JPS5992927A - Method for manufacturing focusing optical fiber base material - Google Patents
Method for manufacturing focusing optical fiber base materialInfo
- Publication number
- JPS5992927A JPS5992927A JP20010582A JP20010582A JPS5992927A JP S5992927 A JPS5992927 A JP S5992927A JP 20010582 A JP20010582 A JP 20010582A JP 20010582 A JP20010582 A JP 20010582A JP S5992927 A JPS5992927 A JP S5992927A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- dopant
- optical fiber
- sintered body
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はウシファイバー用母材の製造方法−特には気相
軸付法による集束型光ファイバー用母材の製造方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a preform for a bovine fiber, and particularly to a method of manufacturing a preform for a convergent optical fiber using a vapor phase axial method.
光フアイバー用母材の製造については、石英ガラス原料
としてのハロゲン化けい素と石英ガラスの屈折率をコン
トロールするためのドープ剤、例えばC,eot4−
POO63−などとを適当なキャリヤーガスで搬送し、
これを酸水素ガスバーナーの中心刃・ら噴出させ、その
燃焼炎で酸化加水分解し。For the production of optical fiber base material, silicon halide as a raw material for quartz glass and a dopant for controlling the refractive index of quartz glass, such as C, eot4-
POO63- etc. are transported with a suitable carrier gas,
This is ejected from the center blade of an oxyhydrogen gas burner, and the combustion flame oxidizes and hydrolyzes it.
回転している耐火物標的の下部に吹きつけ、シリカの堆
積速度に応じてこれを引上げて円柱状の多孔質シリカ焼
結体を作り、これを高温加熱炉中に入れて透明ガラス化
する方法が知られており、これは一般に気相軸付法と呼
称されている。A method of spraying the lower part of a rotating refractory target and pulling it up according to the rate of silica deposition to create a cylindrical porous sintered silica body, which is then placed in a high-temperature heating furnace and turned into transparent vitrification. is known, and this is generally called the gas-phase axis method.
そして、この気相軸付法によって実束型の屈折率分布を
もつ元ファイバー用母材を作る方法としては、@記した
ドープ剤濃度の異なる原料ガスを2本またはそれ以上の
バーナーまたはノズル刀)ら吹@用さセー、これを酸水
素灸で献化加水ガ府じ、屈折率をもった多孔質シリカ焼
結体とする方法、あるいは同心円状多重管バーナーの中
心部からドープ剤濃度の高い原料ガスを供給し、その外
周力・らドープ剤濃度がそれより低い原料ガスを吹き出
させて、この全体を酸水累炎で包んで酸化加水分解させ
、濃度分布のついた多孔質シリカ焼結体を得る方法が知
られているが、これらはいずれもドープ剤濃度の異なる
2種または2種以上の原料ガスを別々の吹出口から噴出
させるものであるため。A method for producing a base material for a fiber with a real-bundle refractive index distribution using this gas-phase axis method is to use two or more burners or nozzles to feed raw material gases with different dopant concentrations as indicated at @. ) Rabu@useuse, the method is to dehydrate this with oxyhydrogen moxibustion to make a porous silica sintered body with a refractive index, or to increase the dopant concentration from the center of a concentric multi-tube burner. A high raw material gas is supplied, and a raw material gas with a lower peripheral force and dopant concentration is blown out, and the entire gas is wrapped in an acidic water flame for oxidation and hydrolysis to produce porous silica sintered with a concentration distribution. Although methods for obtaining aggregates are known, all of these methods involve blowing out two or more raw material gases having different dopant concentrations from separate blow-off ports.
シリカ堆積面上での気流が不連続のものとなったシ、そ
の必度、温度などVc異富が生じ易く、適正な屈折率分
布を一定に維持することが困難であった。また、;典=
;や4社この屈折率分布を変えた元ファイバー用母材の
製造方法については−シリカを堆積させろ耐火性標旧表
面の温度分布を変え、その温度す布に従ってj早料の堆
債状iルを変えるという方法も提案されているが、この
光フアイバー用母材の屈折率分布はりリカ堆積面の温度
分布だけで調整し得るものではなく、これには火炎g〕
形状、原料ガスの線速−堆積面の形状、堆積面、でおけ
るガスの流れなどを適正に維持することが必要とされる
ので、このような温度分布の調整だけでは再現性よく目
的とする光フアイバー用母材を製造することはできない
。When the air flow on the silica deposited surface becomes discontinuous, variations in Vc such as temperature tend to occur, making it difficult to maintain a constant appropriate refractive index distribution. Also; Nori=
; and 4 companies Regarding the manufacturing method of the base material for the original fiber with a changed refractive index distribution - deposit silica, change the temperature distribution on the surface of the refractory mark, and change the precipitate shape according to the temperature distribution. Although a method has been proposed in which the refractive index distribution of the base material for optical fiber is adjusted by changing the temperature distribution of the silica deposition surface alone, this method requires the use of flame g]
It is necessary to properly maintain the shape, the linear velocity of the raw material gas, the shape of the deposition surface, the flow of gas on the deposition surface, etc., so it is not possible to achieve the goal with good reproducibility by simply adjusting the temperature distribution. It is not possible to manufacture base materials for optical fibers.
他方、この気相軸付法で得られる多孔質シリカ焼結体に
ついては、このシリカ発生時に副生する水分やどうして
も残存しでしまうOH基を除くために焼結体を高温加熱
炉中での処理による透明ガラス化するときに塩素ガスま
たは塩化千オニルガスを共存させるという方法がとられ
ているが、この処理に当ってはドープ剤としての二酸化
ゲルマニウムが四塩化ゲルマニウムとして挿散するため
。On the other hand, with regard to the porous silica sintered body obtained by this vapor phase axial attachment method, the sintered body is heated in a high-temperature heating furnace in order to remove the moisture that is produced as a by-product when the silica is generated and the OH groups that inevitably remain. A method is used in which chlorine gas or 1,000 onyl chloride gas is allowed to coexist when turning the material into transparent glass through treatment, but in this treatment, germanium dioxide as a dopant is intercalated as germanium tetrachloride.
得られる光フアイバー用母材中の二酸化ゲルマニウムの
濃度分布が変化してしまい、これを)ネ正な屈折率分布
に調整することが難しくなるという不利があり、これを
解決するために上記の脱水処理時の塩素ガスに酸素を添
加して塩素と二酸化ゲルマニウムとの反応を抑制し、温
度分布の変化を少なくするという方法も提案されている
が、この二酸化ゲルマニウムの揮発量が脱水時の諸条件
、例えば塩素ガス濃度、雰囲気ガスの流速、炉内温度、
多孔質シリカ焼結体の密度などによって大きく変化する
ものであるため、この光フアイバー母材の屈折率はこれ
だけで調整し得るものではなく、ごれらは実用性に乏し
いものであるとされている。There is a disadvantage that the concentration distribution of germanium dioxide in the resulting optical fiber base material changes, making it difficult to adjust it to a positive refractive index distribution.To solve this problem, the above-mentioned dehydration method A method has also been proposed in which oxygen is added to chlorine gas during treatment to suppress the reaction between chlorine and germanium dioxide and to reduce changes in temperature distribution, but the amount of volatilization of germanium dioxide depends on the various conditions during dehydration. , for example, chlorine gas concentration, atmospheric gas flow rate, furnace temperature,
The refractive index of the optical fiber base material cannot be adjusted by this alone, as it varies greatly depending on factors such as the density of the porous sintered silica, and these methods are considered to be of little practical use. There is.
本発明はこのような不利を解決した元ファイバー母材の
製造方法に関するものであり、これはけい素化合物とド
ープ剤とを火炎加水分解して多孔質シリカ焼結体を作り
、これを富熱炉中で透明ガラス化して元ファイバー母材
分袋造する方法において、一本の同心多重管バーナーの
中心部からけい素化合物とドープ剤と刀・らなる均一組
成の原料ガスを罷して多孔禎シリカ焼結体を作り、つい
でこれをドープ剤と反応し得るガス胛囲気中で加熱処理
してドープ剤の分布を制御し、透明ガラス化することを
特徴とするものである。The present invention relates to a method for producing an original fiber matrix that solves these disadvantages, and involves flame hydrolysis of a silicon compound and a dopant to produce a porous silica sintered body, which is then heated in a high heat environment. In the method of producing transparent vitrification in a furnace and dividing the original fiber base material into bags, raw material gas with a uniform composition consisting of a silicon compound, a dopant, and a gas is passed through the center of a single concentric multi-tube burner to form a porous material. The method is characterized in that a sintered silica body is produced and then heat treated in a gas atmosphere capable of reacting with the dopant to control the distribution of the dopant and turn it into transparent glass.
これを説明すると、本弁明者らは目的とする光ファイバ
ー母材σ〕屈折;4S調整方法について種々検討し、特
1てこのドープ剤としての二酸化ゲルマニウムの揮発現
象について詳細な研究を行なった結果、この揮発量が多
孔質シリカ焼結体の密度分布とこれをガラス化する時の
刀口熱炉中における雰囲気ガスの種類とa度によって一
定の平衡状態となり、この平衡状態になったあとは殆ん
ど揮発することがなく、一種の安定状態になるというこ
とを見出すと共に−この多孔質シリカ焼結体に含まれる
ドープ剤のa度分布は少なくともその中心部が所望の分
布に近い形状であればそれが必らすしも放射線状のいわ
ゆる二乗分布である必要はなく、したがってこの多孔質
シリカ焼結体の製造には従来の技術のような複雑なバー
ナーは必要でなく、一本の円心多市惰バーナーの中心部
から均一組成の原料ガスを扉せばよいということを確認
して本発明を完成させた。To explain this, the present defenders have conducted various studies on the target optical fiber base material σ] refraction; 4S adjustment method, and in particular, have conducted detailed research on the volatilization phenomenon of germanium dioxide as a lever dopant. This amount of volatilization reaches a certain equilibrium state depending on the density distribution of the porous silica sintered body and the type and degree of atmospheric gas in the Toguchi thermal furnace when it is vitrified, and after reaching this equilibrium state, almost no It was discovered that the dopant does not volatilize and becomes a kind of stable state, and if the a-degree distribution of the dopant contained in this porous silica sintered body has a shape close to the desired distribution at least in the center, It does not necessarily have to be a radial, so-called square distribution, and therefore, the production of this porous silica sintered body does not require a complicated burner like the conventional technology, and instead has a single circular center The present invention was completed by confirming that it is sufficient to introduce raw material gas of uniform composition from the center of the city burner.
したがって、本発明の方法はまづけい素化合物とドープ
剤と刀1らなる原料を酸水素炎などで火炎加水分解させ
て、そのドープ剤濃度が中心スJ・ら外周に刀1けては
ゾ順次小さくなっている多孔′tvリリ力焼結体を作り
、ついでこれをドープ剤と反応するガス雰囲気中で加熱
処理をするという2工程からなるものであるが−この多
孔質シリカ焼結体の製造はこの原料ガスを一本の円心多
重管バーナーの中心部から供給し、これを火炎加水分解
するという方法で行なえばよく、この場合に原料ガスの
組成を2種あるいは2種以上としてこれらを別々のノズ
ルから噴出させたり、ざらにバーナーを2不または2本
以上便用して分布の誠整を多孔質シリカ焼結体の堆憤時
に行なう必要はない。これはバーナー構造を簡素化する
ことによってバーナー構造に依存する因子を少なくてる
と共に原料供給システムにおける温度、代置、圧力など
の変動因子を少なくすれば、一定の分布形状をもつ多孔
質シリカ焼結体がきわめて栴現性よく製造できるからで
あり、事実これによれば各種の条件を比較同月−に保持
することが容易となるので多孔質シリカ焼結体の密j度
、ドープ剤の濃度分布が略々一定した多孔質シリカ焼結
体を容易に得ることができろ。Therefore, the method of the present invention is to flame-hydrolyze raw materials consisting of a dopant compound, a dopant, and a dopant 1 using an oxyhydrogen flame, so that the concentration of the dopant is as low as a dopant from the center to the outer periphery. The process consists of two steps: creating a porous silica sintered body with progressively smaller pores, and then heat-treating it in a gas atmosphere that reacts with the dopant. can be produced by supplying this raw material gas from the center of a single central multi-tube burner and subjecting it to flame hydrolysis.In this case, the composition of the raw material gas may be two or more. There is no need to eject these from separate nozzles or to use two or more burners to precisely adjust the distribution when the porous sintered silica is compacted. By simplifying the burner structure, it is possible to reduce the factors that depend on the burner structure, as well as reduce the variable factors such as temperature, substitution, and pressure in the raw material supply system. This is because the porous silica sintered body can be manufactured with extremely good developability, and in fact, this makes it easy to maintain various conditions at the same time, so the density of the porous silica sintered body and the concentration distribution of the dopant can be easily controlled. It is possible to easily obtain a porous silica sintered body having a substantially constant value.
この多孔質シリカ焼結体の製造は具体B’]には中央部
をけい素化合物とドープ剤と搬送用の不活性ガスとを均
一(で混合した原料ガス供給管とし、その外側に水素ガ
ス供給管、酸素ガス供給管を順次円心的に配置し、必要
に応じこの酸水素炎の燃焼速度を制御するための不活性
ガス供給管を同心通に配置した一本の同心多重管を使用
して行えはよく、このけい素化合物としては5iOt4
、H81Ct3−0H3SiCち −8iH4−5i(
QC2I(+))4などが−またドープ剤としてはGe
Cl4−pocz3BBr3などが例示される。この原
料ガスは上記しタ一本の同心多重管バーナーの中心部か
ら供給され、火炎月日水分解によって5IO2とC)
e 02−P2O3,P、203として石英棒上に析出
され、これによってドープ剤を含む多孔質シリカ焼結体
として取得される。The production of this porous silica sintered body is specifically B'. The central part is a raw material gas supply pipe in which a silicon compound, a dopant, and an inert gas for transportation are uniformly mixed, and the outside is a hydrogen gas supply pipe. A single concentric multi-tube is used in which supply pipes and oxygen gas supply pipes are sequentially arranged circularly, and where necessary, inert gas supply pipes are arranged concentrically to control the combustion speed of this oxyhydrogen flame. This silicon compound is 5iOt4.
, H81Ct3-0H3SiCchi -8iH4-5i(
QC2I(+)4 etc. - Also Ge as a dopant
Examples include Cl4-pocz3BBr3. This raw material gas is supplied from the center of the single concentric multi-tube burner mentioned above, and is converted into 5IO2 and C) by flame water decomposition.
e 02-P2O3,P, 203 is deposited on a quartz rod, thereby obtaining a porous silica sintered body containing the dopant.
本発明はこの多孔′0シリカ焼結体をドープ剤と反応し
得るガス雰囲気中での加熱処理することによってドープ
剤の分布を制御するものであるが。In the present invention, the distribution of the dopant is controlled by heat-treating this porous '0' silica sintered body in a gas atmosphere capable of reacting with the dopant.
これによれは多孔質シリカ焼結体中に含まれている過剰
のドープ剤を揮発させて、間口とする光フアイバー母材
中のドープ剤の濃度分布を課長することができる。これ
をその屈折率分布に最も太きく寄与するGeO2を例に
とって説明すると、この多孔愉シリカ焼結体を加熱炉中
において塩素ガスを営むイ囲気中で刀O熱するとGeO
2はその一部が次式
%式%(1)
によってGe0L4となり1車発するが、この() e
02のGeCl4への反応はその反応速度が塩素濃度
、温1ケに依存するものの、一定量のGeC44が揮発
すると処理時間を長くしてもそれ以上は進行セず、した
がってガラス化された光フアイバー母材中のGeO2の
量ははシ一定となる。これは光ファ・rパー母材中に残
存するGeO2の量は主と【7て多孔質シリカ焼結体の
密度あるいは炊結度に依存するが。This allows the excess dopant contained in the porous silica sintered body to volatilize, thereby controlling the concentration distribution of the dopant in the optical fiber matrix used as the opening. To explain this using GeO2, which contributes most significantly to the refractive index distribution, as an example, when this porous silica sintered body is heated in a heating furnace in an atmosphere containing chlorine gas, the GeO2
2, a part of which becomes Ge0L4 according to the following formula % formula % (1) and one car is emitted, but this () e
Although the reaction rate of 02 to GeCl4 depends on the chlorine concentration and temperature, once a certain amount of GeC44 has volatilized, it will not proceed any further even if the treatment time is increased, and therefore the vitrified optical fiber The amount of GeO2 in the base material remains constant. This is because the amount of GeO2 remaining in the optical fiber base material mainly depends on the density or degree of sintering of the porous silica sintered body.
同一条件で処理した場合には密度の低いほど()e○2
の渾発量が多くなり、一方多孔質シリカ焼結体の密度は
中心部が耗く周辺部にむη)って低くなる傾向にあるた
め、その密度分布にしたがった濃度分布のGeO2を含
む光ファイバー川母材を容易に得ることができるのであ
る。なお、この光フアイバー用母材については従来、そ
の最外層にドーブハ(jを全く含まないグランド層を設
けるために。When treated under the same conditions, the lower the density ()e○2
On the other hand, the density of the porous silica sintered body tends to be lower towards the periphery where the center is worn out. Optical fiber base material can be easily obtained. Conventionally, this optical fiber base material is provided with a ground layer that does not contain any dobber (J) at its outermost layer.
多孔質シリカ焼結体上に別のバーナーを用いてクラ゛ソ
ド用の多孔質シリカ層を堆積させるか、または光フアイ
バー用のコア用ガラスσツドにクラッド用がラフ管を被
彷させるなどの方法が採られているのであるが1本発明
の方法によればこの一本ノバーナーて゛条件を変えてそ
の最外側部に密度の低い多孔質シリカ焼結層を設けるこ
ともできるので、これによれば実質的にクラッド)をも
つ光ファイバー用母材ゲ一工程で得ることができる。A porous silica layer for the cladding is deposited on a porous silica sintered body using a separate burner, or a cladding layer is made to resemble a rough tube over a glass sintered core for an optical fiber. However, according to the method of the present invention, it is possible to provide a low-density porous sintered silica layer on the outermost part of this single burner by changing the conditions. It can be obtained by a step of forming an optical fiber base material having substantially a cladding.
また、前記した(1)式の反応は800℃2j、上でな
いと進行せず、1000℃以上になると多孔質シリカ焼
結体のガラス化が進み始め、これに伴なってGe044
の揮発が抑制されるようになるので、この場合にはその
処理温度、時間−ガス濃度、多孔質シリカ焼結体の密度
などのm整が複雑になるという不利がある。しカーL、
、この処理剤として塩化水素を使用すると、この場合に
は次式4式%(2)
によって反応が進行し、これは800℃以下の温度でも
進行し、これは前記(1)式による反応よりも反応速度
が大きいので、そのガラス化に先立って()eO3全i
車発させろことができろ。また、このGe 02の揮発
についてはCOガスの使用も有効であり、この場合には
次式
%式%(3)
l乙よってG e○2の(単発が行なわれるのであるが
−これは塩素ガスと共Vこ使用すると一次式%式%
(4)
によって塩素ガスによるGeO2の揮発を促進させると
いう効果もあり、これによれば塩素ガス単独では5〜1
5%が必要とされるガス濃度を0.1〜lJf%の塩素
a度とすることができ、高い濃度の塩素ガスを使用した
場合の光フアイバー母材中への塩素ノJスの残留、気泡
の光住などか防止されるといつ効果が与えられるが、こ
れはまたホスゲンガスを使用してもよく、これCてよれ
はQ(弐GeO2+2CoC42→GeCt4+C○2
−(5)によってGe○2全揮発させることができる。In addition, the reaction of formula (1) described above does not proceed unless it is above 800°C2j, and when the temperature exceeds 1000°C, vitrification of the porous silica sintered body begins to progress, and along with this, Ge044
Since the volatilization of the porous silica sintered body is suppressed, in this case there is a disadvantage that the adjustment of the processing temperature, time-gas concentration, density of the porous silica sintered body, etc. becomes complicated. Shika L,
In this case, when hydrogen chloride is used as the treatment agent, the reaction proceeds according to the following formula 4 (2), and this also proceeds at temperatures below 800°C, which is faster than the reaction according to the above formula (1). Since the reaction rate of
You can start the car. In addition, the use of CO gas is also effective for the volatilization of Ge 02, and in this case, the following formula % formula % (3) When V is used together with gas, it has the effect of promoting the volatilization of GeO2 by chlorine gas according to the linear formula % formula % (4), and according to this, chlorine gas alone has the effect of accelerating the volatilization of GeO2 by
The gas concentration required for 5% can be set to a chlorine a degree of 0.1 to 1Jf%, and when a high concentration of chlorine gas is used, chlorine gas remains in the optical fiber base material. The effect is given when the bubbles are prevented, but phosgene gas may also be used, and this C twist is Q (2GeO2+2CoC42→GeCt4+C○2
-(5) allows Ge○2 to be completely volatilized.
したがって、本発明の方法は前記した方法で製造した多
孔智シリカ焼結体をドープ剤と反応し得るガス体として
の塩素、塩化水素、 ’4i化炭素。Therefore, the method of the present invention uses chlorine, hydrogen chloride, and carbon 4i as gases capable of reacting the porous silica sintered body produced by the above-described method with a dopant.
ホスゲンなどの1種または2種り、上の混合ガス雰囲気
中で加熱処理するものであるが、このガスはアルゴン、
窒素、ヘリウムなどの不活性ガスで希釈して用いればよ
く、これらは通常0.1〜15容量係のa度で使用丁れ
ばよい。この処fi8温度としては、それが400℃以
下ではドープ剤の揮発が不充分となり、また1200℃
以上とすると多孔質シリカ焼結体のガラス化の進行でそ
の揮発が抑制されるので、これは400〜1200℃の
範囲とすることがよい。Heat treatment is performed in a mixed gas atmosphere containing one or two types of phosgene, etc., but this gas is argon,
It may be used after being diluted with an inert gas such as nitrogen or helium, and these may normally be used at a degree of 0.1 to 15 volume. If the fi8 temperature of this process is below 400℃, the volatilization of the dopant will be insufficient;
If the temperature is higher than this, the volatilization of the porous silica sintered body will be suppressed as the vitrification progresses, so it is preferable that the temperature is in the range of 400 to 1200°C.
なお、上記においては本発明の方法を気相軸付法につい
て説明したが、これは外付法においても同様に有効に使
用することができろ。Although the method of the present invention has been described above with respect to the gas phase axial method, it can also be effectively used in the external method as well.
つぎに本発明方法の実施例をあげる。Next, examples of the method of the present invention will be given.
実施例 1゜
同心4草首描造の石英バーナー1の中心部に5icz4
1o 5v−1/分、() e Ct420 mA’
7分、POO433ml/Hを搬送用のアルゴンガス3
70rni/分と均一混合した原料ガスを、その外側に
H23,2!1分−Ar O,6L15f、026.
7!1分で供給し、これを第1図に示したような反応炉
2の中で火炎加水分解させて、こ\に発生するシリカを
回転しつつある基板3に堆積させ、軸方向[5i長さセ
て多孔質シリカ焼結体4を作ったところ、このもの見か
け密度は0.22であった。Example 1 5icz4 in the center of the quartz burner 1 with concentric 4-grain pattern
1o 5v-1/min, ()e Ct420 mA'
7 minutes, argon gas 3 for transporting POO433ml/H
A uniformly mixed raw material gas of 70rni/min was heated on the outside with H23, 2!1 min-Ar O, 6L15f, 026.
7! 1 minute, and flame hydrolyzes it in a reactor 2 as shown in FIG. When a porous silica sintered body 4 was prepared with a length of 5i, the apparent density of this body was 0.22.
つぎにこの多孔質シリカ焼結体を、0!、ガス、HOl
ガス、2容量チのCOガスを含むC4ガスの雰囲気
で1000℃に刀口熱してその反応率をしらべたところ
、第2図、第3図に示したとおりの結果が得られ、この
Ct2ガス、HOtガスについてはその処理温度全70
0〜1200℃に行なったところ、第4図に示したとお
りの結果が得られたO
また、上記において種々の見かけ密度の多孔質シリカ焼
結体を作り、これらについて10%のO40ガス雰囲気
中におけろ1OOO℃での反応率をしらべたところ、こ
れについては第5図に示したとおりの結果が得られたー
密度の低いほど反応率の高いことが確認された。Next, this porous silica sintered body is 0! , gas, HOl
When the reaction rate was examined by heating the gas to 1000°C in an atmosphere of C4 gas containing 2 volumes of CO gas, the results shown in Figures 2 and 3 were obtained. For HOt gas, its processing temperature is 70°C.
When the test was carried out at 0 to 1200°C, the results shown in Figure 4 were obtained. When the reaction rate at 100°C was investigated, the results shown in Figure 5 were obtained - it was confirmed that the lower the density, the higher the reaction rate.
なお、前記と同じ方法で得た多孔質リリカ焼結体C見刀
)け密度0.22)をIO容量チのCt2ガスを含むA
r ガス(A)+ 5容量係のHCt ガスを含むA
rガス(B)+ 3容ffi%のCt2ガスと2容量係
のCOガスを含むAr ガス(0)中で、800℃で
2時間処理し、ついでこれを1500℃の高温炉中でガ
ラス化して光ファイノ(−用母材とし、これらの屈折率
をしらへたところ、これ(ま第6図のようになった。な
お、これについてのドープ剤の分布指数αを最小自乗法
で求めると共に、これ力)ら作った0、85μmの光フ
ァイノ(−につX、)ての伝送特性をしらべたところ−
これらの結果(ま第1表に示したとおりであった。In addition, the porous lyrica sintered body C obtained by the same method as described above has a density of 0.22) and A containing Ct2 gas with an IO capacity of
r gas (A) + A containing HCt gas of 5 volumes
It was treated at 800°C for 2 hours in r gas (B) + Ar gas (0) containing 3% by volume of Ct2 gas and 2% by volume of CO gas, and then vitrified in a high-temperature furnace at 1500°C. By using this as the base material for optical phino (-) and finding out the refractive index of these, it became as shown in Fig. An investigation of the transmission characteristics of a 0.85 μm optical fiber (-NitsuX,) made by
These results were as shown in Table 1.
こ\に、第6図中における(N、(B)、(C)はそれ
ぞれ上記したガス組成に対応するものであり、(D)&
まこのようなドープ剤揮発処理を全く行なわな力)つた
場合の結果を示したもの、また図中のへn (ま最大屈
折率差+ ro はコア径を示したものであるO第
1 表
実施例 2゜
実施例1の方法においてH2および02′!i7それぞ
れ2.8℃1分、5.617分としたは711)は同様
に処理して多孔質シリカ焼結体を作ったところ、このも
のはその密度が0.08g/−と比較的低いものとなっ
た。Here, (N, (B), and (C) in Fig. 6 correspond to the above gas compositions, respectively, and (D) &
This shows the results obtained when such dopant volatilization treatment is not carried out at all, and also the O part in which the maximum refractive index difference + ro indicates the core diameter.
1 Table Example 2゜H2 and 02' in the method of Example 1! i7 (711) was treated in the same manner at 2.8℃ for 1 minute and at 5.617 minutes, respectively, to produce a porous silica sintered body, which had a relatively low density of 0.08 g/-. It became a thing.
つぎにこれをl、 500℃の高温炉中で透明ガラスす
る際に、これを5容量係のat2 と3容量係のCO
ガスを含むAr ガス雰囲気中で行なったところ、こ
れはその周辺部がきわめて密度の低いものであったこと
刀為ら、第7図に示したようにその周辺部にブラッド部
をもつ元ファイバー用母材となった。Next, when this is made into transparent glass in a high temperature furnace at 500°C, it is mixed with 5 volumes of at2 and 3 volumes of CO2.
When the test was carried out in an Ar gas atmosphere containing gas, it was found that the density of the surrounding area was extremely low. It became the base material.
if図は本発明の実施例に使用した反応装置の縦断面略
図、第2図はHat +’ at2 e−使用したとき
のこれらの濃度と反応率との関係図、第3図はCOガス
添7JDC62ガスを使用したときのCOガス濃度と反
応gとの関係図、第4図はHCl、C42ガス使用時の
処理温度と反応率との関係図、第5図は多孔質シリカ焼
結体のみ刀1け密度と反応率との関係図、第6図は各種
処理剤を使用1−て得た光フアイバー用母材の屈折率を
示したもの、第7図はみかけ密度がo、o8g/rr?
の多孔質シリカ焼結体を本発明方法で処理して得た元フ
ァイバー用母材の屈折率を示したものである。
1・・・バーナー、 2・・・反射炉、 3・・・基板
、4・・・多孔質シリカ焼結体。
特許出願人 信越化学工業株式会社
第1図
第2図 第3図
一処理存JJ庄(容蔓%)−−COや゛ヌ濱度(各菫%
)−夕yxs屋 (00)
−みが1ブヌ&(g/cロイ)第6図
6n
手続補正書
昭和57年12月 ]5 [」
1、事件の表示
昭和57年特許願第200105号
2、発明の名称
集束型光ファイバー母材の9造方法
3、補正をする者
事件との関係 特許出願人
名称 信越化学工業株式会社
4代理人
住 所 〒103東京都中央区日本僑本町4丁目9番地
永井ヒルljC話東京(270) 0858□O859
)6、補正の対象
明細書の「特許請求の範囲の欄」、「発明の詳細な説明
の榴」および「図面(第6図)」1) 明細差9↓1頁
4行〜第2頁2行に記載の特許請求の範囲を別紙のとお
りに補正する。
2) 明細書第17頁1行〜6行記載の第1表をつぎの
とおりに補正する。
」
3) 第6図を別紙のとおりに補正する。
以上
(別紙)
特許請求の範囲
1、けい素化合物とドープ剤とを火炎加水分解して多孔
質シリカ焼結体を作り、これを高温加熱炉中で透明ガラ
ス化して光ファイバー用母祠を製造する方法において、
けい素化合物とドープ剤とからなる均一組成の原料ガス
を一本の同心多重管バーナーの中心部からi’lij、
して多孔質シリカ焼結体を作り、ついでこれをドープ
剤と反応し得るガフ雰囲気中で加熱処理し7てドープ剤
の分布を制御し、透明ガラス化することを′iケ徴とす
る集束型光ファイバー母材の製造方法。
2 ドープ剤と反応し得るガスがハロゲンカス。
ハロゲン化水素、−酸化炭素またはホスゲンから選ばれ
る1種または2種以上のものである特許請求の範囲第1
項記載の集束型光ファイバー母材の製造方法。
第6 四
−fオオ径−The if diagram is a schematic vertical cross-sectional view of the reactor used in the examples of the present invention, Figure 2 is a diagram showing the relationship between these concentrations and reaction rates when Hat +' at2 e- is used, and Figure 3 is a diagram showing the relationship between the concentration and reaction rate when Hat +' at2 e- is used. Figure 4 shows the relationship between CO gas concentration and reaction g when using 7JDC62 gas, Figure 4 shows the relationship between processing temperature and reaction rate when using HCl and C42 gas, and Figure 5 shows only the porous silica sintered body. Figure 6 shows the refractive index of optical fiber base materials obtained by using various treatment agents. Figure 7 shows the relationship between density and reaction rate. Figure 7 shows the relationship between density and reaction rate. rr?
2 shows the refractive index of the original fiber base material obtained by processing the porous sintered silica body according to the method of the present invention. DESCRIPTION OF SYMBOLS 1... Burner, 2... Reverberatory furnace, 3... Substrate, 4... Porous silica sintered body. Patent Applicant: Shin-Etsu Chemical Co., Ltd.
)-Yuyxsya (00)
- Miga 1 Bunu & (g/c Roy) Figure 6 6n Procedural Amendment December 1982] 5 ['' 1. Indication of the case 1982 Patent Application No. 200105 2. Name of the invention Focusing type optical fiber motherboard 9 Manufacturing method of lumber 3, relationship with the case of the person making the amendment Patent applicant name Shin-Etsu Chemical Co., Ltd. 4 Agent address 270 Nagai Hill ljC Tokyo, 4-9 Nipponka Honmachi, Chuo-ku, Tokyo 103 0858□O859
) 6. "Claims", "Detailed Description of the Invention" and "Drawings (Figure 6)" of the specification to be amended 1) Specification difference 9 ↓ Page 1, line 4 to page 2 The claims stated on the second line are amended as shown in the attached sheet. 2) Table 1 described on page 17, lines 1 to 6 of the specification is amended as follows. 3) Amend Figure 6 as shown in the attached sheet. Above (Attachment) Claim 1: A silicon compound and a dopant are flame-hydrolyzed to produce a porous silica sintered body, which is then turned into transparent vitrification in a high-temperature heating furnace to produce an optical fiber matrix. In the method,
A raw material gas with a uniform composition consisting of a silicon compound and a dopant is passed through the center of a single concentric multi-tube burner.
The focusing process is characterized by producing a porous sintered silica body, which is then heat-treated in a gaff atmosphere that can react with the dopant to control the distribution of the dopant and turn it into transparent vitrification. Method for manufacturing molded optical fiber base material. 2 The gas that can react with the dopant is halogen gas. Claim 1 is one or more selected from hydrogen halide, -carbon oxide, and phosgene.
A method for producing a convergent optical fiber preform as described in Section 1. No. 6 4-f diameter-
Claims (1)
質シリカ焼結体を作シ、これを高温刀り熱炉中で透明ガ
ラス化して光フアイバー用母材を製造する方法において
、けい素化合物とドープ剤と刀1らなる均一組成の原料
ガスを一本の同心多重管バーナーの中心部から流して多
孔質シリカ焼結体を作シ、ついでこれをドープ剤と反応
し得るガス雰囲気中でn1熱処理してドープ剤の分布を
制御し、透化ガラス化することを特徴とする集束型光フ
ァイバー母材の製造方法。 2、 ドープ剤と反応し得るガスがハロゲンガン、ハロ
ゲン化水素−一酸化炭素またはホスゲン力1ら選ばれる
1種または2種以上のものである特許請求の範囲第1項
記載の集束型光ファイバー母材の製造方法。[Claims] 1. A silicon compound and a dopant are flame-hydrolyzed to produce a porous sintered silica, which is then turned into transparent glass in a high-temperature furnace to produce a base material for optical fiber. In the manufacturing method, a raw material gas with a uniform composition consisting of a silicon compound, a dopant, and a sinter is flowed from the center of a single concentric multi-tube burner to produce a porous silica sintered body, which is then injected with a dopant. 1. A method for producing a convergent optical fiber preform, which comprises controlling the distribution of a dopant by performing n1 heat treatment in a gas atmosphere capable of reacting with the preform, thereby converting it into transparent glass. 2. The focusing optical fiber motherboard according to claim 1, wherein the gas capable of reacting with the dopant is one or more selected from halogen gun, hydrogen halide-carbon monoxide, and phosgene force. Method of manufacturing wood.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20010582A JPS5992927A (en) | 1982-11-15 | 1982-11-15 | Method for manufacturing focusing optical fiber base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20010582A JPS5992927A (en) | 1982-11-15 | 1982-11-15 | Method for manufacturing focusing optical fiber base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5992927A true JPS5992927A (en) | 1984-05-29 |
JPS6230146B2 JPS6230146B2 (en) | 1987-06-30 |
Family
ID=16418914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20010582A Granted JPS5992927A (en) | 1982-11-15 | 1982-11-15 | Method for manufacturing focusing optical fiber base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5992927A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7733646B2 (en) | 2007-04-13 | 2010-06-08 | Sony Corporation | Frontal structure of information processing apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS509609A (en) * | 1973-05-29 | 1975-01-31 | ||
JPS558650U (en) * | 1978-07-03 | 1980-01-21 | ||
JPS565339A (en) * | 1979-06-26 | 1981-01-20 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of high purity quartz glass |
JPS5617935A (en) * | 1979-07-20 | 1981-02-20 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS56160334A (en) * | 1980-04-25 | 1981-12-10 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5723655A (en) * | 1980-07-18 | 1982-02-06 | Dainippon Ink & Chem Inc | Reinforced polyarylenesulfide resin composition |
JPS5734033A (en) * | 1980-08-05 | 1982-02-24 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of glass preform for optical fiber |
JPS5767043A (en) * | 1980-10-08 | 1982-04-23 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS57156339A (en) * | 1981-03-18 | 1982-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of optical fiber |
-
1982
- 1982-11-15 JP JP20010582A patent/JPS5992927A/en active Granted
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS509609A (en) * | 1973-05-29 | 1975-01-31 | ||
JPS558650U (en) * | 1978-07-03 | 1980-01-21 | ||
JPS565339A (en) * | 1979-06-26 | 1981-01-20 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of high purity quartz glass |
JPS5617935A (en) * | 1979-07-20 | 1981-02-20 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS56160334A (en) * | 1980-04-25 | 1981-12-10 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS5723655A (en) * | 1980-07-18 | 1982-02-06 | Dainippon Ink & Chem Inc | Reinforced polyarylenesulfide resin composition |
JPS5734033A (en) * | 1980-08-05 | 1982-02-24 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of glass preform for optical fiber |
JPS5767043A (en) * | 1980-10-08 | 1982-04-23 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of base material for optical fiber |
JPS57156339A (en) * | 1981-03-18 | 1982-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of optical fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7733646B2 (en) | 2007-04-13 | 2010-06-08 | Sony Corporation | Frontal structure of information processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6230146B2 (en) | 1987-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4414012A (en) | Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass | |
JPS61247633A (en) | Production of glass base material for optical fiber | |
JPS5844619B2 (en) | Manufacturing method of optical fiber base material | |
JPH029727A (en) | Production of optical fiber preform | |
JPS5992927A (en) | Method for manufacturing focusing optical fiber base material | |
JPH03109223A (en) | Quartz glass and production thereof | |
JPS6048456B2 (en) | Method for manufacturing base material for optical fiber | |
JPS6024057B2 (en) | Glass body manufacturing method | |
JPH01126236A (en) | Production of optical fiber preform | |
JPS6044258B2 (en) | synthesis torch | |
JP2710446B2 (en) | Production method of rare earth doped glass | |
JPS62288129A (en) | Manufacturing method of glass base material for optical fiber | |
JPS6046938A (en) | Manufacture of optical fiber preform | |
JPS6144725A (en) | Method of treating quartz porous glass layer | |
JPH0425212B2 (en) | ||
JPS63315531A (en) | Production of optical fiber preform | |
JPH0421536A (en) | Preparation of rare earth element-doped glass | |
JP4048753B2 (en) | Manufacturing method of glass preform for optical fiber | |
JP2022049501A (en) | Manufacturing method of glass base material for optical fiber | |
JPH02153828A (en) | Method for manufacturing silica porous matrix | |
JPS6350340A (en) | Production of base material for functional quartz optical fiber | |
JPS591218B2 (en) | Manufacturing method of glass base material for optical fiber | |
JPH01203238A (en) | Production of optical fiber preform | |
JPS61191528A (en) | Thermal treatment of base material for doped quartz series porous glass | |
JPH01264940A (en) | Production of glass base material for optical fiber |