[go: up one dir, main page]

JPS5994746A - Electrochromic display element - Google Patents

Electrochromic display element

Info

Publication number
JPS5994746A
JPS5994746A JP57204525A JP20452582A JPS5994746A JP S5994746 A JPS5994746 A JP S5994746A JP 57204525 A JP57204525 A JP 57204525A JP 20452582 A JP20452582 A JP 20452582A JP S5994746 A JPS5994746 A JP S5994746A
Authority
JP
Japan
Prior art keywords
material layer
electrochromic
ion conductive
conductive material
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57204525A
Other languages
Japanese (ja)
Other versions
JPH0363726B2 (en
Inventor
Yuko Nakajima
中嶋 祐子
Masanori Sakamoto
正典 坂本
Yasunori Kihara
泰周 木原
Masataka Miyamura
雅隆 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57204525A priority Critical patent/JPS5994746A/en
Publication of JPS5994746A publication Critical patent/JPS5994746A/en
Publication of JPH0363726B2 publication Critical patent/JPH0363726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain the titled long-lived element by forming an electrochromic material layer made of a transition metal oxide and an ion conductive material layer between electrodes. CONSTITUTION:A composite material is prepared by dissolving a polymer resin, such as polystyrene, in an org. solvent, such as methyl isobutyl ketone, adding and mixing an iorg. electrolyte, such as LiClO4, and the transition metal oxide, such as WO3, and when needed, a white pigment. The electrochromic material layer made of a transition metal oxide, such as WO3, is formed on a transparent substrate 1. This layer 3 is coated with said composite material, and dried at 50-150 deg.C to form an ion conductive material layer 4, and further on this layer, an opposite electrode 5 is formed. The electrochromic display element thus obtained has the uniform ion conductive material layer 4 free from pinholes.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は改良されたエレクトロクロミック電気発色表示
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an improved electrochromic electrochromic display element.

〔従来技術とその問題点〕[Prior art and its problems]

従来エレクトロクロミック材料層として遷移金属酸化物
を用いた電気発色表示素子におけるイオン導電材料層に
ついては液体イオン導電材料層に関するものと、固体イ
オン導電材料層に関するものとに二側される。
Conventionally, the ion conductive material layer in an electrochromic display element using a transition metal oxide as an electrochromic material layer is divided into two types: a liquid ion conductive material layer and a solid ion conductive material layer.

液体イオン導電材料層としては、発消色応答速度を大き
くシ、また高いコントラストを得る目的で、硫酸など、
カチオン移動度の大きい酸類を主体とする電解液が用い
られているが、次のような欠点がある。即ち、長期間使
用した時、電気発色表示素子から電解液が漏洩し易いた
め、電気発色表示素子の製作においては、液密に封止す
ることを要し、製造工程が煩雑となシ、作業効率が低い
For the liquid ionic conductive material layer, sulfuric acid,
Electrolytes mainly composed of acids with high cation mobility are used, but they have the following drawbacks. In other words, when used for a long period of time, the electrolyte tends to leak from the electrochromic display element, so when manufacturing the electrochromic display element, it is necessary to seal it liquid-tight, which makes the manufacturing process complicated and labor intensive. Efficiency is low.

固体イオン導電材料層としては、sio、、 MgFz
As the solid ion conductive material layer, sio, MgFz
.

CaF2等の無機物を蒸着等の物理的製膜法によって形
成するものと、パーフルオロスルホン酸重合体、スチレ
ンスルホン酸重合体、アクリル酸重合体等の高分子樹脂
を用いるものがある。しかし、前者は電解質層及び発色
層中に存在するピンホールを介して透明電極と対向電極
間に短絡する欠陥が生じやすく生産性が悪く、実用に適
さない。一方、高分子樹脂等で構成される固体イオン導
電材料は、カチオン移動速度が小さく、固体エレクトロ
クロミック材料層と接する界面の密着性が悪く、界面で
のイオン移動が円滑に行なわれないため、発消色の応答
速度が小さく、約2秒程度を要する。更にイオン導電材
料層が液体又は固体の区別なく、一般に電気発色表示素
子は、副反応によって水素を発生し、この水素によって
、透明電極として用いられている今月酸化物、例えば5
n02またはInρ2が還元されて金属Sn又はInを
生じ、長期間使用した場合、前記還元金属Sn又はIn
によって電気発色表示素子の表示部分が不均一に褐色乃
至黒色化し、表示機能が低下する等の欠点がある。
There are those that are formed using an inorganic material such as CaF2 by physical film forming methods such as vapor deposition, and those that use polymeric resins such as perfluorosulfonic acid polymer, styrene sulfonic acid polymer, and acrylic acid polymer. However, the former method is unsuitable for practical use because it tends to cause short-circuit defects between the transparent electrode and the counter electrode through pinholes present in the electrolyte layer and the coloring layer, resulting in poor productivity. On the other hand, solid ion conductive materials made of polymeric resins have a low cation migration speed, poor adhesion at the interface with the solid electrochromic material layer, and ions cannot move smoothly at the interface. The response speed for erasing color is slow and takes about 2 seconds. Furthermore, regardless of whether the ion-conductive material layer is liquid or solid, electrochromic display elements generally generate hydrogen through a side reaction, and this hydrogen causes the oxides used as transparent electrodes, such as 5
n02 or Inρ2 is reduced to produce metal Sn or In, and when used for a long period of time, the reduced metal Sn or In
As a result, the display portion of the electrochromic display element becomes unevenly brown or black, resulting in a disadvantage that the display function is deteriorated.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこれ等の欠点を除去し、実用性の高い電
気発色表示素子を提供することにある。
An object of the present invention is to eliminate these drawbacks and provide a highly practical electrochromic display element.

〔発明の概要〕 本発明は、遷移金属酸化物からなるエレクトロクロミッ
ク材1’1Jffiとこれに接するイオン導電材料層と
を具備する電気発色表示素子において、前記イオン導電
材料層が高分子樹脂と無機イオン導電材料からなるイオ
ン導電組成物にエレクトロクロミック材料層として用い
た遷移金属酸化物を加えたことを特徴とし、電気発色表
示素子の寿命の長期化、信頼性の向上に効果あるもので
ある。
[Summary of the Invention] The present invention provides an electrochromic display element comprising an electrochromic material 1'1Jffi made of a transition metal oxide and an ion conductive material layer in contact with the electrochromic material 1'1Jffi, in which the ion conductive material layer is made of a polymer resin and an inorganic material. It is characterized by adding a transition metal oxide used as an electrochromic material layer to an ion-conductive composition made of an ion-conductive material, and is effective in extending the life span and improving reliability of electrochromic display elements.

第1図はエレクトロクロミック素子の概略構成を示し、
図中(])はガラスやポリエステル等の透明基板、(2
)はIn20318nOI +”等の透明な表示電極層
、(3)はWO31MnO2I TiO2等の遷移金属
酸化物からなるエレクトロクロミック材料層、(4)は
イオン導電材料層、(5)はIn2O5l 5n02 
、 Au 、 Ag 、 AI 、 Ni等の対向電極
である。このような構成の素子において、複合材料を用
い、発色層上にスピニング塗布法、浸漬法、ローラー塗
布法、スプレー塗布法等の製膜法によって形成すること
によって、ピンホールのない均一なしかも密着性のよい
固体電解質を用いることを特徴とする。
Figure 1 shows the schematic structure of an electrochromic element,
In the figure, ( ) indicates a transparent substrate such as glass or polyester, (2
) is a transparent display electrode layer such as In20318nOI+'', (3) is an electrochromic material layer made of a transition metal oxide such as WO31MnO2I TiO2, (4) is an ion conductive material layer, and (5) is In2O5l 5n02.
, Au, Ag, AI, Ni, or the like. In an element with such a structure, by using a composite material and forming a film on the coloring layer by a film forming method such as a spinning coating method, dipping method, roller coating method, or spray coating method, it is possible to achieve uniform and close contact without pinholes. It is characterized by the use of a solid electrolyte with good properties.

複合材料は、高分子樹脂を有機溶媒に溶解した後、無機
イオン性材料及びエレクトロクロミック材料層として用
いた遷移金属酸化物を添加し、充分に混合することによ
って製造することができる。
The composite material can be manufactured by dissolving the polymer resin in an organic solvent, adding the inorganic ionic material and the transition metal oxide used as the electrochromic material layer, and thoroughly mixing the mixture.

溶液中の高分子樹脂の濃度は10  mot/Lから飽
和溶液までの範囲が考えられるが、実際の濃度について
は重要とは考えられない。無機イオン性導電材料の濃度
は、高分子樹脂に対して0.1〜1000重量%が適当
であり、それ以下であると着色時の色が薄く見えにくい
。それ以上であると複合材として製膜性が悪く、均一な
膜が形成されない。エレクトロクロミック材料層として
用いた遷移金属酸化物は、高分子樹脂に対して0.01
〜10重量%が適当である。この遷移金属酸化物の添加
によって、セルの寿命の長期化がはかられるわけである
が、その効果の原因、@構に対しては不明であるが、添
加量が0.01重1ft%以下であると、寿命の長期化
に全く効果が々くなり、10重量%以上にすると、複合
材として製膜性が悪く々る。
The concentration of the polymer resin in the solution may range from 10 mot/L to a saturated solution, but the actual concentration is not considered important. The appropriate concentration of the inorganic ionic conductive material is 0.1 to 1000% by weight based on the polymer resin, and if it is less than that, the color will be too pale and difficult to see. If it is more than that, the film forming properties of the composite material will be poor and a uniform film will not be formed. The transition metal oxide used as the electrochromic material layer has a ratio of 0.01 to the polymer resin.
~10% by weight is suitable. By adding this transition metal oxide, the life of the cell can be extended, but the cause of this effect and the structure are unknown, but if the amount added is less than 0.01w/1ft% If it is, it will not be effective at all in prolonging the life, and if it is more than 10% by weight, the film forming properties of the composite material will be poor.

尚、本発明において用いる無機イオン材料としては、例
えば、LiClO4、LiI 、 LiOH、LiF、
NaCff14NaOH,NaI 、NaFなどが挙げ
られ、いずれもLi Naが発消色に関与するものであ
る。
The inorganic ionic materials used in the present invention include, for example, LiClO4, LiI, LiOH, LiF,
Examples include NaCff14NaOH, NaI, NaF, etc., all of which involve LiNa in color development and fading.

高分子樹脂としては、ポリスチレン、ポリ塩化ビニル、
塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポ
リビニルアセタール、フェノール樹脂・“″″′″′′
″′樹脂′トド7 p I) 、n、     、。
Polymer resins include polystyrene, polyvinyl chloride,
Vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyvinyl acetal, phenolic resin/“″″′″′′
″′Resin′ Todo 7 p I), n, .

樹脂、ボリアクリロントリル、プタシニン系合成ゴム、
ポリオレフィンなど、特に限定するものではない。また
高分子樹脂を溶解する溶媒としては、メチルイソブチル
、ケトン、メタノール、エタノ−、n、 、 7 * 
)二) !J )” lクレゾール、トルエン。
Resin, polyacrylontrile, ptacinine synthetic rubber,
Polyolefin and the like are not particularly limited. In addition, examples of solvents for dissolving polymer resins include methyl isobutyl, ketone, methanol, ethanol, n, , 7 *
)2)! J)” l Cresol, toluene.

ブチルセロリ、ルプアセテート、エチルセロリルブアセ
テート、プロピレンカーボネート、アセト□ントリル、
ジメチルアセトアミド、N−メチルピロリドン、ジメチ
ルホルムアミドなどの非水溶媒が好ましく、樹脂を溶解
しうるもので、乾燥が製品であればよい。
Butyl celery, lupuacetate, ethyl celeryl buacetate, propylene carbonate, acetontril,
Non-aqueous solvents such as dimethylacetamide, N-methylpyrrolidone, and dimethylformamide are preferred, as long as they can dissolve the resin and can be dried as a product.

また必要に応じて背景となる顔料を樹脂に対して5〜5
0重景チ添加することによって、反射型のECセルの形
成が可能である。背景となる顔料としては、Ti0g 
、 A120B 、MgO,ZrO2,yρa 、Ta
2Q5.Sin。
Also, if necessary, add 5 to 5 % of the background pigment to the resin.
A reflective EC cell can be formed by adding zero or more. The background pigment is Ti0g
, A120B, MgO, ZrO2, yρa, Ta
2Q5. Sin.

等白色顔料が最も見ばえが良く適当であると思われるが
、他に所望の色の顔料金用いることも充分可能である。
Equiwhite pigments are believed to be the most aesthetically pleasing and suitable, but pigments of other desired colors may well be used.

この複合材料は、ポリマー溶液中に無機イオン拐料、遷
移金属酸化物を添加後、ロールミル、サンドミル、ボー
ルミル、ミキサー等があり、いずれかの方法を用いて、
充分、分散した後発色層上にスピニング塗布浸漬法、ロ
ーラ塗布法などで形成することによって、ピンホールの
ない均一な薄膜を形成しうる。−!た薄膜中に残存する
有機溶媒を除去する目的で薄膜を50〜150℃で加熱
処理することによシ、基板との密着性がよくなる。
This composite material is produced by adding an inorganic ion additive and a transition metal oxide to a polymer solution, and then using any of the following methods: roll mill, sand mill, ball mill, mixer, etc.
A uniform thin film without pinholes can be formed by forming on a sufficiently dispersed post-coloring layer by a spinning coating dipping method, a roller coating method, or the like. -! By heating the thin film at 50 to 150° C. for the purpose of removing the organic solvent remaining in the thin film, the adhesion to the substrate can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、すなわち高分子樹脂に無機イオン導電
材料からなるイオン導電組成物に、エレクトロクロミッ
ク材料層として用いた遷移金属酸化物を添加することに
よって、寿命の長いセルが安定して供給できるようにな
った。
According to the present invention, by adding a transition metal oxide used as an electrochromic material layer to an ion conductive composition made of a polymer resin and an inorganic ion conductive material, cells with a long life can be stably supplied. It became so.

また、溶液状複合材料を塗布法によって形成するため、
製造工程が簡単で、しかも均一なピンホールのない薄膜
状固体電解質を用いたエレクトロクロミック素子を形成
しうる。
In addition, since the solution-form composite material is formed by a coating method,
The manufacturing process is simple, and an electrochromic device using a uniform pinhole-free thin film solid electrolyte can be formed.

また発消色は、無機イオン中のLi 、Na  を用い
ておシ、副反応による水素の発生等の問題もなく実用性
の高いものである。
In addition, color development and fading is highly practical because it uses Li and Na in inorganic ions, and there are no problems such as generation of hydrogen due to side reactions.

〔発明の実施例〕[Embodiments of the invention]

実施例1 ガラス基板上にバタン化された透明導電膜を用意し、導
電膜上に厚さ0.3μmの酸化タングステン膜を蒸着法
で設けた。
Example 1 A transparent conductive film was prepared on a glass substrate, and a tungsten oxide film having a thickness of 0.3 μm was provided on the conductive film by vapor deposition.

一方、ポリメチルメタクリレ−) 5 f 1L1cZ
O45t、酸化タングステンlfをMIBK 509に
溶解し、充分混合させて複合材料を作った。この複合材
料を上記ガラス基板の酸化タングステン層上にスピンコ
ードして、膜厚2μの固体電解質層を設けた。
On the other hand, polymethyl methacrylate) 5 f 1L1cZ
O45t and tungsten oxide lf were dissolved in MIBK 509 and thoroughly mixed to produce a composite material. This composite material was spin-coded onto the tungsten oxide layer of the glass substrate to provide a solid electrolyte layer with a thickness of 2 μm.

これを700℃オープン中で加熱して充分固体電解質層
を乾燥させた。次いで固体電解質層上にAuを蒸着して
、対向電極を設けた。
This was heated at 700° C. in an open environment to sufficiently dry the solid electrolyte layer. Next, Au was deposited on the solid electrolyte layer to provide a counter electrode.

また比較例として、酸化タングステンを除いた、上記と
同様の組成の複合材料を固体電解質層として同様なセル
を形成した。
As a comparative example, a similar cell was formed using a composite material having the same composition as above but excluding tungsten oxide as a solid electrolyte layer.

このようにして得た2aのエレクトロクロミック素子を
1.5V 1.OH,O方形波で駆動試験を行なった。
The electrochromic device 2a thus obtained was heated to 1.5V 1. A drive test was conducted using OH and O square waves.

着消色回数と発色濃度の変化を第2図に示す。第2図か
ら明らかなように、wO3の添加によって寿命が延びる
ことが明らかとなった。
Figure 2 shows the number of times of coloring/decoloring and changes in color density. As is clear from FIG. 2, it has become clear that the addition of wO3 extends the life.

実施例2 複合材料として、ポリメチルメタクリレート52゜LL
 I6f 、タングステン酸リチウムlff!:MIB
と502に溶解させた後、背景材としてTiO251を
加え充ρに分散させた。このようにして得た複合材を用
いて実施例1と同様の方法で、エレクトロクロミック素
子を形成した。WO3無添加のセルと共に2vO,5H
,の方形波で駆動試験を行なつ穴。発消色回数と着色濃
度の変化を第3図に示す。WO=添加による寿命の長期
化は顕著なものである。
Example 2 Polymethyl methacrylate 52°LL as a composite material
I6f, lithium tungstate lff! :MIB
After dissolving in 502 and 502, TiO251 was added as a background material and dispersed in ρ. An electrochromic device was formed using the composite material thus obtained in the same manner as in Example 1. 2vO, 5H with WO3-free cell
, the hole is tested with a square wave of . Figure 3 shows the number of times of color development and fading and changes in color density. The lifespan is significantly extended by adding WO=.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電気発色表示素子の一構成例を示す
断面図、第2図および第3図は本発明の効果ヶ示す線図
である。 l・・・ガラス基板 2・・・透明電極 3・・・エレクトロクロミック材料層 4・・・イオン導電材料層 5・・・対向電極 代理人 弁理士 則 近 憲 佑 (はが1名)第1図 第2図 1哨色@叡 第8図 1消色回敷
FIG. 1 is a sectional view showing an example of the structure of an electrochromic display element according to the present invention, and FIGS. 2 and 3 are diagrams showing the effects of the present invention. l...Glass substrate 2...Transparent electrode 3...Electrochromic material layer 4...Ion conductive material layer 5...Counter electrode representative Patent attorney Noriyuki Chika (1 person) 1st Fig. 2 Fig. 1 Stainless color @ Ei Fig. 8 1 Erased color

Claims (1)

【特許請求の範囲】[Claims] (1)遷移金属酸化物からなるエレクトロクロミック材
料層と、これに接するイオン導電材料層とを具備する電
気発色表示素子において、前記イオン導電材料層として
、高分子樹脂と無機イオン導電材料からなるイオン導電
組成物に、エレクトロクロミック材料層として用いた遷
移金属酸化物を添加し、分散又は混合させた複合材を用
いること白色顔料を添加することを特徴とする電気発色
表示素子。
(1) In an electrochromic display element comprising an electrochromic material layer made of a transition metal oxide and an ion conductive material layer in contact therewith, the ion conductive material layer is an ion conductive material made of a polymer resin and an inorganic ion conductive material. An electrochromic display element characterized by using a composite material in which a transition metal oxide used as an electrochromic material layer is added to a conductive composition and dispersed or mixed therein, and a white pigment is added.
JP57204525A 1982-11-24 1982-11-24 Electrochromic display element Granted JPS5994746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57204525A JPS5994746A (en) 1982-11-24 1982-11-24 Electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57204525A JPS5994746A (en) 1982-11-24 1982-11-24 Electrochromic display element

Publications (2)

Publication Number Publication Date
JPS5994746A true JPS5994746A (en) 1984-05-31
JPH0363726B2 JPH0363726B2 (en) 1991-10-02

Family

ID=16491974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57204525A Granted JPS5994746A (en) 1982-11-24 1982-11-24 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS5994746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504050A (en) * 1988-04-29 1991-09-05 コアト イ ゲーテボーリ アクチ ボラゲット Electrochromic device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504050A (en) * 1988-04-29 1991-09-05 コアト イ ゲーテボーリ アクチ ボラゲット Electrochromic device and its manufacturing method

Also Published As

Publication number Publication date
JPH0363726B2 (en) 1991-10-02

Similar Documents

Publication Publication Date Title
Wang et al. A new electrodeposition approach for preparing polyoxometalates-based electrochromic smart windows
US4354741A (en) Electrochromic display device
Geng et al. Solid-state linear sweep voltammetry: A probe of diffusion in thin films of polymer ion conductors on microdisk electrodes
US4215917A (en) Ion exchange-electrolyte layer for electrochromic devices
CN110928095A (en) Dual electrochromic layer device capable of realizing conversion between any colors and assembling method
CN112285981B (en) A kind of preparation method of electrochromic device with high charge storage capacity
Fu et al. Investigation of electrochromic device based on multi-step electrodeposited PB films
Inaba et al. Electrochromic display device of tungsten trioxide and prussian blue films using polymer gel electrolyte of methacrylate
JPS5994746A (en) Electrochromic display element
JPS608267B2 (en) electrochromic display element
Yamanaka Tungsten Trioxide/Liquid Electrolyte Electrochromic Devices with Amorphous Iron Tungstate Counter Electrodes–Response Characteristics and Cell Reliability
CN117737803A (en) A zinc-based reversible alloy deposition electrochromic device
GB2048921A (en) Polymeric eletrolyte for electro-optical device
JP4438299B2 (en) Electrodeposition type image display device
CN107219285B (en) A kind of working electrode for testing lead-acid battery and preparation method thereof
Hong et al. Stability-enhanced indium hexacyanoferrate electrodes: Morphological characterization, in situ EQCM analysis in nonaqueous electrolytes and application to a WO3 electrochromic device
JPS6033255B2 (en) electrochromic display device
JPS5840531A (en) Entirely solid type electrochromic display device
CN206726965U (en) Dssc
GB2072367A (en) Electrochromic display element
JPS592020A (en) Electrochromic display element
CN113913898B (en) A kind of TiO2 reflective electrochromic film and preparation method thereof
CN116088240A (en) High-performance electrochromic-energy storage devices based on polyoxometalates and cobalt-doped manganese dioxide
JPH06242474A (en) Method for producing electrochromic device and polymer electrolyte thin film
JPS5994745A (en) Electrochromic display element