[go: up one dir, main page]

JPS5997889A - Method of controlling attitude of wrist of industrial robot - Google Patents

Method of controlling attitude of wrist of industrial robot

Info

Publication number
JPS5997889A
JPS5997889A JP20360682A JP20360682A JPS5997889A JP S5997889 A JPS5997889 A JP S5997889A JP 20360682 A JP20360682 A JP 20360682A JP 20360682 A JP20360682 A JP 20360682A JP S5997889 A JPS5997889 A JP S5997889A
Authority
JP
Japan
Prior art keywords
wrist
axis
industrial robot
tip
axes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20360682A
Other languages
Japanese (ja)
Inventor
針木 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Fujikoshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoshi KK filed Critical Fujikoshi KK
Priority to JP20360682A priority Critical patent/JPS5997889A/en
Publication of JPS5997889A publication Critical patent/JPS5997889A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は産業用ロボットの軌跡制御において、特に手首
先端位置の平行移動時における手首姿勢の制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to trajectory control of an industrial robot, and particularly to a method of controlling the wrist posture during parallel movement of the wrist tip position.

第1図に示すように旋回軸(1)、前後軸(2)及び上
下軸(3)の3軸からなるアームと、ifのねじり軸(
4)、曲げ軸(5)及び第2のねじり軸(6)の3軸か
らなる手首を具えた産業用ロボットにおいて、従来は手
首の先端に取付けらnる塗装ガンや溶接トーチなどのツ
ール(7)の先端位置を平行移動させるとき、有効なア
ルゴリズムがなかったため、「ツールの先端位置が最終
軸(6)の軸心上にあらねばならない。」と言ったよう
に応用技術面の制約を行っていた。またツール(7)が
塗装ガンのように塗装パターンの方向性があるツールで
ある場合には、第2図のように塗装ガンを7aの位置か
ら7bの位置に矢印方向に平行移wJヲさせると、ガン
の軸方向は保存さ扛ても、ガンの軸回りのねじりがあn
はガンのねじn方向が制御さ扛ないために塗装パターン
(8)は図示の如く実質的に平行移動ができなかった。
As shown in FIG.
4) In industrial robots equipped with a wrist consisting of three axes: a bending axis (5) and a second torsion axis (6), tools such as painting guns and welding torches that are attached to the tip of the wrist ( When moving the tip position of item 7) in parallel, there was no effective algorithm, so we applied technical constraints such as ``The tip position of the tool must be on the axis of the final axis (6).'' I was going. In addition, if the tool (7) is a tool that has a directional coating pattern, such as a painting gun, move the painting gun in parallel in the direction of the arrow from position 7a to position 7b as shown in Figure 2. Even if the axial direction of the gun is preserved, the twisting around the gun's axis is
Since the n-direction of the gun screw was not controlled, the coating pattern (8) could not be substantially translated in parallel as shown.

本発明はこのような問題点の解決を計ったもので、手首
3軸を有する産業用ロボットにおいて、手首の3軸を1
点で交わらせ、先端軸座標案内に独立な2つの単位ベク
トルを想定し、この2つの単位ベクトルを含む平面の方
向を制御することにより、先端軸に取付けらnだツール
の軸方向とねじnの2方向の姿勢を制御可能とした産業
用ロボットの手首姿勢制御方法に関するもので、先端の
ねじり軸上に設置さnるツールの取付位置、方向に制限
をなくし、いかなる取付力をさnたツールであっても、
その方向とツール軸回りのねじりの制御?可能としたも
のである。
The present invention is an attempt to solve these problems, and is an industrial robot with three wrist axes.
Assuming two unit vectors that intersect at a point and are independent of the tip axis coordinate guide, and controlling the direction of the plane containing these two unit vectors, the axial direction of the tool attached to the tip axis and the screw n This is a wrist posture control method for an industrial robot that can control the posture in two directions, eliminating restrictions on the mounting position and direction of the tool installed on the torsion shaft at the tip, and preventing any mounting force from being applied. Even if it is a tool,
Control of its direction and twist around the tool axis? This made it possible.

以下本発明の実施例を図面について説明すると、第3図
において、関節形の産業用ロボットは旋回軸θI (1
1、前後軸θ2(2)、上下軸θ3(3)からなる3つ
のアームと、第1のねじり軸θ4(4)、曲げ軸θ6(
5)、先端軸である第2のねじり軸θ6(6)の3軸か
らなる手首からなり、手首の3軸は1点で交わっている
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 3, an articulated industrial robot has a rotation axis θI (1
1. Three arms consisting of a longitudinal axis θ2 (2), a vertical axis θ3 (3), a first torsion axis θ4 (4), and a bending axis θ6 (
5) The wrist consists of three axes, the second torsion axis θ6 (6) being the tip axis, and the three axes of the wrist intersect at one point.

そして地面の座標e(X、7% 2)、旋回軸θ1上の
座標を(11% 71、Zt  )、前後軸θ2上の座
標を(Xa、y2、z2)、上下軸θ3上の座標’t(
”a、y3、θ6上の座標’!k(xa、y6、Za)
と定めである。更に先端のねじり軸θ6土にそnぞn独
立の単位ベクトルK (0,1,O)お工びP (0,
0,1)を定める。こ扛らベクトルの地面の座標Cx5
y% 2〕への変換は次のようになる。
Then, the ground coordinate e (X, 7% 2), the coordinate on the rotation axis θ1 (11% 71, Zt), the coordinate on the longitudinal axis θ2 (Xa, y2, z2), and the coordinate on the vertical axis θ3' t(
"Coordinates on a, y3, θ6'!k(xa, y6, Za)
It is stipulated that Furthermore, the torsion axis θ6 at the tip is an independent unit vector K (0, 1, O) machining P (0,
0,1). Ground coordinates Cx5 of these vectors
y% 2] is as follows.

(ここでCaはθ1軸のa軸回りの座標変換行列である
。〕 また手首3軸の軸0番、θ5、θ6が1点で交わってい
るので、第4図に示すように先端軸(6) 、に定めら
れた2つの独立なベクトルに、Pで定められる平面(9
)が平行に移動するとき、手首中心Aの移動位置をA1
、先端位置Bの移動位置をB′とするとAAlとB B
’は平行で長さが等しくなる。つ1v手首中心Aの移動
量と先端位置Bの移動量は等しくなり、さらに上記平面
(9)と相互に位置関係が一定なツールの地面に対する
姿勢がその1箇保存される。
(Here, Ca is the coordinate transformation matrix around the a-axis of the θ1-axis.) Also, since axes 0, θ5, and θ6 of the three wrist axes intersect at one point, the tip axis ( 6) The two independent vectors defined by , and the plane defined by P (9
) moves in parallel, the movement position of the wrist center A is A1
, if the moving position of the tip position B is B', then AAl and B B
' are parallel and have equal length. The amount of movement of the wrist center A is equal to the amount of movement of the tip position B, and one posture of the tool with respect to the ground, which has a constant positional relationship with the plane (9), is preserved.

次に本発明におけるアルゴリズムを示す。Next, an algorithm in the present invention will be described.

(a)  現在の手首位置(A点〕の座標を求める。(a) Find the coordinates of the current wrist position (point A).

こ こ で   Si  止  sin  θ土01=
=cos  θI Si+j  A   5in(θ1 + θj)C!i
十j  =:   coθ(θi + θj)11、 
E2  はアームの長さである。
Here Si stop sin θ soil 01=
=cos θI Si+j A 5in(θ1 + θj)C! i
10j =: coθ(θi + θj)11,
E2 is the arm length.

(第3図参照〕 (b)  現在のベクトルに、PI式(1]、(2)よ
り求める。
(See Figure 3) (b) Find the current vector using PI formulas (1) and (2).

(C)  平行移動量をXs、7s、 Zs (!: 
f ルト、A1点の座標が求めらnる ([1)  式(3)エフアーム3軸の位置を求めθ−
一 θ1・θ1 が決定される。
(C) The amount of parallel movement is Xs, 7s, Zs (!:
Find the coordinates of point A1 ([1) Equation (3) Find the position of the 3 axes of F arm θ-
- θ1·θ1 is determined.

(θ)式(1)、(2)を変化した ii (ここでC−xtr1行列Caの逆行列である)J:9
手首各軸のθ4、θ5、θ6が決定できる。
(θ) ii obtained by changing equations (1) and (2) (Here, it is the inverse matrix of the C-xtr1 matrix Ca) J: 9
θ4, θ5, and θ6 of each axis of the wrist can be determined.

本発明によると上述の如くにして次のような効果を奏す
ることができる。
According to the present invention, the following effects can be achieved as described above.

1、 手首3軸を有するロボットのツール取付方法の制
限を全くなくすることができる。
1. There are no restrictions on how to attach tools to a robot with three wrist axes.

2、 平行移動時のツール姿勢および先端位置を制御す
ることができる。
2. The tool posture and tip position during parallel movement can be controlled.

3 コンベアに同期して作業を行うときの3次元シフト
においても、ツールの姿勢を保存してシフトできる。
3. Even in 3D shifting when working in synchronization with the conveyor, the posture of the tool can be preserved and shifted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の産業用ロボットの模式図、第2図は従来
のロボットの手首の移動状態の説明図、第3図は本発明
の詳細な説明するための模式図、第4図は本発明による
手首の移動状況の説明図である。 (4)、(5)、(6)・・・・・・手首の各軸(9)
・・・・・・・・・・・・・・・・・・平 面P、K・
・・・・・・・・・・・ヘクトル代理人弁理士  河 
内 潤 二
Fig. 1 is a schematic diagram of a conventional industrial robot, Fig. 2 is an explanatory diagram of the movement state of the wrist of a conventional robot, Fig. 3 is a schematic diagram for explaining the present invention in detail, and Fig. 4 is a diagram of the present invention. FIG. 3 is an explanatory diagram of the movement status of the wrist according to the invention. (4), (5), (6)... Each axis of the wrist (9)
・・・・・・・・・・・・・・・・・・Plane P, K・
・・・・・・・・・・・・Patent attorney Hector Kawa
Junji Uchi

Claims (1)

【特許請求の範囲】[Claims] 3軸の手首を有する産業用ロボットにおいて、手首の3
軸の軸線を1点で交わらせ、先端軸座標系内に独立な2
つの単位ベクトルを想定し、該2つの単位ベクトルを含
む平面の方向を制御することを特徴とする産業用ロボッ
トの手首姿勢制御方法
In an industrial robot with a 3-axis wrist, the 3-axis wrist
The axes of the shafts intersect at one point, and two independent points are created within the tip axis coordinate system.
A wrist posture control method for an industrial robot, the method comprising assuming two unit vectors and controlling the direction of a plane containing the two unit vectors.
JP20360682A 1982-11-22 1982-11-22 Method of controlling attitude of wrist of industrial robot Pending JPS5997889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20360682A JPS5997889A (en) 1982-11-22 1982-11-22 Method of controlling attitude of wrist of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20360682A JPS5997889A (en) 1982-11-22 1982-11-22 Method of controlling attitude of wrist of industrial robot

Publications (1)

Publication Number Publication Date
JPS5997889A true JPS5997889A (en) 1984-06-05

Family

ID=16476822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20360682A Pending JPS5997889A (en) 1982-11-22 1982-11-22 Method of controlling attitude of wrist of industrial robot

Country Status (1)

Country Link
JP (1) JPS5997889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222528B1 (en) 1997-03-07 2001-04-24 Cirque Corporation Method and apparatus for data input

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120996A (en) * 1979-02-28 1980-09-17 Meidensha Electric Mfg Co Ltd Detector for working force in manipulator* etc*
JPS5755414A (en) * 1980-09-19 1982-04-02 Mitsubishi Heavy Ind Ltd Attitude control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120996A (en) * 1979-02-28 1980-09-17 Meidensha Electric Mfg Co Ltd Detector for working force in manipulator* etc*
JPS5755414A (en) * 1980-09-19 1982-04-02 Mitsubishi Heavy Ind Ltd Attitude control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222528B1 (en) 1997-03-07 2001-04-24 Cirque Corporation Method and apparatus for data input

Similar Documents

Publication Publication Date Title
Hollerbach Optimum kinematic design for a seven degree of freedom manipulator
Han et al. Dextrous manipulation by rolling and finger gaiting
KR101479233B1 (en) How to control robot and its cooperative work
US6845295B2 (en) Method of controlling a robot through a singularity
JP5114019B2 (en) Method for controlling the trajectory of an effector
CN107066645A (en) A kind of seven freedom biasing mechanism arm is against solution method
CN108241339A (en) Motion solution and configuration control method of humanoid manipulator
US20050125100A1 (en) Method and device for controlling robot
JP7144754B2 (en) Articulated robots and articulated robot systems
JPS6126106A (en) Correcting system of position of tool
CN109129469B (en) Mechanical arm kinematics inverse solution method and device and mechanical arm
JPS5997889A (en) Method of controlling attitude of wrist of industrial robot
Schimmels et al. A passive mechanism that improves robotic positioning through compliance and constraint
JP3331674B2 (en) Elbow rotation method for 7-axis articulated robot manipulator
JP3638676B2 (en) 6-axis vertical articulated robot for bending
Korayem et al. The effect of base replacement on the dynamic load carrying capacity of robotic manipulators
JPH11239988A (en) A singular point avoiding method in direct teaching of articulated robot
Featherstone Calculation of robot joint rates and actuator torques from end effector velocities and applied forces
Qizhi et al. On the kinematics analysis and motion planning of the manipulator of a mobile robot
JP3078202B2 (en) Painting posture control method for articulated robot
JPH02212085A (en) Decision of attitude of manipulator
JPS59127109A (en) Equispeed operating method of industrial robot
KR200277575Y1 (en) Robot Motion Teach Method using a 2 Axis Master Mechanism
JP7352267B1 (en) Articulated robot, control method for an articulated robot, robot system, and article manufacturing method
CN116160300B (en) A collaborative robot grinding and polishing process control method