JPS6010072B2 - Method for producing low viscosity mixed coal oil - Google Patents
Method for producing low viscosity mixed coal oilInfo
- Publication number
- JPS6010072B2 JPS6010072B2 JP16106781A JP16106781A JPS6010072B2 JP S6010072 B2 JPS6010072 B2 JP S6010072B2 JP 16106781 A JP16106781 A JP 16106781A JP 16106781 A JP16106781 A JP 16106781A JP S6010072 B2 JPS6010072 B2 JP S6010072B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- coal
- viscosity
- mixture
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Liquid Carbonaceous Fuels (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【発明の詳細な説明】
本発明は微粒または微粉状石炭とパラフィン系重油また
は混合基重油等水素舎量の多い石油系重質油との混合物
から低粘度の混炭油を製造する方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a low-viscosity mixed coal oil from a mixture of fine particles or powdered coal and petroleum-based heavy oil with a large hydrogen content, such as paraffinic heavy oil or mixed base heavy oil. be.
石炭を微粉砕して重油と混合しスラリー状とし流体化す
ることは輸送取扱上有利なため、戦前より海軍燃料廠で
研究されていた。Finely pulverizing coal and mixing it with heavy oil to form a slurry and turning it into a fluid was advantageous for transport, and research had begun at naval fuel depots since before the war.
即ち、石炭の比重による洗炭法が発案され、この洗炭石
炭に重油を混合し、相当安定な混炭重油を試製し、2〜
3ケ月程度は完全に石炭を沈降しない成績を得たが長期
貯蔵には耐えないし又重油に新しく加えると完全に混合
しないことが判つ5た。That is, a method of washing coal based on the specific gravity of coal was proposed, and heavy oil was mixed with this washed coal to produce a fairly stable mixed coal heavy oil.
Although it was obtained that the coal did not settle completely for about 3 months, it was found that it did not withstand long-term storage, and that it did not mix completely when newly added to heavy oil5.
この後低温タールを前記の濠炭重油に加え1年程度の貯
蔵に耐えるものを作り、実用燃焼実験を行い良成績を得
た。然し石炭を徴粉化しタール及び重油とェマルジョン
にすると粘度が高くなるので100メッシュ程度に止め
ざるを得ず従って安0定性が悪くなり、且本方法は製造
費が高価となる故実用に至らなかった。(海軍燃料廠史
第426頁)昭和4母王の石油ショック後わが国でも研
究が再開され、実用化試験に進みつつある。これ等の研
究報告を見ると鷹炭油は常温における粘度が著しく夕高
く、C重油程度の粘度に下げるためには常時60℃以上
に加熱保温する必要がある。次に混炭油(COM)は安
定性が悪く静道する時は石炭が比重差のため分離する。Thereafter, low-temperature tar was added to the moat coal heavy oil to create a product that could be stored for about a year, and practical combustion experiments were conducted with good results. However, when coal is pulverized and made into an emulsion with tar and heavy oil, the viscosity increases, so it has to be limited to about 100 mesh, resulting in poor stability, and this method is expensive to produce, so it is not practical. Ta. (Navy Fuel Plant History, p. 426) After the oil crisis of the 4th year of the Showa era, research was restarted in Japan, and practical tests are now underway. According to these research reports, the viscosity of Taka coal oil at room temperature is extremely high, and in order to reduce the viscosity to the level of C heavy oil, it is necessary to constantly heat and keep it at 60°C or higher. Next, mixed coal oil (COM) is unstable and when it runs still, the coal separates due to the difference in specific gravity.
これを防ぐため高価な界面活性剤を使用する必要がある
。本発明は前記海軍燃料廠の研究にヒントを得て混炭油
の相反する2つの要求、すなわち粘度と安定性を任意に
調整し得る混炭油の製造法を提供せんとするもので且つ
、製造工程中に常圧残油など重質油の熱分解方法を導入
することにより副産品として附加価値の高い揮発油、灯
軽油などのいわゆる白油と、メタンガスを50%以上含
む高カロリーガスを収率よく取得する方法を提供せんと
するものである。石炭を3仇肋以上の塊状に破砕し、内
熱又は外熱方式により35000以上に加熱するときは
、熱分解と同時に熱重合を起すので、熱分解により出来
た軽質油が系内で重合反応を起し、得られた低温タール
に含まれる200qo以下の揮発油分の含量は5%以下
の少量となる。To prevent this, it is necessary to use expensive surfactants. The present invention is inspired by the research on the naval fuel depot, and aims to provide a method for producing mixed coal oil in which the two conflicting requirements of mixed coal oil, namely viscosity and stability, can be arbitrarily adjusted. By introducing a thermal decomposition method for heavy oils such as atmospheric residual oil, we can produce high value-added by-products such as white oils such as volatile oil and kerosene oil, as well as high-calorie gases containing 50% or more of methane gas, in high yields. It is intended to provide a method for obtaining the information. When coal is crushed into chunks of 3 or more ribs and heated to 35,000 or more using internal or external heating, thermal polymerization occurs at the same time as thermal decomposition, so the light oil produced by thermal decomposition undergoes a polymerization reaction within the system. The content of volatile oil of 200 qo or less contained in the obtained low-temperature tar is as small as 5% or less.
これは熱の不良導体である石炭を気相で加熱するため、
分解反応を開始する350q0以上に昇温するために時
間を要するのと均一加熱が困難なことの二つの原因で、
分解反応より重合反応が多く進み軽質分の少し、車質タ
ールと半成コークスが多く生成し、ガス中にはメタンガ
スが少く水素が多くなる。本発明は石炭を微粒または微
粉状態とし、水素含量の多い石油系重質油を熱媒体とし
て使用するとともに急速、且つ、均一に350午0以上
に加熱することにより重合反応を抑制し分解反応のみを
進行することに成功したものである。This heats coal, which is a poor conductor of heat, in the vapor phase.
This is due to two reasons: the time it takes to raise the temperature above 350q0, which is the point at which the decomposition reaction begins, and the difficulty in uniform heating.
The polymerization reaction proceeds more than the decomposition reaction, producing a small amount of light components, a large amount of car tar and semi-formed coke, and the gas contains less methane gas and more hydrogen. The present invention suppresses the polymerization reaction and only suppresses the decomposition reaction by turning coal into fine grains or powder, using petroleum-based heavy oil with a high hydrogen content as a heat medium, and rapidly and uniformly heating the coal to a temperature of 350 pm or higher. We succeeded in progressing the process.
後述する実験例において副生するガス中にメタンガスが
多いことはこの推定を証明している。かつ又石炭から揮
発分の大部を石油系重質油に溶出されたものが熱分解反
応を受けるので局部加熱により過分解するおそれが少し
、。揮発分の大部分を放出した石炭は多孔質の半成コー
クスとなりかさ比重が小で石油系重質油となじみ易く石
炭徴粉のように塔底に固く沈澱するおそれがない。換言
すれば半成コークスの混炭油は生石炭の混炭油より安定
性に富んでいる。また石炭より生じた低温タールは前記
の海軍燃料廠史に見るように安定剤として作用するので
高価な安定剤を必要としない。The fact that there is a large amount of methane gas in the by-product gas in the experimental examples described later proves this assumption. Moreover, since most of the volatile components from coal are eluted into heavy petroleum oil and undergo a thermal decomposition reaction, there is a slight risk of over-decomposition due to local heating. The coal that has released most of its volatile content becomes porous semi-formed coke, which has a low bulk specific gravity and is easily compatible with petroleum-based heavy oil, so there is no risk of it settling hard at the bottom of the tower like coal dust. In other words, the mixed coal oil of semi-formed coke is more stable than the mixed coal oil of raw coal. In addition, the low-temperature tar produced from coal acts as a stabilizer, as seen in the history of naval fuel depots, so expensive stabilizers are not required.
本発明を図面に基いて説明すると、第1図に示すように
、石炭ホッパー日cより徴粉(60メッシュ以下)の石
炭は混合器MでオイルタンクHoより送られた適量の童
質油と均一に混合される。To explain the present invention based on the drawings, as shown in FIG. Evenly mixed.
童質油と均一に混合された微粉石炭はスラリーポンプp
,により常圧又は、50k9/の以下に加圧され加熱炉
Fに送入され350つ0以上50000以下に加熱され
第一反応繋P,に送られる。第一反応塔R,における分
解熱を補給し重合反応を防ぐためスチームs血を加熱炉
Fで60qo以上に加熱し第一反応塔R,第二反応塔R
2の底部に吹き込む。加熱炉Fの混炭油の加熱コイルは
当然コーキングを起すと思われるので、袴厭昭55一第
183987号連続ヂコーキング方式を採用し過熱蒸気
コイルと混炭油加熱コイルを適時切換えて使用する方法
が望ましい。すなわち第1図に示すように加熱炉Fの加
熱管は二重コイルh,,h2からなっており、最初加熱
管h,を混炭油の加熱に使用し加熱管h2はスチームの
加熱に使用し一定時間後h,1こコークスが生じポンプ
p,の圧力が上昇したら、点線で示すようにフィードを
切換え加熱管h,にスチーム又は酸素を含むスチームを
通しデコーキングを行い加熱管h2により混炭の加熱を
行う。この切換操作を行うことにより連続的にデコーキ
ングを行うことが可能となり車質混炭油を分解し低粘度
混炭油とすることが可能となる。第一反応塔R,を出た
混炭油は第二反応塔R2において過熱蒸気により軽質分
をストリップされ塔底の半成コークスと重油の混炭油は
スラリーポンプp2により系外に抜き出される。Pulverized coal uniformly mixed with virgin oil is pumped into slurry pump p.
, and pressurized to normal pressure or below 50k9/2, fed into a heating furnace F, heated to a temperature of 350 to 50,000, and sent to a first reaction connection P. In order to replenish the decomposition heat in the first reaction tower R and prevent the polymerization reaction, the steam blood is heated to 60 qo or more in the heating furnace F, and then the steam is heated to 60 qo or more in the first reaction tower R and the second reaction tower R.
Blow into the bottom of 2. Since the heating coil for mixed coal oil in heating furnace F is thought to naturally cause coking, it is preferable to adopt the continuous coking method described in Hakama Kei Sho 55-1 No. 183987 and to switch between the superheated steam coil and the mixed coal oil heating coil at appropriate times. . That is, as shown in Fig. 1, the heating tube of heating furnace F consists of double coils h, h2, and heating tube h is first used to heat mixed coal oil, and heating tube h2 is used to heat steam. After a certain period of time, when coke is generated and the pressure in pump p increases, the feed is switched as shown by the dotted line, and steam or oxygen-containing steam is passed through heating tube h for decoking, and mixed coal is heated through heating tube h2. Perform heating. By performing this switching operation, it becomes possible to perform decoking continuously, and it becomes possible to decompose the car quality mixed coal oil into a low viscosity mixed coal oil. The mixed coal oil that has exited the first reaction tower R is stripped of light components by superheated steam in the second reaction tower R2, and the mixed coal oil of semi-formed coke and heavy oil at the bottom of the tower is extracted out of the system by a slurry pump p2.
混炭油の粘度は還流塔Rfまたは糟溜塔Cの塔底油を適
量カットバックし調整する。The viscosity of the mixed coal oil is adjusted by cutting back an appropriate amount of the bottom oil of the reflux tower Rf or the distillation tower C.
すなわち冬季など気温の低い時はカットバック量を増し
夏季気温の高い時はカットバック量を減じあるいは無に
することもある。本フローシートでは反応塔を2段シリ
ースに使用したが、過分鱗によりコークス化し閉塞する
可能性がある時は切換式に使用してもよい。That is, when the temperature is low, such as in the winter, the amount of cutback may be increased, and when the temperature is high in the summer, the amount of cutback may be reduced or eliminated. In this flow sheet, the reaction tower is used in a two-stage series, but it may be used in a switching type when there is a possibility of coke formation and blockage due to excessive scale.
又反応塔R2では浸炭油を半成コークスScまで分解し
図1点線で示すように取り出し、糟溜塔Cの塔底油と適
当な比率で混合し、粉砕機p3を経て混炭油としてもよ
い。更にパラフィン基の重質油で分解し易くコークス化
のおそれのない場合は反応塔を一本としてもよい。Further, in the reaction tower R2, the carburized oil is decomposed into semi-coke Sc, taken out as shown by the dotted line in Figure 1, mixed with the bottom oil of the distillation tower C in an appropriate ratio, and passed through the crusher p3 to form a mixed coal oil. . Furthermore, if the heavy oil has paraffin groups and is easily decomposed and there is no risk of coking, the number of reaction columns may be one.
第1図に示した石炭ホッパー日cよりの点線の部分は石
炭が微粒(60メッシュ以上3側程度)の場合を示す。
ホッパーを出た微粒石炭は子熱器日で350oo附近ま
で予熱され、反応塔R,頂部に直薮送入される。この場
合反応塔R,で400℃以上に加熱され、繁底の混炭油
は泥状にはなるが完全にミクロン単位のコ。イドとはな
り難いので、反応塔R2の出口で更に熱間磨砕する必要
がある。この場合冷間で徴粉化する場合より、このよう
に熱間磨砕した方が大幅に動力を節約できる。次にバッ
チ式ベンチスケールで実施した実施例を表1に示し、公
知の塩化亜鉛触媒を石炭徴粉に加え、5ぴ気圧430℃
で分解した結果を表2に示す。The dotted line portion from the coal hopper date c shown in FIG. 1 shows the case where the coal is fine (60 mesh or more, about 3 sides).
The granulated coal leaving the hopper is preheated to around 350 oo in a heater, and is directly fed to the top of the reaction tower R. In this case, the mixed coal oil at the bottom is heated to 400°C or higher in the reaction tower R, and although it becomes muddy, it is completely reduced to micron scale. Since it is difficult to form an id, it is necessary to perform further hot grinding at the outlet of the reaction column R2. In this case, hot grinding can significantly save power compared to cold grinding. Next, an example carried out on a batch bench scale is shown in Table 1, in which a known zinc chloride catalyst was added to coal powder at 5 p atm and 430°C.
The results of the decomposition are shown in Table 2.
表 1細
し○
○
船
実施例 1
表1は中東原油の常圧残澄1000餌に対し、200メ
ッシュ以下の徴粉石炭(北蕨化成夕張新燭)200蚊を
加え500℃の温度において加熱分解した結果を実験番
号T−25に示す。Table 1 Thin ○ ○ Ship Example 1 Table 1 shows that 200 mosquitoes of powdered coal of 200 mesh or less (Kitawarabi Kasei Yubari Shintan) were added to 1000 baits of atmospheric residue of Middle Eastern crude oil and heated at a temperature of 500°C. The results of the decomposition are shown in Experiment No. T-25.
なお、同装置により非晶質アルミノシリケ−ト触媒(A
IlositeK本)を使用し、480%の温度におい
て液相接触分解した結果を参考のため実験番号T−11
に示した。表1から明らかに分かるように、分解油の収
率は石炭の場合81.榊t%に対しAIl0siteK
本の場合、65.25%である。In addition, the same equipment is used to prepare amorphous aluminosilicate catalyst (A
The results of liquid phase catalytic cracking at a temperature of 480% are shown in experiment number T-11 for reference.
It was shown to. As clearly seen from Table 1, the yield of cracked oil is 81. AIl0siteK for Sakaki t%
For books, it is 65.25%.
石炭を公知の方法により低温乾溜した場合10〜15M
%の低温タールが得られるから200釘の石炭に対し3
0罫のタールが得られたとして原料油1000針に対し
3%の収率増加に過ぎぬはずであるが石油系の水素含量
の多い常圧残油が熱媒体として作用し微粉状の石炭を均
一に加熱したため分解反応が円滑に行われ重合反応を防
ぎタールの収率が著しく増加し50%以上に達したもの
と推察される。10-15M when coal is dry distilled at low temperature by a known method
3% low-temperature tar is obtained for 200 nails of coal.
If 0 scale tar is obtained, the yield should only increase by 3% for 1000 needles of feedstock oil, but petroleum-based atmospheric residual oil with a high hydrogen content acts as a heat medium and the fine coal powder is heated. It is assumed that the uniform heating facilitated the decomposition reaction and prevented the polymerization reaction, resulting in a remarkable increase in tar yield reaching 50% or more.
尚実施における装置は簡単なものであり更に反応条件、
反応塔の構造等を改善することにより液化率を向上し得
る可能性がある。また分解ガスの収率は実験番号T−1
1の場合、9.07%であったが石炭を加えた実験番号
T−25においては5.98%となりかえって少く、石
炭が温和な条件で分解を受け、分解ガス中にも水素が必
鮫的少くメタンガス50.24%と著しく多い。結果的
に液化率が改善されたものと思われる。次に得られた半
成コークスを微粉砕し分解油と50:50の比率で混合
し70ooの粘度を測定し、次の結果を得た。試料番号
分解油溜分 粘 度 at 7.00CI
330℃以上 260 cp2 30
0℃以上 175 cp3 250℃以上
140 cp粘度計は回転円筒式で3号ロータ使用
(3比p〜130比p)C重油を基油としたCOMは通
常70℃においても100比p以上の高粘度であるが、
本発明の分解油はA重油程度なので粘度は公知のC。The equipment used in the implementation is simple, and the reaction conditions,
It is possible that the liquefaction rate can be improved by improving the structure of the reaction tower. In addition, the yield of cracked gas is experimental number T-1.
In the case of No. 1, it was 9.07%, but in Experiment No. T-25, in which coal was added, it was 5.98%, which was much lower, indicating that the coal undergoes decomposition under mild conditions and that hydrogen is also present in the decomposed gas. The amount of methane gas is 50.24%, which is extremely high. It seems that the liquefaction rate was improved as a result. Next, the obtained semi-formed coke was pulverized and mixed with cracked oil at a ratio of 50:50, and the viscosity of 70oo was measured, and the following results were obtained. Sample number Cracking oil fraction Viscosity at 7.00CI
330℃ or higher 260 cp2 30
0℃ or higher 175 cp3 250℃ or higher
The 140 cp viscometer is a rotating cylindrical type and uses a No. 3 rotor (3 ratio p to 130 ratio p). COM with C heavy oil as the base oil usually has a high viscosity of 100 ratio p or more even at 70°C.
Since the cracked oil of the present invention is comparable to heavy oil A, its viscosity is C, which is known.
Mのき以下で著しく流動性に富む。試料No.1のCO
Mは安定性も良く約1ケ月常温で放置したが硬い晩積物
は生じなかった。It is extremely fluid below M. Sample No. 1 CO
M had good stability and was left at room temperature for about one month, but no hard deposits were formed.
公知のA重油を基油とする石炭のCOMは界面活性剤を
加えない場合約一週間で完全に分離し且次積物は固く底
面にゲル化し固着し、ポンプによる移送は不可能になる
。実施例 2
表2は、中国大慶原油の軽油分をFCC装置により接触
分解した際副生したデカントオィル80凶に対し、徴粉
炭20凶と石炭に対し10%の塩化亜鉛を加えまたは加
うろことなく、400〜450q0、50k9/地の条
件で分解した結果を示した。If no surfactant is added to the known COM of coal based on heavy oil A, it will completely separate in about a week, and the resulting product will solidify into a gel and stick to the bottom surface, making it impossible to transport by pump. Example 2 Table 2 shows that pulverized coal and 10% zinc chloride were added or not added to the decant oil, which was produced as a by-product when the light oil content of Daqing crude oil in China was catalytically cracked using an FCC device, with or without addition of pulverized coal and 20% zinc chloride. , 400-450q0, 50k9/earth conditions.
反応時間は10分、カーボン収率は石炭を加えない実験
番号57.7、2が11.5%であり、実験番号57.
8、17が20.5%、57.813が21.7%(内
塩化亜鉛2%)であるからデカントオイルからのカーボ
ン11.5%を後者から差引けば石炭から生じたカーボ
ンは9%以下となり、石炭の約50%は油化したことに
なる。本発明の特徴及び効果を挙げれば次の通りである
。The reaction time was 10 minutes, and the carbon yield was 11.5% for Experiment No. 57.2 without adding coal, and Experiment No. 57.2.
8 and 17 are 20.5% and 57.813 is 21.7% (inner zinc chloride 2%), so if you subtract the 11.5% carbon from the decant oil from the latter, the carbon generated from the coal is 9%. This means that about 50% of the coal has been converted into oil. The features and effects of the present invention are as follows.
01微粉状の石炭を触媒的に使用しパラフィン系または
混合基重質油を熱分解することにより80%以上の高収
率で分解油が得られる。01 By thermally decomposing paraffinic or mixed base heavy oil using finely divided coal as a catalyst, cracked oil can be obtained with a high yield of 80% or more.
【2} 混炭油の製造工程に熱分解工程を導入すること
により附加価値の高い白油が35〜40%の高収率で得
られる。[2] By introducing a pyrolysis step into the production process of mixed coal oil, white oil with high added value can be obtained at a high yield of 35 to 40%.
{31 得られた混炭油は粘度が低く且つ石炭から生成
した低温タールが安定剤として作用するので安定性が良
好である。{31 The resulting mixed coal oil has low viscosity and good stability because the low-temperature tar produced from the coal acts as a stabilizer.
高価な界面活性剤を必要としない。{4’運転条件を変
更することにより厳寒期(5℃以下)でも流動性のある
COMを製造することができる。Does not require expensive surfactants. {4' By changing the operating conditions, it is possible to produce COM with fluidity even in the coldest period (below 5°C).
■ 副産品として白油と高カロリーガスを収率よく取得
できるので混炭油製造に要する諸経費の大部分を捻出す
ることが可能で経済上極めて有利である。■ Since white oil and high-calorie gas can be obtained as by-products at a high yield, it is possible to save most of the overhead costs required for producing mixed coal oil, which is extremely advantageous economically.
‘6} 塩化亜鉛を石炭に加え触媒として使用してきた
半成コークスは、700q0以上でスチームまたは空気
により処理することにより、活性炭とすることができる
。'6} Semi-formed coke, which has been used as a catalyst by adding zinc chloride to coal, can be made into activated carbon by treating it with steam or air at 700q0 or more.
図面は本発明方法の概要を示すもので第1図はそのフロ
ーシートを示す。
第1図The drawings show an overview of the method of the present invention, and FIG. 1 shows its flow sheet. Figure 1
Claims (1)
油とを混合したものを、触媒を加えまたは加うることな
く、常圧もしくは加圧下にて350℃以上の温度で急速
均一加熱した後400℃〜550℃の温度において分解
反応を行うことによりガス、ナフサ、灯軽油分を溜出分
離するとともに低粘度の分解重油と半成コークスとの混
合物を得る低粘度混炭油の製造方法。 2 溜出分離された灯軽油分を、分解重油と半成コーク
スとの混合物に一部戻すことによって該混合物の粘度を
調整するようになした特許請求の範囲第1項記載の低粘
度混炭油の製造方法。 3 微粒または微粉状石炭と水素含量の多い石油系重質
油とを混合したものを、常圧もしくは加圧下にて350
℃以上の温度で急速均一加熱した後400℃〜550℃
の温度において分解反応を行うことによりガス、ナフサ
、灯軽油分を溜出分離するとともに缶残渣として半成コ
ークスを得、然る後、上記溜出分離された灯軽油分と半
成コークスとを混合することにより低粘度の分解重油と
半成コークスとの混合物を得る低粘度混炭油の製造方法
。 4 灯軽油分の混合割合を増減することによって低粘度
の分解重油と半成コークスとの混合物の粘度を調整する
ようになした特許請求の範囲第3項記載の低粘度混炭油
の製造方法。[Claims] 1. A mixture of fine particles or powdered coal and heavy petroleum oil with a high hydrogen content, with or without the addition of a catalyst, at a temperature of 350°C or higher at normal pressure or pressurization. A low-viscosity mixed coal that is rapidly and uniformly heated at a temperature of 400°C to 550°C and then undergoes a cracking reaction to distill and separate gas, naphtha, and kerosene oil, and to obtain a mixture of low-viscosity cracked heavy oil and semi-finished coke. Method of producing oil. 2. The low viscosity mixed coal oil according to claim 1, wherein the kerosene and light oil fraction distilled and separated is partially returned to the mixture of cracked heavy oil and semi-formed coke to adjust the viscosity of the mixture. manufacturing method. 3 A mixture of fine particles or powdered coal and heavy petroleum oil with a high hydrogen content is heated to 350 ml under normal pressure or pressurization.
400℃~550℃ after rapid uniform heating at a temperature of ℃ or higher
Gas, naphtha, and kerosene oil are distilled and separated by carrying out a cracking reaction at a temperature of A method for producing low viscosity mixed coal oil, which obtains a mixture of low viscosity cracked heavy oil and semi-formed coke by mixing. 4. The method for producing a low-viscosity mixed coal oil according to claim 3, wherein the viscosity of the mixture of low-viscosity cracked heavy oil and semi-formed coke is adjusted by increasing or decreasing the mixing ratio of kerosene and gas oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16106781A JPS6010072B2 (en) | 1981-10-12 | 1981-10-12 | Method for producing low viscosity mixed coal oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16106781A JPS6010072B2 (en) | 1981-10-12 | 1981-10-12 | Method for producing low viscosity mixed coal oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5863788A JPS5863788A (en) | 1983-04-15 |
JPS6010072B2 true JPS6010072B2 (en) | 1985-03-14 |
Family
ID=15727983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16106781A Expired JPS6010072B2 (en) | 1981-10-12 | 1981-10-12 | Method for producing low viscosity mixed coal oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6010072B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110441214A (en) * | 2019-08-26 | 2019-11-12 | 中国地质大学(北京) | Coal sample crack pervasion test device and its test method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2735991B2 (en) * | 1993-03-17 | 1998-04-02 | 三菱重工業株式会社 | Power generation method |
-
1981
- 1981-10-12 JP JP16106781A patent/JPS6010072B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110441214A (en) * | 2019-08-26 | 2019-11-12 | 中国地质大学(北京) | Coal sample crack pervasion test device and its test method |
Also Published As
Publication number | Publication date |
---|---|
JPS5863788A (en) | 1983-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005266712B2 (en) | A process for direct liquefaction of coal | |
US4589973A (en) | Process for recovering oil from raw oil shale using added pulverized coal | |
US5240592A (en) | Method for refining coal utilizing short residence time hydrocracking with selective condensation to produce a slate of value-added co-products | |
US3371029A (en) | Mixed-phase conversion product separation process | |
CN105462610A (en) | Anthracene oil hydrogenation method | |
US2358879A (en) | Destructive hydrogenation | |
CN109082302B (en) | Method for producing distillate oil by mild hydrogenation of inferior/heavy oil slurry bed | |
US4587006A (en) | Process for recovering shale oil from raw oil shale | |
US4035281A (en) | Production of fuel oil | |
KR101891871B1 (en) | Conversion of triacylglycerides-containing oils | |
CN102453510A (en) | Combined processing method of copyrolysis of heavy oil and coal | |
CN105038853B (en) | A kind of method utilizing FCC slurry and coal to refine oil altogether | |
US1996009A (en) | Conversion of solid fuels and products derived therefrom or other materials into valuable liquids | |
CN108048121B (en) | Direct coal liquefaction method and direct coal liquefaction device | |
EP0035864B1 (en) | Process for upgrading heavy hydrocarbonaceous oils | |
WO2014110085A1 (en) | Direct coal liquefaction process | |
JPS6010072B2 (en) | Method for producing low viscosity mixed coal oil | |
US2366218A (en) | Catalytic combination process | |
JPH0798945B2 (en) | Coal conversion method | |
US4431510A (en) | Process for producing hydrogen-enriched hydrocarbonaceous products from coal | |
US2042306A (en) | Process for the manufacture of highly unsaturated or aromatic distillates from heavier oils | |
US2414889A (en) | Destructive hydrogenation | |
US2989460A (en) | Treatment of hydrocarbons | |
US2005192A (en) | Conversion of solid fuel and product derived therefrom or other materials into valuable liquids | |
CN112877090A (en) | Coal direct liquefaction circulating solvent and preparation method and system thereof |