[go: up one dir, main page]

JPS5993495A - Acoustic spherical lens - Google Patents

Acoustic spherical lens

Info

Publication number
JPS5993495A
JPS5993495A JP57201949A JP20194982A JPS5993495A JP S5993495 A JPS5993495 A JP S5993495A JP 57201949 A JP57201949 A JP 57201949A JP 20194982 A JP20194982 A JP 20194982A JP S5993495 A JPS5993495 A JP S5993495A
Authority
JP
Japan
Prior art keywords
acoustic
spherical lens
lens
sound wave
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57201949A
Other languages
Japanese (ja)
Inventor
潔 石川
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57201949A priority Critical patent/JPS5993495A/en
Publication of JPS5993495A publication Critical patent/JPS5993495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は音響球面レンズ、特に高周波音波エネルギーを
利用する超音波顕微鏡に用いて好適な前書球面レンズに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an acoustic spherical lens, particularly to an acoustic spherical lens suitable for use in an ultrasound microscope that utilizes high-frequency sound energy.

〔従来技術〕[Prior art]

近年、IQ)IZに及ぶ高周波音波の発生、検出が可能
となった為に水中での音波波長として約1ミクロンが得
られ、従って音波エネルギーを用いた顕微鏡が検討され
る様になった。
In recent years, it has become possible to generate and detect high-frequency sound waves up to IQ)IZ, resulting in a sound wave wavelength of about 1 micron underwater, and therefore, a microscope using sound wave energy has been considered.

この様な装置では如何にして細い集束音波ビームを作成
するかが要となるが、第1図を参照して従来例について
説明する。即ち、サファイア等の円柱状の結晶2は一端
面は光学的研磨された平置で他端面には凹面状の穴がう
がっである。平板面に作成された圧電素子11?:RF
電気信号を印加し、結晶2内に平面波のRF音波を放射
する。この平面前置は前記の凹面穴に形成される結晶−
媒質3の界面で構成された正のレンズによシ、そのi定
焦点に集束される。周知の様に焦点距離と開口の比、即
ちレンズのFナンバが充分小さいと、この構成によシ著
しく狭い音波ビームを作成する事が出来る。焦点付近に
おかれた試料によシ、この集束音波は反射、散乱、透過
減衰といったしよう乱を受けるから、このじよう乱音波
エネルギーを検出する事によ多試料の弾性的性質を反映
した電気信号を得る事が出来るわけである。音波エネル
ギーの検出には上述の結晶系を再び利用したル、又は同
様の結晶系を共焦点に対向させても良い。
The key to such a device is how to create a narrow focused acoustic beam, and a conventional example will be explained with reference to FIG. That is, the cylindrical crystal 2, such as sapphire, has one end surface optically polished and laid flat, and the other end surface has a concave hole. Piezoelectric element 11 created on a flat plate surface? :RF
An electrical signal is applied to radiate plane wave RF sound waves into the crystal 2. This planar preposition is the crystal formed in the concave hole.
It is focused by a positive lens formed at the interface of the medium 3 to its fixed focal point. As is well known, if the ratio of the focal length to the aperture, ie, the F-number of the lens, is sufficiently small, this configuration can produce a very narrow acoustic beam. When a sample is placed near the focal point, this focused sound wave is subject to disturbances such as reflection, scattering, and transmission attenuation. Therefore, by detecting the energy of such disturbed sound waves, it is possible to generate an electrical signal that reflects the elastic properties of the sample. It is possible to get a signal. For detection of sound wave energy, the above-mentioned crystal system may be used again, or a similar crystal system may be placed opposite the confocal area.

上記記述から明らかな様に従来例は、結晶と媒質の音速
差を利用した正の球面レンズをその集束原理としている
。従って、結晶に半球面状の凹面穴を形成する事が必要
となるが、レンズ面から焦点までの媒質(通常、水)の
音波減衰が著しく大きい為低いFナンバのレンズを作る
為には例えば0.2−といった微小球穴を作成し、レン
ズ面から焦点までの距離を減じて音波減衰を避ける必要
がある。しかも、その球面はレンズとして作用するには
、少なくとも音波長の1/lO波長以下の凸凹があって
はならない。これはIGH2の音波の場合0.1μmの
オーダである。
As is clear from the above description, the conventional example uses a positive spherical lens as its focusing principle, which utilizes the sound speed difference between the crystal and the medium. Therefore, it is necessary to form a hemispherical concave hole in the crystal, but since the sound wave attenuation of the medium (usually water) from the lens surface to the focal point is extremely large, it is difficult to make a lens with a low F number, e.g. It is necessary to create a microspherical hole such as 0.2- and reduce the distance from the lens surface to the focal point to avoid sound wave attenuation. Moreover, in order for the spherical surface to function as a lens, it must not have any irregularities of at least 1/1O wavelength of the acoustic wave length. This is on the order of 0.1 μm for the IGH2 sound wave.

従来例ではこの様なレンズを加工するのに、研磨法で行
なっておシ、極めて困難な作業であシ0.5■径のレン
ズを作るのがやっとである。
Conventionally, such lenses are processed by polishing, which is an extremely difficult process and can only produce lenses with a diameter of 0.5 mm.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を鑑みてなされたもので、その目的は
微小口径でその表面が鏡面である様な球面レンズを提供
することである。
The present invention has been made in view of the above points, and its object is to provide a spherical lens with a minute aperture and a mirror surface.

〔発明の概要〕[Summary of the invention]

石英ガラス等のガラス類を作成する場合、或いは天然の
石英、水晶等を利用する場合にその内部に残留ガス等に
よる気泡が存在又は発生する事は当業界では公知であり
、この気泡の除去方法がそれ等の材質の良非を決めてい
る事は広く知られている。ところで例えば、石英中の気
泡を注意深く観察してみると気泡は極めて真球度が良く
その界面は研磨法ではとても不可能な程の鏡面である事
がわかった。実際、第2図に示すよう忙気泡を含む石英
板5から泡の部分6をけずシ出して他面に圧電素子1を
耐着させIGHzの音波の集束実験を行なってみたとこ
ろ極めて良い集束性を示し、高周波音波の集束用球面レ
ンズとして秀れたものである事を確認した1石英板中に
散在する気泡は大は0.5畷から小は10μmに至るま
で色々な大きさの球形で存在するから、研磨法では不可
能な微小口径と鏡面度、真球度を有する球面レンズを得
る事が出来る。しかしながら、レンズ材中に自然発生的
に存在する気泡を利用して音響レンズを作成する方法で
あると、気泡の大きさはさまざま々形状である為に、同
一性能をもつ音響レンズ、すなわち同一口径をもった音
響レンズを大量に製造することが困難であることが生じ
る。
It is well known in the industry that when creating glasses such as quartz glass, or when using natural quartz, crystal, etc., bubbles due to residual gas etc. exist or are generated inside the glass, and how to remove these bubbles. It is widely known that this determines the quality of such materials. By the way, for example, when we carefully observed the bubbles in quartz, we found that the bubbles had extremely good sphericity, and their interfaces had mirror surfaces that were impossible to achieve using polishing methods. In fact, as shown in Fig. 2, we cut out the bubble part 6 from a quartz plate 5 containing busy bubbles, attached a piezoelectric element 1 to the other side, and conducted an IGHz sound wave focusing experiment, and found that the focusing was extremely good. It was confirmed that the lens was excellent as a spherical lens for focusing high-frequency sound waves.1 The bubbles scattered in the quartz plate were spherical in size, ranging from 0.5 μm to 10 μm. Because of its existence, it is possible to obtain a spherical lens with a minute aperture, specularity, and sphericity that are impossible with polishing methods. However, when creating an acoustic lens using air bubbles that naturally occur in lens materials, the bubbles have various sizes and shapes, so it is difficult to create an acoustic lens with the same performance, that is, the same aperture. However, it is difficult to manufacture acoustic lenses in large quantities.

かかる欠点を除去するため、本発明は微小球体を用いて
凹面が形成された音響レンズを用いることを特徴とする
In order to eliminate this drawback, the present invention is characterized by using an acoustic lens in which a concave surface is formed using microspheres.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明に係る音響レンズを説明するための図
であり、第3図(a) K示すような円柱状のロット7
の先端部の軸中心部に大きさがdである円錐状の凹面7
′を作る。この凹面7′の大きさdは作成しようとする
球面レンズによシ種々選択するのは勿論でおる。
FIG. 3 is a diagram for explaining the acoustic lens according to the present invention, in which a cylindrical lot 7 as shown in FIG.
A conical concave surface 7 having a size d at the axial center of the tip of the
'make. Of course, the size d of this concave surface 7' can be selected depending on the spherical lens to be manufactured.

つぎに第3図(′b)に示すようにこの凹面部分にエポ
キシ樹脂8等の接着材を貼付し、第3図(e) K示す
ように上述の球体9を配置して樹脂8を硬化させる。こ
の球体9としては、米国 エアーソンアンド 力ミンク
社から販売されている完全中空のガラス球体や、米国 
])uke 5cientific(’orporat
ionから販売されている球体を使用するのである。し
かるのちに、球体9のみを溶解あるいははく離によって
取〕のぞくと、第4図に示すように先端部に所定の大き
さの凹面穴9′をもった、ロット7が完成する。このロ
ット7を雛形とし、これより同一形状の球面レンズを作
成する方法を以下にのべる。
Next, as shown in Fig. 3('b), an adhesive such as epoxy resin 8 is applied to this concave portion, and the above-mentioned sphere 9 is placed as shown in Fig. 3(e)K, and the resin 8 is hardened. let The sphere 9 may be a completely hollow glass sphere sold by Airson & Riki Mink Co., Ltd.
]) uke 5 scientific('orporat
We use spheres sold by ion. Thereafter, only the sphere 9 is removed by melting or peeling off, to complete a lot 7 having a concave hole 9' of a predetermined size at the tip, as shown in FIG. Using this lot 7 as a template, a method for creating spherical lenses of the same shape from this will be described below.

第5図(a)に示すようにロット7の周囲を石膏10で
固めたのち、ロット7を取シだすと第5図(b)に示す
ような雌形11が完成する。この雌形11に第5図(C
)に示すように焼結処理を行うことしたもので、その性
状は通常の黒鉛とは異なシむしろガラスに類似した炭素
材料で全く異方性を示さない特徴を有している。
After hardening the periphery of the lot 7 with plaster 10 as shown in FIG. 5(a), the lot 7 is taken out to complete a female mold 11 as shown in FIG. 5(b). This female shape 11 is shown in Figure 5 (C
), its properties are different from ordinary graphite, and rather it is a carbon material similar to glass and has the characteristic of not exhibiting any anisotropy.

有機物として、フルフラール(CiHsCh )とビロ
ール(04HsN)とを用いることが有効である。フル
フラール4部とピロール6部に選ぶと適当な粘度を有し
、しかも後述の焼成炭素化工程においても炭素収率の良
いことがわかった0重合用触媒として4〜5倍希釈の塩
酸(f!s度3.6%)を上記有機物に対して1〜3%
添加し、50〜80Cに加熱しながら攪拌すると、2〜
8分で重合し粘性をもった液状となる。
It is effective to use furfural (CiHsCh ) and virol (04HsN) as organic substances. It was found that when 4 parts of furfural and 6 parts of pyrrole were selected, it had an appropriate viscosity and also had a good carbon yield in the firing carbonization step described below.As a catalyst for 0 polymerization, 4 to 5 times diluted hydrochloric acid (f! s degree 3.6%) to 1 to 3% of the above organic matter.
When added and stirred while heating to 50-80C, 2-
It polymerizes in 8 minutes and becomes a viscous liquid.

これを空気中で室温から80CまでO,SC/C/下の
速度で昇温し予備加熱を完了する・この状態で雌形11
からガラス性炭素がはく離されるので、そのガラス性炭
素を取シ出し、真空中において、1300t:’〜25
00tl:’tで加熱すると完全にガラス性炭素化した
凹面レンズを作ることができる。
Heat this in air from room temperature to 80C at a rate of O, SC/C/lower to complete preheating.In this state, female type 11
The glassy carbon was peeled off from the glass, so the glassy carbon was taken out and heated at 1300t:'~25cm in vacuum.
When heated at 00tl:'t, a concave lens completely converted to glassy carbon can be made.

このようにして作成したガラス性炭素は、〜10−1Ω
・σ電気伝導度を有し、その機械的性質はガラスに類似
して、ヤング率〜3 X 10” N/m’、密度1.
5X10”初/ m s、音速〜4600m/Sとノく
イレツクスガラスとほぼ同様な性質をもっていることが
わかった。焼結後のガラス性成X12は雌型からは容易
にibだすことが可能でありこの結果、仔書球面レンズ
が完成する。
The glassy carbon thus prepared is ~10-1Ω
・It has σ electrical conductivity, its mechanical properties are similar to glass, Young's modulus ~3 x 10''N/m', density 1.
It was found that it has almost the same properties as Nokuirex glass, with a speed of 5X10"/ms and a sound speed of ~4600m/s. After sintering, the glassy X12 can be easily ejected from the female mold. As a result, a spherical lens is completed.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本願発明によれば、中空のガラス球を用
いるので同一口径を有する真球度の高い音響球面レンズ
を得ることができる。
As described above, according to the present invention, since a hollow glass bulb is used, an acoustic spherical lens having the same diameter and high sphericity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の音響球面レンズを説明するた
めの図、第3図、第4図及び第5図は本発明に係る音響
球面レンズを説明するための図である。 代理人 弁理士 薄田利幸 嘱  1 図 第2図 第 3 図
1 and 2 are diagrams for explaining a conventional acoustic spherical lens, and FIGS. 3, 4, and 5 are diagrams for explaining an acoustic spherical lens according to the present invention. Agent Patent Attorney Toshiyuki Usuda 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、音波伝搬媒体の一方の端面に完全中空のガラス球の
球面が転写されて形成された凹面穴を有することを特徴
とする音響球面レンズ。 2、上記音波伝搬媒体がガラス性炭素であることを特徴
とする特許請求の範囲第1項記載の音響球面レンズ。
[Claims] 1. An acoustic spherical lens characterized by having a concave hole formed by transferring the spherical surface of a completely hollow glass sphere to one end surface of a sound wave propagation medium. 2. The acoustic spherical lens according to claim 1, wherein the sound wave propagation medium is glassy carbon.
JP57201949A 1982-11-19 1982-11-19 Acoustic spherical lens Pending JPS5993495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57201949A JPS5993495A (en) 1982-11-19 1982-11-19 Acoustic spherical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201949A JPS5993495A (en) 1982-11-19 1982-11-19 Acoustic spherical lens

Publications (1)

Publication Number Publication Date
JPS5993495A true JPS5993495A (en) 1984-05-29

Family

ID=16449444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201949A Pending JPS5993495A (en) 1982-11-19 1982-11-19 Acoustic spherical lens

Country Status (1)

Country Link
JP (1) JPS5993495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003516A (en) * 1988-04-13 1991-03-26 Hitachi Construction Machinery Co., Ltd. Ultrasonic probe and manufacture method for same
JPWO2008099509A1 (en) * 2007-02-16 2010-05-27 株式会社セガ Self-supporting doll and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003516A (en) * 1988-04-13 1991-03-26 Hitachi Construction Machinery Co., Ltd. Ultrasonic probe and manufacture method for same
JPWO2008099509A1 (en) * 2007-02-16 2010-05-27 株式会社セガ Self-supporting doll and its manufacturing method

Similar Documents

Publication Publication Date Title
KR101020621B1 (en) Optical device manufacturing method using optical fiber, optical device using optical fiber and optical tweezer using same
Giordmaine Mixing of light beams in crystals
JP3067968B2 (en) Optical fiber interface for coupling light source and method of manufacturing the same
TW200407569A (en) Stub having an optical fiber
US20060137403A1 (en) High energy fiber terminations and methods
JPH02222834A (en) Ultrasonic probe and manufacture thereof
US4433461A (en) Method of manufacturing an acoustic spherical lens
TW200300505A (en) Capillary for optical fiber, ferrule for optical connector and capillary with optical fiber
CN112914508B (en) Photoacoustic/ultrasonic bimodal high-frequency probe based on ellipsoidal curvature
CN105806786A (en) Laser ultrasonic opto-acoustic conversion device and preparation method thereof
CN111112035A (en) Transceiver-integrated all-optical ultrasonic transducer device and preparation method thereof
JPS5993495A (en) Acoustic spherical lens
CN103983808A (en) Optical method for transmitting micro-nano particles in two directions and controllably locating micro-nano particles
CN112153947B (en) Shock wave generating device and shock wave ablation system
JPS6188141A (en) Sound wave probe
CN113820781B (en) A point sound source generating device based on optical fiber photoacoustics and its manufacturing method
JP2001208672A (en) Probe, method of manufacturing probe, probe array, and method of manufacturing probe array
JPS6188140A (en) Acoustic spherical lens
JPS584197A (en) Acoustic spherical lens
JPS5844343A (en) Sonic probe
CN205643141U (en) Laser supersound optoacoustic conversion equipment
JPS6171350A (en) Acoustic microscope analyzing deep section of body using aspherical lens
JPS642959B2 (en)
EP0033751B1 (en) Ultrasonic transducer using ultra high frequency
CN114716713B (en) A kind of acoustic velocity gradient flexible gel material with broadband adjustable parameters and its preparation method