrate, and a parallel and tapered buffer layer with a low refractive index laminated on the waveguide. An optical mode filter characterized by providing a light absorption layer. 2. In claim 1, the thickness d of the buffer nozzle is calculated by formulas (2), (3), (
5) An optical mode filter that is determined to satisfy the following.
JP21084683A 1983-11-11 1983-11-11 optical mode filter Pending JPS60103316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21084683A JPS60103316A (en) 1983-11-11 1983-11-11 optical mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21084683A JPS60103316A (en) 1983-11-11 1983-11-11 optical mode filter

Publications (1)

Publication Number Publication Date
JPS60103316A true JPS60103316A (en) 1985-06-07

Family

ID=16596077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21084683A Pending JPS60103316A (en) 1983-11-11 1983-11-11 optical mode filter

Country Status (1)

Country Link
JP (1) JPS60103316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275605A (en) * 1985-09-27 1987-04-07 トムソン−セエスエフ Differential absorptionn polarizer, method and apparatus formanufacturing same polarizer
US4893296A (en) * 1987-07-30 1990-01-09 Sony Corporation Optical pickup device
US4987566A (en) * 1985-07-29 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Optical head apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987566A (en) * 1985-07-29 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Optical head apparatus
JPS6275605A (en) * 1985-09-27 1987-04-07 トムソン−セエスエフ Differential absorptionn polarizer, method and apparatus formanufacturing same polarizer
US4893296A (en) * 1987-07-30 1990-01-09 Sony Corporation Optical pickup device

Similar Documents

Publication Publication Date Title
US3563630A (en) Rectangular dielectric optical wave-guide of width about one-half wave-length of the transmitted light
JP3070016B2 (en) Optical waveguide device
US5361155A (en) Optical filter tuned by rotation and comprising a Fabry-Perot interferometer
US4695123A (en) Cutoff polarizer and method
US4329016A (en) Optical waveguide formed by diffusing metal into substrate
EP3001241A1 (en) Optoisolator
JPS60103316A (en) optical mode filter
JPH08503820A (en) Ring laser
JPS6286307A (en) Grating coupler
CN111856791A (en) Silicon-based magneto-optical isolator based on mode filter and preparation method
JPH0720359A (en) Optical device
JPH0675130A (en) Optical guide device
JP7141972B2 (en) Semiconductor laser light source
JPS597312A (en) Optical isolator
EP0718661A1 (en) Optical isolator with Fabry-Perot ripple reduction
JPS60133408A (en) Light junction device
US4278321A (en) Power divider with randomly varying incremental power transfer
Fischer et al. Self‐imaging in a planar x‐ray waveguide
CN113161463B (en) Inclined cavity chip structure
Mahlein Integrated optical polarizer
JP3411324B2 (en) Semiconductor laser with waveguide
JP3006687B2 (en) Optical isolator
JPS5933404A (en) Optical attenuator
US20020003825A1 (en) Optical device and fabrication thereof
JPS6097309A (en) Optical coupling method to thin dielectric film