[go: up one dir, main page]

JPS5992924A - Silica glass manufacturing method - Google Patents

Silica glass manufacturing method

Info

Publication number
JPS5992924A
JPS5992924A JP20325882A JP20325882A JPS5992924A JP S5992924 A JPS5992924 A JP S5992924A JP 20325882 A JP20325882 A JP 20325882A JP 20325882 A JP20325882 A JP 20325882A JP S5992924 A JPS5992924 A JP S5992924A
Authority
JP
Japan
Prior art keywords
quartz glass
gel
raw material
cracks
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20325882A
Other languages
Japanese (ja)
Other versions
JPH0123420B2 (en
Inventor
Tetsuhiko Takeuchi
哲彦 竹内
Sadao Kanbe
貞男 神戸
Motoyuki Toki
元幸 土岐
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP20325882A priority Critical patent/JPS5992924A/en
Publication of JPS5992924A publication Critical patent/JPS5992924A/en
Publication of JPH0123420B2 publication Critical patent/JPH0123420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a quartz glass having perfect structure free from cracking and crazing, by adding fine silica powder to a raw material composition containing a metal alkoxide as a raw material, and preparing the quartz glass by sol- gel process. CONSTITUTION:A raw material mixture composed of a metal alkoxide, Si(OH)4 (R is 1-10C alkyl), an alcohol, water and hydrochloric acid, is added with 10- 80mol%, in terms of SiO2, of fine silica powder, and the product is gelatinized to obtain a dried gel, which is sintered to quartz glass. Since the dried gel produced by this process contains a large amount of fine pores, it is resistant to cracking even by the sintering at an extremely high rate of temperature increase (200-1,000 deg.C/hr).

Description

【発明の詳細な説明】 本発明は、石英ガラスの製造法に係シ、さらに詳しくは
、金属アルコキシドを原料とするゾル−ゲル法による低
温での石英ガラスの製造法において、原料組成物に、微
粉末シリカを添加することによシ、クラックや割れ等の
生じない乾燥ゲルおよび完全な石英ガラスの製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing quartz glass, and more specifically, in a method for producing quartz glass at low temperatures by a sol-gel method using a metal alkoxide as a raw material, the raw material composition includes: This invention relates to a method for producing dry gel and perfect quartz glass that does not cause cracks or cracks by adding finely powdered silica.

石英ガラスは、銅やホウ素等の不純物濃度が0.1 p
pm以下の高純度のものが作られるようになッタタメ、
ゲルマニウム、シリコンその他の半導体の製造において
、ルツボやボード、拡散炉などに用いられるようになシ
、大変その有用性が認められている。また理化学用のビ
ーカー、光学測定用のセルとしても、石英ガラスは、よ
く使用され、さらには水酸基の少々いものや、光学的均
一性のよいものが開発され各種の光学的用途に使用され
るようになり、特に元通信用の石英ガラスファイバーは
、最近注目゛されている。
The concentration of impurities such as copper and boron in quartz glass is 0.1 p.
It has become possible to produce products with high purity below pm.
In the production of germanium, silicon, and other semiconductors, it has been used in crucibles, boards, diffusion furnaces, etc., and its usefulness has been recognized. Quartz glass is also often used as beakers for physics and chemistry and cells for optical measurements, and those with a small amount of hydroxyl groups and those with good optical uniformity have been developed and are used for various optical applications. As a result, quartz glass fiber, especially for original communications, has recently been attracting attention.

このように必要性の筒い石英ガラスは、現在、一般に次
に示す三通ルの方法で製造されている。
Cylindrical quartz glass, which is thus necessary, is currently manufactured generally by the following three methods.

111  天然水晶を洗浄し、これを溶融する方法。111 A method of cleaning natural crystal and melting it.

(21高純度E3iCIL4またばSiH、を原料とし
て5ho2を作る方法。
(21 A method for producing 5ho2 using high purity E3iCIL4 or SiH as a raw material.

13+  天然珪砂を溶融する方法。(泡を含む石英ガ
ラスが得られる) しかし゛、これらいずれの方法でも、原料費が高価で、
高温での処理が必要であることなどのために、石英カフ
スは、非常に高価なものになっている。そこで、石英カ
フスの安価な製造法として、最近特に注目をあびている
のが、ゾル−ゲル法にヨル金属アルコキシドを原料とし
てこれからの低温における石英カフスの製造法である。
13+ Method of melting natural silica sand. (Quartz glass containing bubbles can be obtained.) However, in both of these methods, the raw material cost is high;
Quartz cuffs are very expensive, due in part to the high temperature processing required. Therefore, as an inexpensive method for producing quartz cufflinks, a method that has recently attracted particular attention is a method for producing quartz cufflinks at low temperatures using a sol-gel method using jormetal alkoxide as a raw material.

このゾル−ゲル法による石英カフスの製造法について簡
単に説明すると次の通りである。
A brief explanation of the method for manufacturing quartz cufflinks using the sol-gel method is as follows.

適当な金属アルコキシド、例えばアルキルシリケート(
5j(OR4) ) (R(i炭素数1〜1oのアルキ
ル基)を適当なアルコール溶液、例えば含水エタノール
に溶かし、シリカゾルとし、溶媒tll;J 414あ
るいは、加熱などの処理にょシシリカゲルとする。
Suitable metal alkoxides, such as alkyl silicates (
5j(OR4) ) (R (alkyl group having 1 to 1 carbon atoms) is dissolved in a suitable alcohol solution, for example, aqueous ethanol, to form a silica sol, or treated with a solvent such as heating to form a silica gel.

ここで得られた塊状のシリカゲルを炉に入れ、所定ノフ
ロクヲムによシ、焼結することにょ9、石英カフスとす
る。以上が、ゾル−ゲル法による石英カフスの製造法で
ある。
The resulting lump of silica gel is placed in a furnace and sintered to a predetermined noochrome to form a quartz cuff. The above is the method for manufacturing quartz cufflinks using the sol-gel method.

この製造法の特徴としては ill  水晶を原料として高温溶融法で作る場合より
も、低温でできるため省エネルギー的である。
A feature of this manufacturing method is that it can be produced at a lower temperature than the high-temperature melting method using crystal as a raw material, which saves energy.

(21原料が精製容易なため、高純度のカフスが得られ
る。
(Since raw material 21 is easily purified, cufflinks with high purity can be obtained.

+31  粘性の低い溶液を原料として用いるために埼
−性の高−カフスが得られる。
+31 Because a low viscosity solution is used as a raw material, high-strength cuffs are obtained.

これらの大変優れた特徴を有するため、この方法を用い
た石英カフスの合成は、色々な所で幅広く研究されてい
る。
Because of these excellent characteristics, the synthesis of quartz cuffs using this method has been widely studied in various places.

しかしながら、これ丑でに発表されている資料などによ
ると、わ々の問題点かあシ、実用化する壕でには至って
いないのが現状である。
However, according to the materials that have been published in the past, there are some problems, and the current situation is that it has not been put into practical use.

これらの問題点の中に、乾燥ゲルが割れないでイ4るこ
とか難かしいこと、およO・乾旅ゲルを熱処理すなわち
焼結の屍に、昇温速度をかなり遅くしても(0,5℃/
hr 〜2.6 Vhr ) 、 り7 ックカtii
イったシ割れたりし安く完全なものが得られないことが
ある。特に、700℃〜1000℃では、著しい体Cτ
収縮が起こり、この時にニーも割れ易い。割れない乾燥
ゲルを作る方法としては、ゲル化の除の容器、温度開放
条件を適当に選択することによっである程度可能である
が、焼結の際の脱水反応を伴なう無孔化による体積収縮
、およびゲル−カフス転移によるクラックや割れを防ぐ
方法が、a要とされている。
Among these problems are the difficulty of drying the dried gel without cracking, and the fact that it is difficult to heat the dried gel without cracking, and that it is difficult to heat the dried gel with heat treatment, that is, sintering, even if the heating rate is considerably slow (0. ,5℃/
hr ~ 2.6 Vhr)
You may not be able to get a perfect product at a cheap price because it may break if it is damaged. In particular, at 700°C to 1000°C, a significant body Cτ
Contraction occurs, and at this time the knee is also prone to cracking. To some extent, it is possible to create a dry gel that does not crack, by appropriately selecting a container and temperature release conditions to prevent gelation, but it is possible to create a dry gel that does not break, but it is possible to make it non-porous, which involves a dehydration reaction during sintering. A method to prevent cracks and fractures due to volumetric shrinkage and gel-cuff transition is considered essential.

この方法として、2OAの小孔と更に50〜20OA程
度の比較的大きな細孔を多量に持つ乾燥ゲルは、焼結時
に割れ難いことが発表され、この乾燥ゲルの製造法とし
て、60℃以上の高温でゲル化収縮を行なう方法が提案
されているのであるが、この方法では、収縮中に気泡を
多数生じ、光学的、および、機械的にも、均一な乾燥ゲ
ルを製造するのが困難であシ、再現性にも乏しく、昇温
速度をかなシ遅くした場合(0゜浅Aγ〜2゜6C/h
r )にでさえ、割れ易い。
As a method for producing this dry gel, it has been announced that a dry gel that has a large number of small pores of 2 OA and relatively large pores of about 50 to 20 OA is difficult to crack during sintering. A method of gelling and shrinking at high temperatures has been proposed, but this method produces a large number of bubbles during shrinkage, making it difficult to produce a uniform dry gel both optically and mechanically. However, the reproducibility is poor, and when the heating rate is slowed down (0° shallow Aγ ~ 2° 6 C/h
r), it is easy to break.

そこで、本発明の目的としては、乾燥ゲル製造の過程で
割れを生じず、しかも、焼結の1?;tの昇温速度が非
常に速< (200〜1000’C/Ar)とも、クラ
ックや割れのはいらないような乾燥ゲルの製造法を提供
することである。
Therefore, the purpose of the present invention is to prevent cracks from occurring during the process of producing dry gel, and to achieve a sintering rate of 1. It is an object of the present invention to provide a method for producing a dry gel that does not require cracks or cracks, even when the heating rate at t is extremely fast (200 to 1000'C/Ar).

前述の条件を満たすような乾燥ゲルの製造方法として、
次の方法を考案した。
As a method for producing a dry gel that satisfies the above conditions,
We devised the following method.

すなわちアルキルシリケート、水、アルコール、塩酸の
原料混合物に、微粉末シリカ((例えば、p、eros
il (Degrtssa社) 、 Cab−0−Bi
t CCabot社) 、 Fransil (Fra
nso1社) 、 D、c、5ilica (DowC
om、ing 社)およびArc 5ilica (P
P0社) etc、))を、添加しゲル化させ乾燥ゲル
を得、これを焼結して石英カフスとするものである。こ
のようにして得られた乾燥ゲルは、通常法に比べると細
孔を多忙に含むために、焼結の際に、昇温速度を非常に
速< (20(JC/hr 〜1000n/Ar) し
た場合にも、割れにくいという特質を有している。
That is, a raw material mixture of alkyl silicate, water, alcohol, and hydrochloric acid is mixed with finely powdered silica (e.g.
il (Degrtssa), Cab-0-Bi
t CCabot), Fransil (Fra
nso1), D, c, 5ilica (DowC
om, ing) and Arc 5ilica (P
P0 company) etc, )) is added and gelled to obtain a dry gel, which is then sintered to form quartz cufflinks. The dry gel obtained in this way contains more pores than the conventional method, so the temperature increase rate during sintering is extremely fast (20 (JC/hr ~ 1000 n/Ar)). It also has the property of being resistant to cracking.

以下、実施例をあげて本発明の内容をさらに詳細に説明
する。
Hereinafter, the content of the present invention will be explained in more detail by giving Examples.

実施例1 精製した市販のエチルシリケート(Si(OE)4)4
4 mp :Lタノール5 、4mJ 、および0.1
1”l塩酸36−を、水冷下のもとフラスコ中で混合し
、この混合溶液を室温にて、激しく攪拌しながら、微粉
末シ’) 力CCab−04i1 (Cabot社) 
) 8 f f徐々に添加した。添加後も、溶液が完全
に均一となるように2時間攪拌を続けた。次に、この溶
液を、直径10 cInのテフロン製シャーレに309
測り入れ、蒸発速度の調節か可能な穴あきのふた(直径
1.5羽×8個)をして、恒温槽に入れた恒温槽の温度
は、最初の5日間は50℃に保ち、6日間に50 ”C
がら徐々に60 ’C−iで上昇させ60℃で3日間の
乾燥を行々った。乾燥後に得られた乾燥ゲルは、割れな
ど全くなく円形(直径6.3 cIn厚さ0.2cm)
で白色、外見上は完全に均一なものであった。この乾燥
ゲルを拡散炉に入れ、昇温速度200 ′C/Ilrで
加熱、焼結したところ、全くクラックおよび割れ等を生
ずることなく 1150℃で透明な直径5.0 cmの
石英ガラスが得られた。なおこの石英ガラスを分析した
ところ、ビッカース硬度800 H胚J” 、比重2.
2であった。
Example 1 Purified commercially available ethyl silicate (Si(OE)4)4
4 mp: L-tanol 5, 4 mJ, and 0.1
1"L of hydrochloric acid was mixed in a flask under water cooling, and the mixed solution was mixed into a fine powder at room temperature with vigorous stirring. CCab-04i1 (Cabot)
) 8 ff was added gradually. After the addition, stirring was continued for 2 hours to ensure that the solution was completely homogeneous. Next, pour this solution into a Teflon Petri dish with a diameter of 10 cIn.
The temperature of the thermostatic chamber was kept at 50℃ for the first 5 days, and then the temperature of the thermostatic chamber was kept at 50℃ for the first 5 days, and then the temperature of the thermostatic chamber was kept at 50℃ for the first 5 days. to 50”C
The temperature was gradually increased to 60'C-i, and drying was performed at 60°C for 3 days. The dried gel obtained after drying was circular (6.3 cIn diameter, 0.2 cm thickness) without any cracks.
It was white and completely uniform in appearance. When this dried gel was placed in a diffusion furnace and heated and sintered at a heating rate of 200'C/Ilr, a transparent quartz glass with a diameter of 5.0 cm was obtained at 1150°C without any cracks or cracks. Ta. When this quartz glass was analyzed, it had a Vickers hardness of 800H and a specific gravity of 2.
It was 2.

壕だ、近赤外吸収スペクトルを第1図に示す。工が市販
の溶融石英ガラス、2が本実施例による石英ガラスのス
ペクトル特性である。これらの分析結果および赤外吸収
スペクトル、屈折率など、それぞれ溶融石英ガラスと全
く一致し、完全な石英ガラスが得られたことが判明した
The near-infrared absorption spectrum is shown in Figure 1. 2 shows the spectral characteristics of the commercially available fused silica glass, and 2 shows the spectral characteristics of the quartz glass according to this example. These analysis results, infrared absorption spectrum, refractive index, etc. completely matched those of fused silica glass, indicating that perfect silica glass had been obtained.

実施例2 実施例1と同様の原料を用い、同様の操作にて乾燥ゲル
を得た。なおこの乾燥ゲルは、実施例1で得られたもの
と同一状態であり、乾燥ゲルが再現性良く製造できるこ
とがわかった。この乾燥ゲルを拡散炉に入れ、昇温速度
400℃/ノケで加熱、焼結したとどろ、1150℃で
実施例1と全く同様の透明な直径5゜Ocmの石英ガラ
スを得た。この石英ガラスの分析結果もまた溶融石英ガ
ラスのものと一致した。
Example 2 Using the same raw materials as in Example 1, a dry gel was obtained in the same manner as in Example 1. Note that this dried gel was in the same state as that obtained in Example 1, and it was found that the dried gel could be produced with good reproducibility. This dried gel was placed in a diffusion furnace, heated and sintered at a heating rate of 400° C./nozzle, and heated to 1150° C. to obtain a transparent quartz glass having a diameter of 5° Ocm exactly as in Example 1. The analysis results of this quartz glass were also consistent with those of fused silica glass.

実施例3 実施例1および2と全く同じ操作で、乾燥ゲルをイーリ
た。この乾燥ゲルを拡散炉に入れ、1000℃/hrと
いう非常に速い昇温速度で加熱、焼結したところ、昇温
中に、クラックおよび割れを生じずに、実施例1および
2と同様に1150℃で透明々石英ガラスが得られた。
Example 3 A dried gel was prepared in exactly the same manner as in Examples 1 and 2. When this dry gel was placed in a diffusion furnace and heated and sintered at a very fast temperature increase rate of 1000°C/hr, no cracks or cracks were produced during heating, and the temperature was 1150°C as in Examples 1 and 2. A transparent quartz glass was obtained at ℃.

この石英ガラスの分析結果もまた溶融石英ガラスと一致
した。
The analysis results of this quartz glass were also consistent with fused silica glass.

実施例4 実施例1〜3と同じ原料混合溶液を激しく攪拌しながら
微粉末シリカ(Cab−0−8il (Cabot社〉
)6F?を徐々に添加した。添加後、溶液が完全に均一
になるように2時間さらに攪拌を続けた。次にこの溶液
を、直径JOαのテフロン製シャーレに30 f測シ入
れ、蒸発速度の調節が可能々穴あきのふた(直径1.5
mxX8個)をして恒温槽に入れ、実施例1〜3と同一
の条件で乾燥を行なった。乾燥後に得られた乾燥ゲルは
、割れなどなく直径6.0 an厚さ0.2鋸の円形で
白色であった。この乾燥ゲルを拡散炉に入れ、昇温速度
400’C/Aγで加熱、焼結したところ、クラックお
よび割れなどを生じずに、1100℃で透明な石英ガラ
スが得られた。なおこの石英ガラスは、直径4.8鑞で
あった。またこの石英ガラスの、赤外吸収スペクトル、
近赤外吸収スペクトル、屈折率、ビッカース硬度および
比重の分析結果は、溶融石英ガラスと全く一致し、完全
な石英ガラスであることがわかった。
Example 4 Fine powder silica (Cab-0-8il (Cabot) was added to the same raw material mixed solution as in Examples 1 to 3 while vigorously stirring
)6F? was added gradually. After the addition, stirring was continued for an additional 2 hours to ensure that the solution was completely homogeneous. Next, this solution was poured into a Teflon petri dish with a diameter of JOα at 30 f, and a lid with a hole (diameter 1.5
(mxx8 pieces) was placed in a constant temperature bath, and dried under the same conditions as Examples 1 to 3. The dried gel obtained after drying was white and had a circular shape with a diameter of 6.0 mm and a thickness of 0.2 mm without any cracks. When this dried gel was placed in a diffusion furnace and heated and sintered at a heating rate of 400'C/Aγ, a transparent quartz glass was obtained at 1100°C without any cracks or breaks. Note that this quartz glass had a diameter of 4.8 mm. In addition, the infrared absorption spectrum of this quartz glass,
The analysis results of near-infrared absorption spectrum, refractive index, Vickers hardness, and specific gravity completely matched those of fused silica glass, indicating that it was perfect silica glass.

実施例5 添加する微粉末シリカ(Ca、b−o−8il (Ca
bot社〉)を42とし、他の操作は、実施例4と同様
に行った。ここで得られた割れ等のない乾燥ゲルは、直
径が5.8 cm厚さ0.2 cmの円形で、白色であ
った。
Example 5 Added fine powder silica (Ca, b-o-8il (Ca
bot Inc.) was set as 42, and the other operations were performed in the same manner as in Example 4. The dry gel thus obtained without any cracks or the like had a circular shape with a diameter of 5.8 cm and a thickness of 0.2 cm, and was white in color.

この乾燥ゲルを拡散炉に入れて、昇温速度400 ℃4
rで加熱、焼結したところ、1080℃で透明表石英カ
フスを得た。もちろんクラックや割れなどの発生は彦<
、分析結果も溶融石英ガラスと等しいものであった。な
おこの石英ガラスは、直径4゜7釦であった。
This dry gel was placed in a diffusion furnace and the temperature was increased at a rate of 400°C4.
When heated and sintered at 1,080° C., a transparent quartz cuff was obtained. Of course, cracks and cracks will not occur.
The analysis results were also the same as those of fused silica glass. This quartz glass had a diameter of 4° and 7 buttons.

実施例6 実施例5と全く同様の操作を行なったが、添加する微粉
末シリカ(じab−0−8il (−Cabot jf
> )を27とした。ここで得られた割れ等の々い乾燥
ゲル−5、直径5.7w、厚さ0.2 cmの円形で、
白色であ−た。また、この乾燥ゲルを拡散炉に入れ、昇
温速度400C/h rで加熱、焼結したところ105
0℃で透明な、直径4.5(7)の石英ガラスが得られ
、分析結果は、浴融石英ガラスと一致1−た。この石英
ガラスにも、クラックおよび割れば認められなかった。
Example 6 The same operation as in Example 5 was carried out, except that fine powder silica (Jab-0-8il (-Cabot jf
> ) was set to 27. The dry gel obtained here with few cracks, etc., was circular with a diameter of 5.7 W and a thickness of 0.2 cm.
It was white. In addition, when this dried gel was placed in a diffusion furnace and heated and sintered at a temperature increase rate of 400 C/hr, the result was 105
A quartz glass with a diameter of 4.5 (7), transparent at 0° C., was obtained, and the analysis was consistent with bath-fused silica glass. No cracks or breaks were observed in this quartz glass either.

実施例7 実施例1〜6においては、添加した微粉末シリカ(sz
o2)の量は、原料エチルシリケートヲSiO2に換算
した場合に、全体の1()〜40wo1%であったが、
ここでは55moA係(15P)の微粉末シリカを添加
した。すなわち精製した市販のエチルシリケート(5i
(OEc)4) 44mA 、エタノール5.4me、
および0゜IN塩酸36−を水冷下のもとフラスコ中で
混合し、この混合溶液を室温にて、激しく攪拌しながら
、微粉末シリカ(Cab−0−8il りCa、bO1
社> ) 55 mof方(15y )を徐々に添加し
た。操作等は前例と同様であるが、乾燥において50℃
および60℃の時間を、それぞれ1日ずつ延長して行な
った。ここで得られた乾燥ゲルは、直径6゜7tyn。
Example 7 In Examples 1 to 6, the added fine powder silica (sz
The amount of o2) was 1() to 40wo1% of the total when converting the raw material ethyl silicate to SiO2.
Here, finely powdered silica of 55 moA (15 P) was added. That is, purified commercially available ethyl silicate (5i
(OEc)4) 44mA, ethanol 5.4me,
and 0°IN hydrochloric acid in a flask under water cooling, and while vigorously stirring this mixed solution at room temperature, fine powdered silica (Cab-0-8il, Ca, bO1
55 mof (15y) was gradually added. The operations are the same as in the previous example, but drying at 50°C.
and the time at 60°C was extended by one day each. The dried gel obtained here had a diameter of 6°7tin.

厚さ0.25L:rnの円形で白色、割れクラックは認
められなかった。この乾燥ゲルを拡散炉に入れ、昇温速
度400℃ΔLrで、加熱、焼結したところ、昇温中に
、クラックおよび割れを生じずに、1300℃で透明な
石英ガラスとなった。この石英ガラスは、直径5.3o
nであシ、前例と同様の分析を行なったが、ここで得ら
れた赤外吸収スペクトル、近赤外吸収スペクトル、屈折
率、ビッカース硬度、および比重の分析結果は、溶融石
英ガラスのものと一致した。
It was circular and white with a thickness of 0.25L:rn, and no cracks were observed. This dried gel was placed in a diffusion furnace and heated and sintered at a temperature increase rate of 400°C ΔLr, resulting in a transparent quartz glass at 1300°C without any cracks or breaks during heating. This quartz glass has a diameter of 5.3o
I conducted the same analysis as in the previous example, but the analysis results of the infrared absorption spectrum, near-infrared absorption spectrum, refractive index, Vickers hardness, and specific gravity obtained here are the same as those of fused silica glass. Agreed.

実施例8 添加する微粉末シリカ(Bib2)の量を、原料エチル
シリケートを5io2に換算した場合に全体の80 m
oA%にして、前例と同様の繰作を行なった。
Example 8 The amount of fine powder silica (Bib2) to be added is 80 m in total when the raw material ethyl silicate is converted to 5io2.
oA%, and the same repetition as in the previous example was performed.

但し微粉末シリカ(Cob−o−ail りcobot
 T”r> )添加後の攪拌時間を3時間とし、乾燥条
件は、50℃で7日間60℃で5日間と多少長くした。
However, fine powder silica (cob-o-ail)
T"r>) The stirring time after addition was 3 hours, and the drying conditions were somewhat longer, 7 days at 50°C and 5 days at 60°C.

ここで得られた乾燥ゲルi4、直径7.2crn、厚さ
0.28Crnの円形で、白色であった。この乾燥ゲル
を拡散炉に入れ、外法5速度400C/hrで加熱、焼
結したところ昇温中に、クラックおよび割れの発生をみ
ることなしで1301つ℃で直径5.6cmの透明な石
英ガラスを得た。
The dried gel i4 thus obtained had a circular shape with a diameter of 7.2 crn and a thickness of 0.28 crn, and was white in color. This dry gel was placed in a diffusion furnace and heated and sintered at an external speed of 400 C/hr. Got the glass.

この石英ガラスについても、前例と同様の分析を行なっ
たが得られた結果(伐、この場合にも溶融石英ガラスの
ものと一致した。
This quartz glass was analyzed in the same way as in the previous example, and the results obtained were also consistent with those of fused silica glass.

実施例9 精製した市販のメチルシリケート(si(ocH8)4
33−、 、)’ 夕/ −ル3.8幅、および0.I
N塩酸36―を、氷冷下のもとフラスコ中で混合し、こ
の混合溶液を室温にて、激しく攪拌し々から、微粉末シ
リカ(Cab−0−8il <Cabot ?b 8 
?を徐々に添加した。添加後も、溶液が完全に均一とな
るように2時間攪拌を続けた。次に、この溶液を、直径
10mのテフロン製シャーレに30 y測シ入れ、蒸発
速度の調節可能な穴あきのふた(直径1゜5間×8個)
をして恒温槽に入れた。恒温槽の温度は最初の5日間1
d50℃に保ち、6日目に50℃から徐々に60℃まで
上昇させ60℃で3日間の乾燥を行なった。乾燥後に得
られた乾燥ゲルは、割れなど全くなく円形(直径6.2
cm厚さO02cm )で白色であった。この乾燥ゲル
を拡散炉に入れ、昇温速度400C/hγで加熱、焼結
したところ、クラックおよび割れ等と生ずることなく、
1150℃で透明な直径4.8(7)の石英ガラスを得
た。この得られた石英ガラスの分析結果は、ビッカース
硬度800 Kf、、2.比重2.2であシ、また赤外
吸収スペクトル、近赤外吸収スペクトル、屈折率なども
、それぞれ溶融石英ガラスと等しく、完全な石英ガラス
であることが明らかになった。
Example 9 Purified commercially available methyl silicate (si(ocH8)4
33-, ,)' evening/-le 3.8 width, and 0. I
N-hydrochloric acid 36- was mixed in a flask under ice-cooling, and the mixed solution was vigorously stirred at room temperature, and then finely powdered silica (Cab-0-8il < Cabot ?b 8
? was added gradually. After the addition, stirring was continued for 2 hours to ensure that the solution was completely homogeneous. Next, this solution was poured into a Teflon Petri dish with a diameter of 10 m for 30 y of measurement, and a lid with a hole (1° 5 m in diameter x 8 pieces) that allowed the evaporation rate to be adjusted was placed.
and placed it in a constant temperature bath. The temperature of the thermostat is 1 for the first 5 days.
The temperature was maintained at 50°C, and on the 6th day, the temperature was gradually increased from 50°C to 60°C, and drying was performed at 60°C for 3 days. The dried gel obtained after drying has no cracks and is circular (diameter 6.2
The film was white in color and had a thickness of 0.0 cm (0.02 cm). When this dry gel was placed in a diffusion furnace and heated and sintered at a temperature increase rate of 400C/hγ, no cracks or cracks occurred.
A transparent quartz glass with a diameter of 4.8 (7) was obtained at 1150°C. The analysis results of the obtained quartz glass show that the Vickers hardness is 800 Kf, 2. The specific gravity was 2.2, and the infrared absorption spectrum, near-infrared absorption spectrum, and refractive index were all equal to those of fused silica glass, making it clear that it was perfect silica glass.

坩・上、実施例をあげて示したように、微粉末シリカを
アルキルシリケート、アルコール、水、塩酸の混合溶液
に添加することによシ、乾燥ゲル製造過程において割れ
にくり、シかも焼結の際、昇温速度を非常に速くした場
合(200〜1000’C/hr)でさえ、割れやクラ
ックの発生しにくい乾燥ゲル′(il−t(造できるこ
とが、明白となった。なお添加するダ粉末シリカの割合
が増加するにつれて、焼結の際のゲル−ガラス転移温度
も上昇するものの、溶醒・法で必要とされる高温(20
00℃前後)に比べれは、はるかに低温であシ省エネル
ギー的である。
As shown in the examples above, by adding finely powdered silica to a mixed solution of alkyl silicate, alcohol, water, and hydrochloric acid, it is possible to prevent cracking during the dry gel manufacturing process and to prevent sintering. It has become clear that even when the heating rate is very high (200 to 1000'C/hr), it is possible to form a dry gel that is resistant to cracking. As the proportion of powdered silica increases, the gel-to-glass transition temperature during sintering also increases;
The temperature is much lower than that (around 00°C) and is energy saving.

このようにして、本発明によって得られる乾燥ゲルおよ
びその焼結体である石英ガラスには、種々の応用が考え
られる。例をあげれば、マスク、ルツボ、ボード、理化
学用ビーカーなどがある。また従来の製造方法(溶融法
)による石英ガラス製造よシも低コストで製造できるた
めに、さらに広範囲に応用が広がるものと考えられる。
In this way, various applications can be considered for the dried gel obtained by the present invention and the quartz glass which is its sintered body. Examples include masks, crucibles, boards, and scientific beakers. In addition, since quartz glass can be manufactured at low cost using the conventional manufacturing method (melting method), it is thought that its application will become even more widespread.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、市販されている溶融石英ガラスおよび本発面
にて製造した石英ガラスの近赤外スペクトルである。々
お溶融石英ガラスの厚さは、1゜293u1本発明のも
のは1.210m5である。 以   上 出願人 株式会社諏訪梢工舎 代理人 弁理士最 上  務
FIG. 1 shows near-infrared spectra of commercially available fused silica glass and quartz glass manufactured using the present invention. The thickness of each fused silica glass is 1°293μ1, and the thickness of the present invention is 1.210m5. Applicant Suwa Kozukosha Co., Ltd. Agent Mogami Patent Attorney

Claims (1)

【特許請求の範囲】[Claims] 金属アルコキシドを原料とするゾル−ゲル法による石英
ガラスの製造法において、金属アルコキシド、5i(O
R)4(Rは炭素数1〜10のアルキル基を示す)アル
コール、水および塩酸の混合耐液に微粉末シリカを、S
iO2量に換算して、10 mol ’チから80 m
ola%添加することを417とする石英ガラスの製造
法。
In a method for producing quartz glass by a sol-gel method using metal alkoxide as a raw material, metal alkoxide, 5i(O
R) 4 (R represents an alkyl group having 1 to 10 carbon atoms) Finely powdered silica is added to a liquid-resistant mixture of alcohol, water and hydrochloric acid, and S
In terms of iO2 amount, from 10 mol 'chi to 80 m
A method for producing quartz glass in which 417 is added with ola%.
JP20325882A 1982-11-19 1982-11-19 Silica glass manufacturing method Granted JPS5992924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20325882A JPS5992924A (en) 1982-11-19 1982-11-19 Silica glass manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20325882A JPS5992924A (en) 1982-11-19 1982-11-19 Silica glass manufacturing method

Publications (2)

Publication Number Publication Date
JPS5992924A true JPS5992924A (en) 1984-05-29
JPH0123420B2 JPH0123420B2 (en) 1989-05-02

Family

ID=16471043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20325882A Granted JPS5992924A (en) 1982-11-19 1982-11-19 Silica glass manufacturing method

Country Status (1)

Country Link
JP (1) JPS5992924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131833A (en) * 1983-12-16 1985-07-13 Seiko Epson Corp Silica glass manufacturing method
JPS6126524A (en) * 1984-07-16 1986-02-05 Seiko Epson Corp Silica glass manufacturing method
US6559421B1 (en) 1999-10-29 2003-05-06 Ricoh Company, Ltd. Image forming apparatus and fixing device therefor
KR100549423B1 (en) * 1999-03-17 2006-02-06 삼성전자주식회사 Method for preparing silica glass for sol-gel process
JP2012505677A (en) * 2008-10-16 2012-03-08 オリオン テック アンシュタルト Treatment of liquid waste containing heavy metals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997550A (en) * 1982-10-29 1984-06-05 ダウ・コ−ニング・コ−ポレ−シヨン Manufacture of carbon-containing glass by sol gel process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997550A (en) * 1982-10-29 1984-06-05 ダウ・コ−ニング・コ−ポレ−シヨン Manufacture of carbon-containing glass by sol gel process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131833A (en) * 1983-12-16 1985-07-13 Seiko Epson Corp Silica glass manufacturing method
JPS6126524A (en) * 1984-07-16 1986-02-05 Seiko Epson Corp Silica glass manufacturing method
JPH0582331B2 (en) * 1984-07-16 1993-11-18 Seiko Epson Corp
KR100549423B1 (en) * 1999-03-17 2006-02-06 삼성전자주식회사 Method for preparing silica glass for sol-gel process
US6559421B1 (en) 1999-10-29 2003-05-06 Ricoh Company, Ltd. Image forming apparatus and fixing device therefor
US6646227B2 (en) 1999-10-29 2003-11-11 Ricoh Company, Ltd. Image forming apparatus and fixing device therefor
US6897409B2 (en) 1999-10-29 2005-05-24 Ricoh Company, Ltd. Image forming apparatus and fixing device therefor
JP2012505677A (en) * 2008-10-16 2012-03-08 オリオン テック アンシュタルト Treatment of liquid waste containing heavy metals
JP2016127924A (en) * 2008-10-16 2016-07-14 オリオン テック アクチェンゲゼルシャフト Treatment of liquid waste containing heavy metal

Also Published As

Publication number Publication date
JPH0123420B2 (en) 1989-05-02

Similar Documents

Publication Publication Date Title
JPS5992924A (en) Silica glass manufacturing method
JPS59131538A (en) Silica glass manufacturing method
JPS60215532A (en) Production of quartz glass
JPS5969434A (en) Manufacture of quartz glass
JPS6065735A (en) Production of quartz glass
JPS6054929A (en) Silica glass manufacturing method
JPS60239329A (en) Manufacture of quartz glass
JPS60131833A (en) Silica glass manufacturing method
JPH01138137A (en) Production of silica glass
JPH01119526A (en) Production of silica glass
JPS59116134A (en) Silica glass manufacturing method
JPH0328381B2 (en)
JPS59107937A (en) Silica glass manufacturing method
JPS62167233A (en) Production of quartz glass
JPS6369724A (en) Glass manufacturing method
JPS643814B2 (en)
JPS643813B2 (en)
SU397475A1 (en) METHOD OF OBTAINING POLYMERIC SILICATE
JPH01138139A (en) Production of silica glass
JPS58190830A (en) Low-temperature synthesis of bulk silica glass
JPS6086034A (en) Silica glass manufacturing method
JPH0328380B2 (en)
JPH01138141A (en) Production of silica glass
JPH03174330A (en) Glass manufacturing method
JPH04175291A (en) Glass manufacturing method