JPS6010252B2 - Method for preparing specimens for transmission electron microscopy - Google Patents
Method for preparing specimens for transmission electron microscopyInfo
- Publication number
- JPS6010252B2 JPS6010252B2 JP52074479A JP7447977A JPS6010252B2 JP S6010252 B2 JPS6010252 B2 JP S6010252B2 JP 52074479 A JP52074479 A JP 52074479A JP 7447977 A JP7447977 A JP 7447977A JP S6010252 B2 JPS6010252 B2 JP S6010252B2
- Authority
- JP
- Japan
- Prior art keywords
- thin plate
- specific area
- circular hole
- transmission electron
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000004627 transmission electron microscopy Methods 0.000 title description 3
- 239000004065 semiconductor Substances 0.000 claims description 11
- 238000003486 chemical etching Methods 0.000 claims description 7
- 238000005498 polishing Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000010849 ion bombardment Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000000386 microscopy Methods 0.000 claims 1
- 238000000992 sputter etching Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005464 sample preparation method Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【発明の詳細な説明】
本発明は半導体結晶の透過電子顕微鏡用試料を作成する
方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preparing a semiconductor crystal specimen for transmission electron microscopy.
一般に半導体結晶(ェピタキシャル結晶層をもつものを
含む)を電子顕微鏡用試料とするには、電子線が透過し
得る半導体の厚さを、例えば枇化カリウムの場合、加速
電圧10皿Vの時0.5ミクロン以下、200KVの時
でも1ミクロン以下というように、極めて薄くする必要
がある。Generally, in order to use a semiconductor crystal (including one with an epitaxial crystal layer) as a sample for electron microscopy, the thickness of the semiconductor through which an electron beam can pass must be determined, for example, in the case of potassium sulfide, at an acceleration voltage of 10 V. It needs to be extremely thin, less than 0.5 microns, and less than 1 micron even at 200 KV.
従来、このような薄い半導体結晶の試料作成方法として
、化学腐蝕法、ジェットポリッシング法、イオン衝撃法
等が行われて来たが、これらの方法には次記のような欠
点があった。即ち化学腐蝕法については第1図に示すよ
うに、試料ウェーハAをガラス板Bの上に、ピセィンワ
ックスのような熱可溶性ワックスCで貼付け、かつDの
部分だけを除き他の部分を被覆した状態で、容器E中の
腐蝕液Fの中に浸潰して化学的な腐蝕を行い、G部のよ
うな中央部に孔をもつ腐蝕面を作り、その孔の周辺部を
透過観察可能な領域とするものであるが、この場合は腐
蝕部の勾配が相当急なために、透過可能領域が非常に狭
いという欠点があった。第2図に示すジェットポリッシ
ング法はこの領域をもっと広くする目的で考察されたも
ので、試料表面にノズル日を使用して腐蝕液を勢いよく
噴出させた流れを当てることにより、腐蝕部中央の平坦
面Gを広くして、観察可能領域を若干拡げることができ
た。しかしこれら二方法には共通して、薄片試料の作成
成功率が腐蝕条件を一定させ難いこと等が原因で低く、
また透過可能領域の広さも充分でないために、所望の狭
い特定領域を観察し度い場合には非常に困難を伴う等の
欠点があった。さらに最近開発されたイオン衝撃法は、
イオンスパッタ装置を使用して、真空中で純度の良い低
圧アルゴンガスを高圧電極間の放電で加熱加速してでき
る高速アルゴンイオンを、ターゲットの結晶に吹き付け
てエッチングする方法であるが、この方法によるエッチ
ング速度は2〜3ミクロン/時と極度におそいので、例
えば試料を薄くする最後の段階等以外にはあまり使用さ
れないものである。一方半導体素子の製造面においては
、種々の原因で素子特性の低下が現われ、この特性の低
下が素子又は材料ウェーハの特定の局部領域の欠陥によ
り起こることが多いという現象がある。このような場合
、この特定の局部領域を電子顕微鏡で観察するためには
、薄片部にその狭い領域が含まれねばならない。その一
例として発光素子の、たとえば第3図a(平面図)及び
b(側面図)に示すようにGa船−GaNASDHレー
ザー素子1におけるダークライン(DL))及びダーク
スポット(DS)Kと呼ばれる非発光領域の発生、成長
の問題があり、これらが素子劣化の一つの因子と考えら
れるので、この部分の電子顕微鏡による観察研究が必要
とされるというケースがある。この場合の観察を要する
非発光領域Lは図示の如く極めて狭い局部領域である。Conventionally, chemical etching methods, jet polishing methods, ion bombardment methods, and the like have been used as methods for preparing samples of such thin semiconductor crystals, but these methods have the following drawbacks. That is, for the chemical etching method, as shown in Fig. 1, a sample wafer A is pasted on a glass plate B with a thermofusible wax C such as Picane wax, and only the part D is covered except for the other parts. Then, it is immersed in corrosive liquid F in container E to perform chemical corrosion, creating a corroded surface with a hole in the center like part G, and the area around the hole as an area that can be observed through transmission. However, in this case, the slope of the corroded area is quite steep, so the permeable area is very narrow. The jet polishing method shown in Figure 2 was developed with the aim of widening this area, and by applying a powerful stream of corrosive liquid to the sample surface using a nozzle, the jet polishing method By widening the flat surface G, it was possible to slightly expand the observable area. However, these two methods have a common problem in that the success rate of creating thin section samples is low due to the difficulty of maintaining constant corrosion conditions.
Furthermore, since the transmissible area is not wide enough, it is very difficult to observe a desired narrow specific area. A more recently developed ion bombardment method is
This method uses an ion sputtering device to spray high-speed argon ions, which are created by heating and accelerating high-purity low-pressure argon gas in a vacuum with a discharge between high-pressure electrodes, onto the target crystal. Since the etching rate is extremely slow at 2 to 3 microns/hour, it is rarely used except in the final step of thinning a sample, for example. On the other hand, in the manufacturing of semiconductor devices, there is a phenomenon in which deterioration of device characteristics occurs due to various causes, and this deterioration of characteristics is often caused by defects in specific local regions of devices or material wafers. In such a case, in order to observe this specific local area with an electron microscope, the thin section must include that narrow area. For example, as shown in FIGS. 3a (top view) and b (side view) of a light emitting device, there are non-conformities called dark lines (DL) and dark spots (DS) K in the Ga ship-GaNASDH laser device 1. There are problems with the generation and growth of the light-emitting region, and these are considered to be one of the factors that cause device deterioration, so there are cases where it is necessary to observe and study this part using an electron microscope. In this case, the non-light-emitting region L that requires observation is an extremely narrow local region as shown in the figure.
かかる半導体結晶の極めて狭い特定領域を観察するため
には、従来の試料作成方法では不可能に近く、特別の手
順方法が必要となる。本発明はこのような、従来方法で
は観察に適した試料を作成できなかった極めて狭い特定
領域を、観察することのできる電子顕微鏡用試料を作成
する方法を提供せんとするもので、イオン衝撃法と、化
学腐蝕法乃至化学機械研磨法を併用して、比較的高い成
功率で狭い特定領域を含む薄片試料を得ることに成功し
たものである。In order to observe such an extremely narrow specific region of a semiconductor crystal, it is almost impossible to do so using conventional sample preparation methods, and a special procedure is required. The present invention aims to provide a method for creating a sample for electron microscopy that can observe an extremely narrow specific area, for which it was not possible to create a sample suitable for observation using conventional methods. By using a combination of chemical etching and chemical mechanical polishing methods, we were able to successfully obtain a thin sample containing a narrow specific area with a relatively high success rate.
以下に本発明を第4図を参照しながら説明する。The present invention will be explained below with reference to FIG.
先ず本発明による試料作成方法の手順は次の如くである
。First, the procedure of the sample preparation method according to the present invention is as follows.
‘1’ 先ず観察すべき特定領域1を半導体ウェーハ2
の中に三次元の位置で決定する。'1' First, the specific area 1 to be observed is placed on the semiconductor wafer 2.
Determine the three-dimensional position within.
(2} 次に特定領域1に近い側の面3より領域1の近
傍まで、化学腐蝕によって領域1より上の部分4を除去
する。(2) Next, the portion 4 above the region 1 is removed by chemical etching from the surface 3 on the side closer to the specific region 1 to the vicinity of the region 1.
化学腐蝕で除去できない場合は、イオン衝撃法で除去す
る。‘3’次に裏面5の表層部6を化学機械研磨又は化
学腐蝕法により除去し、面7を清浄かつ平坦な面とし、
且つ全面部の厚さが50ミクロン以下となるようにする
。If it cannot be removed by chemical corrosion, it can be removed by ion bombardment. '3' Next, the surface layer 6 of the back surface 5 is removed by chemical mechanical polishing or chemical etching to make the surface 7 clean and flat,
In addition, the thickness of the entire surface should be 50 microns or less.
‘4} 次に特定領域1を中心とした約100乃至50
0ミクロン四方の板8に、男関又は切断により裁断する
。'4} Next, approximately 100 to 50
It is cut into 0 micron square plates 8 by man-cutting or cutting.
■ この薄板をこれより小さな円孔9を中心部に有する
直径3粍の円板10上に、特定領域1を上にしかつ特定
領域1が円孔9の中心に位置するよう貼付する。(2) This thin plate is pasted onto a disk 10 having a diameter of 3 mm and having a smaller circular hole 9 in the center, with the specific area 1 facing upward and the specific area 1 being located at the center of the circular hole 9.
■ 最後に円孔9の下側から第4図fに示すようにイオ
ン衝撃を行って「特定領域1を含む部分を電子線の透過
し得る厚さとして、所望の試料11を得る。(2) Finally, ion bombardment is performed from the bottom of the circular hole 9 as shown in FIG. 4f to obtain a desired sample 11 with a thickness that allows the electron beam to pass through the portion including the specific region 1.
上記のようにして作成した薄片試料ilは、殆んどが透
過観察可能で成功率は極めて高い。Most of the thin section samples il prepared as described above can be observed through transmission, and the success rate is extremely high.
上述したように「上記(1}乃至【6ーの手順を含む本
発明による試料作成方法は、半導体結晶の透過電子顕微
鏡用試料を作成するための、極めて成功率の高い方法と
して大いに推奨に価するものである。As mentioned above, the sample preparation method according to the present invention including the steps (1) to [6- above] is highly recommended as a method with an extremely high success rate for preparing samples for transmission electron microscopy of semiconductor crystals. It is something to do.
第1図及び第2図は従来方法を示す説明図、第3図は本
発明による方法の一実施対象例であるレーザー発光素子
の結晶欠陥部の説明図、第4図は本発明による試料作成
方法を手順の順序で示す説明図である。
1……狭い特定領域、2・・・・・・半導体ゥェーハ、
3,5・…”ウェーハ面、9……小円孔、10…・・・
小円板、11…・・・完成試料。
第1図
第2図
第3図
第4図Figures 1 and 2 are explanatory diagrams showing the conventional method, Figure 3 is an explanatory diagram of a crystal defect part of a laser emitting device which is an example of the method according to the present invention, and Figure 4 is a diagram showing sample preparation according to the present invention. FIG. 2 is an explanatory diagram showing the method in the order of steps. 1... Narrow specific area, 2... Semiconductor wafer,
3,5..."Wafer surface, 9...Small circular hole, 10...
Small disk, 11... Completed sample. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
するための、透過電子顕微鏡用試料の作成方法において
、前記半導体ウエーハの片面を前記特定領域に近い側の
面より、化学腐蝕法乃至イオン衝撃法により、特定領域
の近く迄平行層状に除去し、さらに該ウエーハの裏面を
化学機械研磨乃至化学腐蝕により層状に除去して、厚さ
を50ミクロン以下にかつ平滑な面に形成した後、劈開
又は切断等により特定領域を略中心とする100乃至5
00ミクロン平方の角状薄板に截断し、該薄板をその大
きさよりも小なる円孔を中心部に有する小円板上に、特
定領域を上にしかつ該薄板が前記小円孔を覆うように貼
付し、さらに該小円孔の裏側からイオンエツチングによ
り、特定領域が電子線の透過し得る厚さになるまでエツ
チングして、試料作成を完成する手順を含んでいること
を特徴とする透過電子顕微鏡用試料作成方法。1. In a method for preparing a specimen for a transmission electron microscope for observing an extremely narrow specific region of an inner layer of a semiconductor wafer, one side of the semiconductor wafer is treated from the side closer to the specific region by a chemical etching method or an ion bombardment method. , remove the wafer in parallel layers close to a specific area, and then remove the back side of the wafer in layers by chemical mechanical polishing or chemical etching to form a smooth surface with a thickness of 50 microns or less, and then cleave or cut. 100 to 5 approximately centered on a specific area, etc.
Cut the thin plate into a rectangular thin plate of 0.00 micron square, and place the thin plate on a small disk having a circular hole smaller than the size of the thin plate in the center, with the specific area facing upward and so that the thin plate covers the small circular hole. A transmission electron transmission method characterized by comprising a step of attaching the sample and etching it from the back side of the small circular hole by ion etching until the specific area has a thickness that allows the electron beam to pass through, thereby completing sample preparation. Method for preparing specimens for microscopy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52074479A JPS6010252B2 (en) | 1977-06-24 | 1977-06-24 | Method for preparing specimens for transmission electron microscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52074479A JPS6010252B2 (en) | 1977-06-24 | 1977-06-24 | Method for preparing specimens for transmission electron microscopy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS549572A JPS549572A (en) | 1979-01-24 |
JPS6010252B2 true JPS6010252B2 (en) | 1985-03-15 |
Family
ID=13548439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52074479A Expired JPS6010252B2 (en) | 1977-06-24 | 1977-06-24 | Method for preparing specimens for transmission electron microscopy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6010252B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4619490B2 (en) * | 2000-06-19 | 2011-01-26 | 株式会社半導体エネルギー研究所 | Inspection method of semiconductor device |
CN103900887A (en) * | 2012-12-28 | 2014-07-02 | 北京有色金属研究总院 | Method for displaying macro morphology of as-cast lead or lead alloy |
-
1977
- 1977-06-24 JP JP52074479A patent/JPS6010252B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS549572A (en) | 1979-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6042736A (en) | Method for preparing samples for microscopic examination | |
US7538322B2 (en) | Method of fabricating sample membranes for transmission electron microscopy analysis | |
US5977543A (en) | Sample for transmission electron microscope analysis having no conductive material in the electron beam path, and its manufacturing method | |
US7345289B2 (en) | Sample support prepared by semiconductor silicon process technique | |
US6140652A (en) | Device containing sample preparation sites for transmission electron microscopic analysis and processes of formation and use | |
US20180136148A1 (en) | Chip Assembly For Measuring Electrochemical Reaction On Solid-Liquid Phase Interface In Situ | |
US11592462B2 (en) | Diamond probe hosting an atomic sized defect | |
JP4229837B2 (en) | Electrostatic manipulating device | |
JP3781723B2 (en) | Sample holder for freezing breakage of high-pressure freezing apparatus and high-pressure freezing apparatus | |
CN111693554A (en) | Preparation method of TEM sample | |
JPS6010252B2 (en) | Method for preparing specimens for transmission electron microscopy | |
US8105499B2 (en) | Transmission electron microscopy sample etching fixture | |
CN113466268B (en) | Combined sample and preparation method thereof | |
US6927174B2 (en) | Site-specific method for large area uniform thickness plan view transmission electron microscopy sample preparation | |
JP2000230891A (en) | Method for preparing sample for transmission electron microscope | |
JPH11183339A (en) | Sample preparation method for transmission electron microscope | |
Latif | Nanofabrication using focused ion beam | |
KR20030045417A (en) | method for manufacturing Transmission Electron Microscope of Specimen for Analyzing | |
CN109524574A (en) | Flexible display panels test sample and preparation method thereof, defect analysis method | |
JP2000081381A (en) | Method and device for manufacturing probe for scanning probe microscope | |
JP2001242051A (en) | Sample stand for focused ion beam processing device and sample fixing method | |
JP2002148162A (en) | Slice sample fixing method and sample using it | |
JP5861333B2 (en) | Evaluation method of bonded surface of bonded substrate | |
JPH08313415A (en) | Sample production method of transmission electron microscope and converged ion beam processing apparatus | |
JPH0541152A (en) | Manufacture of electric field emission cathode |