JPS599209A - High-tenacity polyhexamethylene adipamide fiber - Google Patents
High-tenacity polyhexamethylene adipamide fiberInfo
- Publication number
- JPS599209A JPS599209A JP11778682A JP11778682A JPS599209A JP S599209 A JPS599209 A JP S599209A JP 11778682 A JP11778682 A JP 11778682A JP 11778682 A JP11778682 A JP 11778682A JP S599209 A JPS599209 A JP S599209A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- yarn
- relative viscosity
- formic acid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、高強力ポリヘキサメチレンアジパミド繊維、
更に詳しくは、10 f/d以上の強度を有し、後加工
工程、特に加硫工程における強度変化の小さい高強力ポ
リヘキサメチレンアジパミド繊維に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides high tenacity polyhexamethylene adipamide fibers,
More specifically, the present invention relates to high-strength polyhexamethylene adipamide fibers having a strength of 10 f/d or more and having little change in strength during post-processing steps, particularly vulcanization steps.
ポリへキサメチレンアジ/臂ミド繊維り1強度、タフネ
ス、耐熱性、染色性、発色性等がすぐれているため産業
資材用、インテリア寝装用、衣料用繊維として巾広く使
用されている。特に強度、り7ネス、耐熱性、耐疲労性
、ゴムとの接着性等にすぐれているため、タイヤコード
用繊維として広く使用されている。Polyhexamethylene aji/armid fiber 1 Due to its excellent strength, toughness, heat resistance, dyeability, and color development, it is widely used as a fiber for industrial materials, interior bedding, and clothing. In particular, it has excellent strength, stiffness, heat resistance, fatigue resistance, adhesion to rubber, etc., and is therefore widely used as a fiber for tire cords.
近年、タイヤにも省エネルギー技術が要求され、より燃
費の少ないタイヤが求められている。そのために、タイ
ヤメーカーはよシ転がシ抵抗の小さいタイヤお上びよシ
軽量なタイヤを追求している。In recent years, energy-saving technology has been required for tires as well, and tires with lower fuel consumption are being sought. To this end, tire manufacturers are pursuing tires that have low rolling resistance and are also lightweight.
それに伴ないタイヤコードにも、よシモジュラスの高い
糸並びにより強度の高い糸が要求されている。特にポリ
アミドタイヤコードはライトトラック用、トラックパス
用、建設車幅用、航空用といった積層枚数の多い大型タ
イヤに主として使用されておシ、そのためにタイヤ1本
当シ本当用糸量が多いという問題をもっている。!RN
枚数削減および織物の打込み本数削減は、タイヤ軽量化
に伴う低燃費化を達成するのみならず、発熱1低下およ
び放熱量増大に伴う疲労性の向上、接着性向上に伴うセ
パレーションに対する安全性の向上、りイヤ製造工程に
おける生産性の向上等に寄与するため、より高強度のポ
リアミドダイヤコードが要求されている。現在ポリアミ
ド繊維として市販されている繊維は9.0〜9.5 F
/dの強度を有している。これ全史に向上せしめる努力
が続けられているがいまだ満足すべきものは得られてい
ない、一般に、高強度の4リアミド繊維やプリエステル
繊維を得るには、高重合度のポリアミドまたはポリエス
テルを紡出し、得られた紡出糸を高倍率で延伸する必要
がある。しかし、?リマーの重合度を上げると吐出?リ
マーの溶融粘度が上昇するため、得られた紡出糸の配向
度が大きくなり、延伸性が悪化する。特に、この傾向は
結晶化速度の著しく大きいポリヘキサメチレンアジパミ
ドにおいて著しい。Along with this, tire cords are also required to have high strength yarns with a high shimmodulus yarn arrangement. In particular, polyamide tire cords are mainly used for large tires with a large number of layers, such as for light trucks, truck passes, construction vehicles, and aviation, and as a result, there is a problem that the amount of yarn per tire is large. There is. ! R.N.
Reducing the number of woven fabrics and the number of woven fabrics not only reduces the weight of the tire, resulting in lower fuel consumption, but also improves fatigue resistance due to lower heat generation and increased heat dissipation, and improves separation safety due to improved adhesion. In order to contribute to improving productivity in the earring manufacturing process, polyamide diamond cords with higher strength are required. The fibers currently commercially available as polyamide fibers are 9.0 to 9.5 F.
It has an intensity of /d. Efforts have been made to improve this throughout history, but nothing satisfactory has yet been achieved.Generally, in order to obtain high-strength 4-lyamide fibers or preester fibers, polyamide or polyester with a high degree of polymerization is spun. , it is necessary to draw the obtained spun yarn at a high magnification. but,? Will it be discharged if the degree of polymerization of remer is increased? Since the melt viscosity of the remer increases, the degree of orientation of the obtained spun yarn increases and the drawability deteriorates. This tendency is particularly remarkable in polyhexamethylene adipamide, which has a significantly high crystallization rate.
配向度の低い紡出糸を得るには、溶融温度を筒くする方
法、紡糸トラフ)1下げる方法、紡速を下げる方法、冷
却風量を増す方法等があるが十分ではない。これ全改善
するために、溶融紡糸に際し、紡糸口金下に加熱筒をも
うけ、紡糸口金下の雰囲気温度を制御する方法(特公昭
39−7,251号、特公昭43−8.985号)、紡
糸口金下に加熱筒をもうり、紡糸口金下の雰囲気温度を
制御するだけでなく、冷却をも制御する方法(%公昭4
3−10,176号、特公昭50−16.446号)等
が提案されている。かかる方法を用いることによす紡出
糸の配向度は低下し、高倍率延伸ができるようになシ、
得られた延伸糸の強厳は向上する。In order to obtain a spun yarn with a low degree of orientation, there are methods such as decreasing the melting temperature, decreasing the spinning trough, decreasing the spinning speed, and increasing the amount of cooling air, but these methods are not sufficient. In order to completely improve this, there is a method of controlling the atmospheric temperature under the spinneret by providing a heating tube under the spinneret during melt spinning (Japanese Patent Publication No. 39-7,251, Japanese Patent Publication No. 43-8.985); A method in which a heating tube is provided under the spinneret to control not only the atmospheric temperature under the spinneret but also the cooling (% Kosho 4
No. 3-10,176, Special Publication No. 16.446 of 1983), etc. have been proposed. By using such a method, the degree of orientation of the spun yarn is reduced, making it possible to draw at a high magnification.
The strength of the obtained drawn yarn is improved.
かくして、用いるポリヘキサメチレンアジパミドの相対
粘度を50から60〜70にすることが可能となり、そ
の結果、得られるタイヤコードの強度を8 f/d台か
ら9.0〜95 f/dに向上することができるように
なって来た。In this way, the relative viscosity of the polyhexamethylene adipamide used can be increased from 50 to 60-70, and as a result, the strength of the resulting tire cord can be increased from 8 f/d to 9.0-95 f/d. I'm starting to be able to improve.
我々は更に重合度を上げ、高倍率延伸をし、高強度の原
糸を得るべく検討した結果、10 t/d以上の強度を
有する原糸を得ることができた。しかしながら、この畠
強度原糸金用いて撚糸工程、織布工程、接着熱処理工程
および加硫工程を経た後にゴム中より糸を採取してその
強度を測定したところ、従来の市販糸9.5r/dのポ
リへキサメチレンアジパミドタイヤコードを用い、前記
工程を経て、ゴム中よシ採取した糸の強度7f/dと同
程度になってしまうことが判明した。特に、その低下は
加硫工程において著しく、原糸で強度全土けた効果が全
く発揮されていないことがわかった。本発明者らは、後
加工工程、特に加硫工程における強度低下の小さい高強
度ポリヘキサメチレンアジパミド繊維に関して鋭意検討
を重ねた結果、得られた原糸の弾性率の熱安定性を向上
せしめる事が重要である事を見い出した。We further increased the degree of polymerization, carried out high-strength drawing, and studied to obtain a yarn with high strength, and as a result, we were able to obtain a yarn with a strength of 10 t/d or more. However, when we measured the strength of the threads taken from the rubber after passing through the twisting process, weaving process, adhesive heat treatment process, and vulcanization process using this raw yarn gold, we found that the conventional commercially available yarn was 9.5r/d. It was found that by using a polyhexamethylene adipamide tire cord and going through the above steps, the strength was comparable to that of the yarn taken from the rubber core (7 f/d). In particular, the decrease was remarkable during the vulcanization process, and it was found that the raw yarn did not exhibit any overall strength effect. As a result of extensive research into high-strength polyhexamethylene adipamide fibers that exhibit minimal strength loss during post-processing steps, particularly during the vulcanization step, the present inventors have improved the thermal stability of the elastic modulus of the resulting fibers. I discovered that it is important to encourage others.
即ち、繊維材料の熱安定性(高温処理時の弾性率の保持
性)は、無定形領域内部に存在する高分子鎖のセグメン
トが示すミクロブラウン運動に密接に関係した温度領域
における粘弾性力学分散、(αa吸収)後の貯蔵弾性率
E′の温if化から推定できる。即ち、αa吸収後の温
度、ポリへキサメチレンアジツクミド繊維の場合は15
0℃以上、220℃以下の温度範囲における廟ヒの温度
勾配、即ち−d(瞳E’)/dT (T=温糺)が1
50℃〜220℃の範囲の熱履歴に対する弾性率の安定
性を示し、無定型領域及び結晶領域の不可逆的な微細構
造変化を反映する。本発明者は、αa吸収后の温度域に
おける一d (log E’ ) / d TO値がタ
イヤコードの後加工工程でも最も強度低下の大きい加硫
工程に対する強度保持率に影響することを見い出し、本
発明に到達したものである。In other words, the thermal stability of the fiber material (retention of elastic modulus during high-temperature treatment) is determined by the viscoelastic mechanical dispersion in the temperature range closely related to the micro-Brownian motion exhibited by the polymer chain segments existing inside the amorphous region. , (αa absorption) can be estimated from the warming of the storage modulus E' after (αa absorption). That is, the temperature after αa absorption is 15 in the case of polyhexamethylene azitsumid fiber.
The temperature gradient of the temple in the temperature range of 0°C or higher and 220°C or lower, that is, -d (pupil E') / dT (T = temperature) is 1
It shows stability of elastic modulus over thermal history in the range of 50°C to 220°C, reflecting irreversible microstructural changes in amorphous and crystalline regions. The present inventor found that the 1d(log E')/dTO value in the temperature range after αa absorption affects the strength retention rate for the vulcanization process, which has the greatest strength reduction even in the post-processing process of the tire cord, This has led to the present invention.
即ち、本発明に係る高強力へキサメチレンアジパミド繊
維は、
1)蟻酸相対粘度70以上
2)強度10 f/d以上
3)タイ分子安定度係数0.20以下
なる要件を具備することを特徴とする。That is, the high strength hexamethylene adipamide fiber according to the present invention has the following requirements: 1) formic acid relative viscosity of 70 or more, 2) strength of 10 f/d or more, 3) tie molecular stability coefficient of 0.20 or less. Features.
ここにいうポリへキサメチレンアジパミド繊維は、次式
の繰返し単位を主体とするものである。The polyhexamethylene adipamide fiber referred to herein is mainly composed of repeating units of the following formula.
他のアミド形成単位を10重IkeIb以下添加して変
性したポリへキサメチレンアジノやミド繊維も本発明方
法に用いる仁とができる。このような少量のアミド形成
単位としては、セパシン酸、ドデカン酸等の脂肪族ジカ
ルゼン酸;テレフタル酸、イソフタル酸等の芳香族ジカ
ルボン酸;デカメチレンジアミン等の脂肪族ジアミン;
メタキシリレンジアミン等の芳香族ジアミン:6−アミ
ノカプロン酸等のω−アミノ酸カプロラクタム、ラウリ
ンラクタム等のラクタム類が用いうる。また、上記ポリ
ヘキサメチレンアジパミドに20重量−以下のポリカブ
ラミド、ポリへキサメチレンセノ々カミド等他種のポリ
アミドを配合したものを用いることもできる。Polyhexamethyleneazino and mido fibers modified by adding other amide-forming units up to 10 times IkeIb can also be used in the method of the present invention. Such small amounts of amide-forming units include aliphatic dicarzene acids such as sepacic acid and dodecanoic acid; aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid; aliphatic diamines such as decamethylene diamine;
Aromatic diamines such as metaxylylene diamine; ω-amino acids such as 6-aminocaproic acid; lactams such as caprolactam and laurinlactam can be used. It is also possible to use a mixture of the above-mentioned polyhexamethylene adipamide and other types of polyamides such as polycabramide and polyhexamethylene cenamide in an amount of 20 weight or less.
更に上記ポリへキサメチレンアジパミド繊維は、ポリア
ミドに対して通常用いられる添加剤、たとえば、酢酸銅
、塩化銅、よう化銅、メルカグトペンズイミダゾール等
の熱安定剤、乳酸マンガン、次亜リン酸マンガン等の光
安定剤、リン酸、フェニルフォス7オン酸、ピロリン酸
ナトリウム等の増粘剤、二酸化チタン、二酸化ケイ素、
カオリン等の艶消剤、メチレンビスステアリルアミド、
ステアリン酸カルシウム等の滑剤、可塑剤を含んでいて
もよい。Furthermore, the above-mentioned polyhexamethylene adipamide fibers contain additives commonly used for polyamides, such as heat stabilizers such as copper acetate, copper chloride, copper iodide, mercagotopenzimidazole, manganese lactate, and hypophosphorous. Light stabilizers such as manganese acid, phosphoric acid, phenylphos heptaonic acid, thickeners such as sodium pyrophosphate, titanium dioxide, silicon dioxide,
Matting agents such as kaolin, methylene bisstearylamide,
It may also contain lubricants and plasticizers such as calcium stearate.
ここていう「@酸相対粘度」とは、90チ蟻酸のポリマ
ー濃度8.4′iL、JK%溶液の25℃における溶液
相対粘匿である。蟻酸相対粘度70未満でも強度の畠い
原糸は作シ得るが、それだけ高延伸を行う必要があシ、
後加工工程における強度利用率が低くなるので好ましく
ない。蟻酸相対粘度を上けると、吐出ポリマーの溶融粘
度が上昇し、その結果得られた紡出糸の配向度が太きく
なυ延伸性が悪化する。特にこの傾向は結晶化速度の著
しく大きいポリヘキサメチレンアジパミドにおいて著し
い。従って、溶融温度を高くしたシ、紡速を下けたυ、
加熱筒をつけたり、冷却条件を制御したシして紡出糸の
配向g[″を落とし、高延伸する必要があるが、蟻酸相
対粘度があまシ篩くなシすぎると、前記した手段で紡出
糸の配向度を落としてもまだ配向度が高く、高延伸倍率
がとれず強度が上がらなくなる。蟻酸相対粘度が150
′t−越えるとこういう現象が見られるが、紡出糸の配
向緩和技術の進展とともに^粘度側紡出糸も使用可能に
なるが、好ましい蟻酸相対粘度は70〜150、特に好
ましくは70〜100である。The term "acid relative viscosity" here refers to the relative viscosity of a solution of 90% formic acid with a polymer concentration of 8.4'iL and a JK% solution at 25°C. Strong and thick yarn can be produced even if the relative viscosity of formic acid is less than 70, but it is necessary to draw it to a higher degree.
This is not preferable because the strength utilization rate in the post-processing step becomes low. When the relative viscosity of formic acid is increased, the melt viscosity of the discharged polymer increases, and as a result, the degree of orientation of the resulting spun yarn becomes thicker and the υ drawability deteriorates. This tendency is particularly remarkable in polyhexamethylene adipamide, which has a significantly high crystallization rate. Therefore, by increasing the melting temperature, υ by decreasing the spinning speed,
It is necessary to reduce the orientation of the spun yarn by attaching a heating tube or controlling the cooling conditions, and to draw it to a high degree. Even if the degree of orientation of the yarn is reduced, the degree of orientation is still high, and a high drawing ratio cannot be obtained, making it difficult to increase the strength.Formic acid relative viscosity is 150
This kind of phenomenon is seen when the viscosity exceeds 't-, but as the technology for relaxing the orientation of spun yarns progresses, spun yarns on the viscosity side can also be used, but the preferable relative viscosity of formic acid is 70 to 150, particularly preferably 70 to 100. It is.
本発明におけるポリへキサメチレンアジパミド繊維は1
0 f/d以上の強度を有していることが必要である。The polyhexamethylene adipamide fiber in the present invention is 1
It is necessary to have an intensity of 0 f/d or more.
現在市販の4リヘキサメチレンアジノ平ミド繊絣の強度
は9.5f/d前後であシ、タイヤ設計を変更し、積層
枚数、織物の打込本数を変更するには、安全係数を見て
原糸の5%程度の強度向上が要求されている。もちろん
、10 r/d以下の強度の原糸においても本発明に示
されるよう々タイ分子安定度係数を持たせることにより
、後加工工程における強力利用率は改善されるが、本発
明の如き10、oy7a以上の原糸に対する改善と比較
すると、その効果社小さい。The strength of the currently commercially available 4-lihexamethyleneazinamide fiber kasto is around 9.5 f/d, so if you want to change the tire design, the number of laminated layers, and the number of woven fabrics, consider the safety factor. It is required to improve the strength by about 5% of the original yarn. Of course, even in yarns with a strength of 10 r/d or less, the strength utilization rate in the post-processing process can be improved by providing a tie molecular stability coefficient as shown in the present invention. , the effect is small compared to the improvement for yarns of oy7a and above.
本発明でいう[タイ分子安定度係数」とは、東洋ボール
ドウィン社製Vibron DDV−nc 型を使用し
、110Hzの測定周波数、昇温速度3℃/分、乾燥空
気中でビ一温度特性を測定し、これを片対数方眼紙に写
しとり、150℃以上220℃以下の温度範囲における
一d(loi+E’)/dTfc求めたものである。タ
イ分子安定度係数iiOに近い程望ましいが0.20以
下なら強度低下は許容しうる。In the present invention, the term "Tie molecular stability coefficient" refers to the temperature characteristics measured in dry air at a measurement frequency of 110 Hz and a heating rate of 3°C/min using a Vibron DDV-nc model manufactured by Toyo Baldwin. Then, this was copied onto semi-logarithmic graph paper, and 1d(loi+E')/dTfc was determined in the temperature range of 150° C. or higher and 220° C. or lower. The closer it is to the tie molecular stability coefficient iiO, the more desirable it is, but if it is 0.20 or less, a decrease in strength can be tolerated.
好ましくは0.15以下である。Preferably it is 0.15 or less.
タイ分子安定度係数を低下せしめるには、ポリマー面お
よび紡糸延伸面両方からのアプローチが必要である蟻酸
相対粘度70以上のポリマー全従来の蟻酸相対粘度70
未満の原糸用ポリマーと同様に溶融重合で作成し、引き
続いて紡出、延伸、熱セットし、強度10 t/d以上
の原糸を作成してもタイ分子安定度係数は0.20以上
となり、後加工工程における強度低下が大きい、これは
重合度の高いポリマーを得るために溶融時間を長くする
必要があシ、この間に熱分解しやすいポリへキサメチレ
ンアジノ中ミドが1部熱分解してタイ分子安定性が低下
したものと考えられる。従ってタイ分子安冗度係数0.
20以下の高重合度ポリへキサメチレンアジパミド繊維
を得るには、蟻酸相対粘度70以下、好ましl:60以
下まで溶融重合したポリマーをチップ化した後180℃
〜240℃で固相重合することが好ましい。In order to reduce the tie molecular stability coefficient, approaches from both the polymer side and the spinning/drawing side are required.All polymers with a formic acid relative viscosity of 70 or higher
Even if it is made by melt polymerization in the same way as the polymer for yarn below, and then spun, stretched, and heat-set to create a yarn with a strength of 10 t/d or more, the tie molecular stability coefficient is 0.20 or more. As a result, the strength decreases significantly in the post-processing process. This is because it is necessary to lengthen the melting time to obtain a polymer with a high degree of polymerization, and during this time, a portion of polyhexamethylene azinoamide, which is easily thermally decomposed, is thermally decomposed. This is thought to have caused the stability of the tie molecule to decrease. Therefore, the tie molecular safety redundancy coefficient is 0.
In order to obtain polyhexamethylene adipamide fibers with a high polymerization degree of 20 or less, a polymer melt-polymerized to a formic acid relative viscosity of 70 or less, preferably 1:60 or less is chipped and then heated at 180°C.
It is preferable to carry out solid phase polymerization at a temperature of ~240°C.
ヘキサメチレンジアンモニウムアジペートの5゜チ水溶
液を濃縮槽で70チに濃縮后、第1反応器中17.5K
f/−の圧力を保ちつつ220℃から250℃まで1.
5時間で昇温せしめる。ついで第2反応器中で温度を2
80℃に昇温しつつ、20分で圧力を常圧まで戻す。気
液分離槽で水蒸気を分離後、三方弁を通し、一方は紡口
を経てロープとなし、水冷後切断しチップ(1)となし
、他方は後重合器中350wHf、280℃で15分間
重合後、紡口を経てロープとなし、水冷後切断しテップ
(If)となした。溶融重合工程の後重合器前後のサン
プリングノズルよ勺ポリマーをす/ブリングし、得られ
たポリマーの[C00H)末端基およびCNHv )末
端基を測足し、図1(曲線B)に示した。チップ(1)
の蟻酸相対粘度は29.7、(COOH)末端基は10
1.5 meq/h 、 [N)h 〕末端基は62
.5 meq/1!4であった。チップ(1)5000
部をタンブラ−型固相重合器で200℃のジャケット温
度、31/hr/ポリマー陛の窒素流量下で重合をした
。固相重合中、す/シリングノズルよシ経時すングリ/
グを行ない、得られたチップの[C00H)末端基およ
び[’Nf(、]末端基を測定し、図1(曲線A)に示
した。図1にみられるように、固相重合(曲線A)では
、重合が進むにつれて[C0OH]末端基と〔NH1〕
末端基かはぼ等モルづつ減少しているのに比し、溶融重
合では[NHt ]末端基の減少が少ない。これは重縮
合に伴う(COOH)、(NHv )両末端基の減少と
ともに、ポリへキサメチレンアジペートの熱分解による
C NHt )末端基の増加の反応がおこっていること
を示している。After concentrating a 5° aqueous solution of hexamethylene diammonium adipate to 70° in a concentration tank, it was heated to 17.5 K in the first reactor.
1. From 220°C to 250°C while maintaining the pressure of f/-.
Let the temperature rise for 5 hours. The temperature in the second reactor was then increased to 2
While raising the temperature to 80°C, the pressure was returned to normal pressure in 20 minutes. After separating the water vapor in a gas-liquid separation tank, it is passed through a three-way valve, and one end passes through a spinneret to form a rope, which is water-cooled and then cut to form chips (1).The other end is polymerized in a post-polymerization vessel at 350 wHf and 280°C for 15 minutes. Thereafter, it was passed through a spinneret to form a rope, cooled in water, and then cut to form a tep (If). After the melt polymerization process, the polymer was poured through sampling nozzles before and after the polymerization vessel, and the [C00H) and CNHv) end groups of the obtained polymer were measured and shown in FIG. 1 (curve B). Chip (1)
The relative viscosity of formic acid is 29.7, the (COOH) end group is 10
1.5 meq/h, [N)h] terminal group is 62
.. It was 5 meq/1!4. Chip (1) 5000
A portion of the polymer was polymerized in a tumbler-type solid phase polymerization vessel at a jacket temperature of 200° C. and a nitrogen flow rate of 31/hr/polymer. During solid phase polymerization, the ring nozzle changes over time.
The [C00H) terminal group and ['Nf(,] terminal group) of the obtained chip were measured and shown in Figure 1 (curve A).As seen in Figure 1, solid phase polymerization (curve In A), as the polymerization progresses, the [C0OH] terminal group and [NH1]
In contrast to the fact that the terminal groups are reduced by approximately equimolar amounts, the reduction of the [NHt] terminal groups is small in melt polymerization. This indicates that a reaction occurs in which both the (COOH) and (NHv) end groups decrease due to polycondensation, and the C NHt ) end group increases due to thermal decomposition of polyhexamethylene adipate.
1
(高分子討論会要旨集71’5A10 P123参照)
このような熱分解をうけることの少ないポリマーを用い
ることがタイ分子安定度係数の低いポリへキサメチレン
アジA’ミド繊維をう村妬には必要であシ、また、同相
重合による重合度向上は好ましい方法である。1 (Refer to P123 of Polymer Symposium Abstracts 71'5A10)
It is necessary to use a polymer that is less susceptible to thermal decomposition when using polyhexamethylene azamide fibers with a low molecular stability coefficient. is the preferred method.
高強力ポリへキサメチレンアジノやミド繊維の製造方法
としては特公昭48−32,616号公報が知られてい
る。しかし、蟻酸相対粘度70以上のポリマーを特公昭
48−32,616号公報に示された方法で直接紡糸延
伸してもタイ分子安定度係数の低い原糸を得ることは困
難である。タイ分子安定度係数の低い原糸金得るに祉、
高温熱セットし、原糸の収縮率を下げ、熱的構造を安定
化させる必要がある。許容できる原糸の収縮率は160
℃乾熱中、30分間自由収縮させた時の収縮率が7%以
下、好ましくti4 %以下である。7チ以上では同相
重合をした熱分解の少ないポリマーを用いた場合でも、
タイ分子安定度係数が0,20以上となシ、後加工工程
における強反保持率が低くなる。Japanese Patent Publication No. 48-32,616 is known as a method for producing high-strength polyhexamethylene azino and mido fibers. However, even if a polymer having a formic acid relative viscosity of 70 or more is directly spun and stretched by the method disclosed in Japanese Patent Publication No. 48-32,616, it is difficult to obtain a raw yarn with a low tie molecular stability coefficient. In order to obtain raw thread metal with a low molecular stability coefficient,
It is necessary to heat set at a high temperature to reduce the shrinkage rate of the yarn and stabilize its thermal structure. The acceptable shrinkage rate of yarn is 160
The shrinkage rate when allowed to freely shrink for 30 minutes in dry heat at ℃ is 7% or less, preferably ti4% or less. For 7 inches or more, even when using polymers that undergo in-phase polymerization and have low thermal decomposition,
If the tie molecular stability coefficient is 0.20 or more, the retention of stiffness in the post-processing process will be low.
低収縮糸を得る紡糸方法としては紡出糸を一旦未延伸糸
として巻取った後、延伸熱セットする方法、紡出糸を直
接延伸熱セットする方法があるが、本発明に用いられる
ような蟻酸相対粘度の大きい原糸製造では、収縮率が高
くなるため、よシ高温熱セット、例えば220℃以上の
高温熱セットが必要となり、またリラックス率も高くす
る必要がある。Spinning methods for obtaining low-shrinkage yarn include a method in which the spun yarn is once wound as an undrawn yarn and then drawn and heat-set, and a method in which the spun yarn is directly drawn and heat-set. In the production of raw yarn with a high relative viscosity of formic acid, the shrinkage rate becomes high, so high temperature heat setting, for example, high temperature heat setting of 220° C. or higher is required, and the relaxation rate also needs to be high.
上述のような方法によって得られる本発明の原゛ 糸は
原糸強度が10 f/d以上と高いにもかかわらず、該
原糸を用い撚糸工程、織布工程、接着熱処理工程、加硫
工程を通した時の強度低下が小さい。従って、タイヤコ
ード、ベルト等の強度を必要とする製品の補強に有用で
ある。特に使用糸量、積層枚数の多い建設車輛用、航空
機用、トラックバス用タイヤの補強に有用である。Although the raw yarn of the present invention obtained by the method described above has a high yarn strength of 10 f/d or more, it can be used in a twisting process, a weaving process, an adhesive heat treatment process, and a vulcanization process. There is little decrease in strength when passing through. Therefore, it is useful for reinforcing products that require strength such as tire cords and belts. It is particularly useful for reinforcing tires for construction vehicles, aircraft, and trucks and buses, which require a large amount of yarn and a large number of layers.
次に、本発明方法を実施例をあげて具体的に説明するが
、本発明社これらの実施例に限定されるものではない。Next, the method of the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.
実施例中、蟻酸相対粘度とは90%蟻酸にポリマー濃度
8.4重量%となるように溶解せしめた溶液の25℃に
おける相対粘度である。アミノ末端基とは、90重量%
のフェノール水溶液50ゆl中にポリマー6.0ft−
溶解しl/20 N塩酸で電位滴定し、中和点を求めた
値である。カルボン酸末端基とは、ベンジルアルコール
5〇−中にポリマー4、Of’i加熱溶解し、フェノー
ルフタレイン指示薬を用い、1/1ON水酸化ナトリウ
ムで中和滴定して求め奪値である。強伸度は、高滓製作
所製オートグラフS−100′(f−用い、80回/m
の撚シを入れた25cmの原糸長で降下スピード30儒
/分、チャートスピード60 cm 7分、フルスケー
ル25に9で求めた値である。乾熱収縮率は、80回/
mの撚シ管入れた1、0mの原糸t−160℃のエアー
オーブン中で30分間自由収縮させ求めた値である。タ
イ分子安定度係数は東洋ボールドウィン社製Vibro
n DDV−11C型を使用し、110 Hzの測定周
波数、昇温速度3℃/分、乾燥空気中でビ一温度特性を
測定し、これを片対数方眼紙に写しとシ、150℃〜2
20℃におけるーd(廟E’)/dTを求めた値である
。In the examples, the relative viscosity of formic acid is the relative viscosity at 25° C. of a solution in which a polymer is dissolved in 90% formic acid so that the polymer concentration is 8.4% by weight. Amino terminal group means 90% by weight
6.0 ft- of polymer in 50 ml of phenol aqueous solution
This is the value obtained by dissolving the solution and subjecting it to potential titration with 1/20 N hydrochloric acid to determine the neutralization point. The carboxylic acid terminal group is the deprivation value determined by heating and dissolving the polymer 4 of Of'i in benzyl alcohol 50, followed by neutralization titration with 1/1 ON sodium hydroxide using a phenolphthalein indicator. The strength elongation was determined using Autograph S-100' manufactured by Takasugi Seisakusho (using f-, 80 times/m
The value was determined using a raw yarn length of 25 cm with a twist of 25 cm, a falling speed of 30 f/min, a chart speed of 60 cm/7 min, and a full scale of 25 to 9. Dry heat shrinkage rate is 80 times/
This is the value obtained by freely shrinking a 1.0 m raw yarn in an air oven at -160° C. for 30 minutes in a twisted tube of 1.0 m. The tie molecular stability coefficient is Vibro manufactured by Toyo Baldwin Co., Ltd.
Using a DDV-11C model, measure the temperature characteristics in dry air at a measurement frequency of 110 Hz and a heating rate of 3°C/min.
This is the value of -d(E')/dT at 20°C.
実施例
ヘキサメチレンジアンモニウムアジペートの50チ水溶
液f、2.000部/時の割合で定量供給し、濃縮槽で
70%に濃縮後第1反応器中17.5 Kf/−の圧力
を保ちつつ220℃から250′Cまで1.5時間で昇
温せしめた。ついで第2反応器中で温度′f:280℃
に昇温しつつ20分で圧力を常圧まで戻した。気液分離
槽で水蒸気を分離層紡口を経てロープとなし、水冷後切
断してチップとなした。Example: A 50% aqueous solution f of hexamethylene diammonium adipate was quantitatively fed at a rate of 2,000 parts/hour, and after being concentrated to 70% in a concentration tank, a pressure of 17.5 Kf/- was maintained in the first reactor. The temperature was raised from 220°C to 250'C in 1.5 hours. Then in the second reactor the temperature 'f: 280°C
The pressure was returned to normal pressure in 20 minutes while increasing the temperature to . In the gas-liquid separation tank, water vapor was passed through a separation layer spinneret to form a rope, which was cooled with water and cut into chips.
チップの蟻酸相対粘度は29.7、(COOH:)末端
基1よ101.5 meq/Kf、 CNHt)末端基
は62−5meq/Kyであった。該チップ5.000
部をタンブラ−型同相重合機で210℃のジャケット温
度、3t/時/ポリマー匂の窒素流量下で重合をした。The formic acid relative viscosity of the chip was 29.7, (COOH:) terminal group 1 to 101.5 meq/Kf, CNHt) terminal group 62-5 meq/Ky. The chip 5.000
A portion of the polymer was polymerized in a tumbler-type homopolymerizer at a jacket temperature of 210° C. and a nitrogen flow rate of 3 t/hour/polymer smell.
、7時間15分後冷却し払出した。蟻酸相対粘度90.
0、(COOH)末端基6 Z 7 meq/Kp、[
NHt]末端基23、0 meq/14 のチップが得
られた。該チップを用いて303℃で0.27wmφの
孔312個を有する紡糸口金から紡出し、350℃に加
熱された150■の加熱筒を通し、冷却し、紡糸油剤を
付与した後、直ちに第1ネルソンローラーに引き取り、
引き続き順次よシ大きな周速で回転する@2〜第4ネル
ソン目−ラーに導き、3段階に分けて延伸熱セラ)1−
行ない、1.500 m1分の速度で巻き取った。4段
の各ゴデツトロール組をG、〜G4とすると各ロールの
温度は、G、:80℃。After 7 hours and 15 minutes, it was cooled and discharged. Formic acid relative viscosity 90.
0, (COOH) terminal group 6 Z 7 meq/Kp, [
A chip with 23,0 meq/14 terminal groups (NHt) was obtained. The tip was spun from a spinneret having 312 holes of 0.27 wmφ at 303°C, passed through a 150mm heating cylinder heated to 350°C, cooled, and coated with a spinning oil. Adopted by Nelson Roller,
Continue to rotate at a higher circumferential speed in sequence @ 2nd to 4th nelson-ra, and stretch in 3 stages) 1-
It was wound up at a speed of 1.500 m/min. Assuming that each of the four stages of godet roll sets is G, ~ G4, the temperature of each roll is G: 80°C.
G、:210℃、G、:230℃、お上びG4:250
℃とした。各ロールの周速比は、Gm /G+=3.6
3 、Gm /Gy =1.67 、 G4 /Gl=
0.995 。G: 210℃, G: 230℃, G4: 250
℃. The circumferential speed ratio of each roll is Gm/G+=3.6
3, Gm/Gy=1.67, G4/Gl=
0.995.
および巻取速度/G4=0.890であった。得られた
糸条は1890 d/312 fであり、蟻酸相対粘度
83.0.強度I Q、 4 f/d 、伸度21.
0チ。and winding speed/G4=0.890. The yarn obtained was 1890 d/312 f and had a formic acid relative viscosity of 83.0. Strength IQ, 4 f/d, elongation 21.
0chi.
乾熱収縮率2.00.タイ分子安定度係数009であっ
た。Dry heat shrinkage rate 2.00. The tie molecular stability coefficient was 009.
該原糸に32.0X310T/10cMの撚をかけ、1
.890 d/2の生コードとなし、リッツラー社のコ
ンビニ−トリーターを用い、第1ゾーンは温度160℃
、張力λOKy/コード、時間140秒、第2ゾーンは
温度230℃、張力3.8 Kf/コード、時間40秒
、第3ゾーン社温度230℃、張力2.6Kf/コード
、時間40秒でレゾルシン・ホルマリンラテックス液に
よるディラグ処理を行った。The yarn was twisted at 32.0x310T/10cM, and
.. Using a Ritzler convenience store treater with 890 d/2 raw cord, the temperature in the first zone was 160°C.
, tension λOKy/cord, time 140 seconds, second zone temperature 230°C, tension 3.8 Kf/cord, time 40 seconds, third zone temperature 230°C, tension 2.6 Kf/cord, time 40 seconds.・Diragu treatment was performed using formalin latex liquid.
ディラグ液付着量は4,5チである。The amount of derag liquid attached is 4.5 inches.
該デッグコードをカーカス用ゴム中に埋めて、温度19
0℃、30分間自由収縮下に加硫した後、加硫ゴムを破
壊し、加硫コードを取シ出しその強度を測定した所7.
9f/dc加硫コード強度保持率76.0チ)であった
。The degging cord is buried in carcass rubber and heated to a temperature of 19
After vulcanization at 0°C for 30 minutes under free shrinkage, the vulcanized rubber was broken, the vulcanized cord was taken out, and its strength was measured.7.
The strength retention rate of the 9f/dc vulcanized cord was 76.0 cm).
比較例1
ヘキサメチレンジアンモニウムアジペートの50チ水溶
液を2.000部/時の割合で定量供給し、濃縮槽で7
0チに濃縮後、第1反応器中17.5Kg。Comparative Example 1 A 50% aqueous solution of hexamethylene diammonium adipate was quantitatively supplied at a rate of 2.000 parts/hour, and 7
After concentrating to 0%, 17.5Kg in the first reactor.
、/Jの圧力を保ちつつ220℃から250℃まで1.
5時間で昇温せしめた。ついで第2反応器中で温度を2
80℃に昇温しつつ20分で圧力を常圧まで戻した。気
液分離槽で水蒸気を分離後、後重合器中200mHf、
280℃で15分間庫1合し、紡口を経てロープとなし
、水冷後切断し、チップとなした。チップの蟻酸相対粘
度tJ: 78.7、〔α)011)末端基は58.6
me(lA、 [NHtl末端基は33.4meq/
Kfでめった。1. From 220°C to 250°C while maintaining the pressure of , /J.
The temperature was raised in 5 hours. The temperature in the second reactor was then increased to 2
While raising the temperature to 80°C, the pressure was returned to normal pressure in 20 minutes. After separating water vapor in a gas-liquid separation tank, 200 mHf in a post-polymerization vessel,
The mixture was stored at 280° C. for 15 minutes, passed through a spinneret to form a rope, cooled with water, and cut into chips. Formic acid relative viscosity of the chip tJ: 78.7, [α)011) terminal group is 58.6
me(lA, [NHtl end group is 33.4 meq/
I met Kf.
該チップを用いて298℃で0.27 wφの孔312
個を有する紡糸口金から紡出し、310℃に加熱された
150薗の加熱筒を通し、冷却し、紡糸油剤を付与した
後、直ちに第1ネルソンローラーに引き取シ、ひき続き
順次より大きな周速で回転する第2〜第4ネルソンロー
ラーに導き、3段階に分けて延伸熱セットを行ない、1
,500m/分の速度で巻き取った。、4段の各ゴデツ
トロール組を01〜G4とすると各ロールの温度はGに
80℃、at :zio℃v G3 : 230℃。Using this chip, a hole 312 of 0.27 wφ was formed at 298°C.
The spinneret is spun from a spinneret with a diameter of 150 mm, heated to 310°C, passed through a 150 mm heating cylinder, cooled, and coated with spinning oil. It is guided to the rotating second to fourth Nelson rollers, and subjected to stretching heat setting in three stages.
, 500 m/min. , the temperature of each roll is 80°C in G, at: zio°Cv, G3: 230°C.
G4:230℃であり、tた、各ロールの周速比はGt
/Gt =3.53 、 Gs /Gt =1.67
、0a/Gs =0.9952巻取速度/G4=0.
890てあった。得られた糸条は、蟻酸相対粘度74.
0、強度lQ、3f/d、伸度21.5%、乾熱収縮率
27チ、タイ分子安定度係数0.21であった。G4: 230°C, and the peripheral speed ratio of each roll is Gt
/Gt = 3.53, Gs /Gt = 1.67
, 0a/Gs = 0.9952 winding speed/G4 = 0.
It was 890. The obtained yarn had a formic acid relative viscosity of 74.
0, strength lQ, 3 f/d, elongation 21.5%, dry heat shrinkage rate 27 inches, and tie molecular stability coefficient 0.21.
該原糸全実施例1と同様に生コード、ディラグコードと
なした後、加硫し、加硫コードを取シ出し、その強度を
測定した所7.SM’/d(加硫コード強度保持率69
.9チ)であった、
比較例2
ヘキサメチレンジアンモニウムアジペートの50チ水溶
液を2.000部/時の割合で定量供給し、濃縮槽で7
0tlbK濃縮後、第1反応器中17.5 Kg/ c
r&の圧力を保ちつつ220℃から250℃まで1.5
時間で昇温せしめた。ついで第2反応器中で温Mt28
0℃に昇温しつつ20分で圧力を常圧まで戻した。気液
分船槽で水蒸気を分離後、重合器中350wIIHJ’
、 280℃で15分間重合後紡口を経てロープとな
し、水冷後切断しチップとなした。チップの蟻酸相対粘
度は67.0、[C00HJ末端基をよ65.9 me
q 、/Kg、[NHt]末端基は34,1meq /
匂であった。該テップを用いて298℃で027咽φの
孔312個を有する紡糸Li金から紡出し、直ちに冷却
し、紡糸油剤を付与した抜、直ちに第1ネルソンローラ
ーに引き取り、引き続き順次より大きな周速で回転する
第2〜第4ネルソンローラーに導き、3段階に分けて延
伸熱セットを行ない、1.900 m/分の速度で巻き
取った。The raw yarn was made into raw cord and dirag cord in the same manner as in Example 1, and then vulcanized, and the vulcanized cord was taken out and its strength was measured.7. SM'/d (vulcanized cord strength retention rate 69
.. Comparative Example 2 A 50% aqueous solution of hexamethylene diammonium adipate was quantitatively supplied at a rate of 2.000 parts/hour, and 7% was
17.5 Kg/c in the first reactor after 0tlbK concentration
1.5 from 220℃ to 250℃ while maintaining the pressure of r&
The temperature was raised over time. Then in the second reactor warm Mt28
While raising the temperature to 0°C, the pressure was returned to normal pressure in 20 minutes. After separating water vapor in a gas-liquid separation tank, 350wIIHJ' in a polymerization vessel
After polymerization at 280° C. for 15 minutes, it was passed through a spinneret to form a rope, cooled in water, and then cut to form chips. The formic acid relative viscosity of the chip is 67.0, [C00HJ end group is 65.9 me
q, /Kg, [NHt] terminal group is 34,1 meq /
It was a smell. Spun Li gold having 312 holes of 0.27 mm diameter was spun at 298°C using the spinneret, immediately cooled, applied with a spinning oil, taken up immediately by the first Nelson roller, and successively spun at higher circumferential speeds. The film was introduced into rotating second to fourth Nelson rollers, subjected to stretching heat setting in three stages, and wound up at a speed of 1.900 m/min.
4段の各ゴデツトロール組會G、〜G4とすると各ロー
ルの温iはG1 :室温+G1ニア0℃。Assuming that there are four stages of godet roll assemblies G, ~G4, the temperature i of each roll is G1: room temperature + G1 near 0°C.
G、:215℃、G4:215℃であシ、各ロールの周
速比はGt /G1= 1−05 、 Gs /Gt=
3.24 。G: 215℃, G4: 215℃, peripheral speed ratio of each roll is Gt /G1= 1-05, Gs /Gt=
3.24.
G4 / Gl = 1.6s 、巻取速度/G4 =
0.91であった。得られた糸条は蟻酸相対粘度62,
0、強度9.4t / d 、伸度20.8%、乾熱収
縮率3.5%、タイ分子安定度係数0.15であった。G4/Gl = 1.6s, winding speed/G4 =
It was 0.91. The obtained yarn has a formic acid relative viscosity of 62,
0, strength 9.4t/d, elongation 20.8%, dry heat shrinkage rate 3.5%, and tie molecular stability coefficient 0.15.
該原糸を実施例1と同様に生コード、ディラグコードと
なした後加硫し、加硫コードを取り出し、その強度を測
定した所7.OF/d(加硫コード強度保持率74.5
%)であった。The raw yarn was made into raw cord and dirag cord in the same manner as in Example 1, and then vulcanized, and the vulcanized cord was taken out and its strength was measured.7. OF/d (vulcanized cord strength retention rate 74.5
%)Met.
実施例2
実施例1で得られた低粘度チップ(蟻酸相対粘度29.
7 )を用い、実施例1と同様に固相重合を6時間30
分行ない、蟻酸相対粘度79.0のチップを得た。該チ
ップ管用いて比較例1と同様に紡糸延伸熱セットを行っ
た。得られた糸条は蟻酸相対粘度74.1 、強度1o
−af/d、伸度21.7%。Example 2 Low viscosity chips obtained in Example 1 (formic acid relative viscosity 29.
7), solid phase polymerization was carried out for 6 hours and 30 minutes in the same manner as in Example 1.
A chip with a formic acid relative viscosity of 79.0 was obtained. Spinning and drawing heat setting was performed in the same manner as in Comparative Example 1 using the tip tube. The obtained yarn has a formic acid relative viscosity of 74.1 and a strength of 1o.
-af/d, elongation 21.7%.
乾熱収縮率2.6%、タイ分子安定度係数0.13であ
った。該原糸を実施例1と同様に生コード、ディラグコ
ードとなした後加硫し、加硫コードを取り出しその強直
全測定した所7.6f/d(加硫コード強度保持率73
.8チ)であった。The dry heat shrinkage rate was 2.6%, and the tie molecular stability coefficient was 0.13. The raw yarn was made into raw cord and dirag cord in the same manner as in Example 1, and then vulcanized.The vulcanized cord was taken out and its stiffness was completely measured.
.. 8).
実施例3
実施例1で得られた低粘度チップ(蟻酸相対粘度29.
7 )を用い、実施例1と同様に固相重合を6時間50
分行ない、蟻酸相対粘度83.6のチップを得た。該チ
ップを用いて298℃で0.24 mφの孔312個を
有する紡糸口金から紡出し、320℃に加熱された20
0■の加熱筒を通し、冷却し、紡糸油剤を付与した後、
直ちに第1ネルノンローラーに引き取ル、ひき続き順次
より大きな周速で回転する第2〜第4ネルソンローラー
に導き、3段階に分秒て延伸熱セットを行ない、1.8
00m/分の速度で巻き取った。4段の各ゴデツトロー
ル組t”Gt〜G、とすると各ロールの温度はGl 二
80℃lG、:210℃、G、=230℃=Ga:23
0℃であり、各ロールの周速比祉、Gy /Gl =3
.50 、Gm /Gt = 1.70 。Example 3 Low viscosity chips obtained in Example 1 (formic acid relative viscosity 29.
7), solid phase polymerization was carried out in the same manner as in Example 1 for 6 hours at 50°C.
A chip with a formic acid relative viscosity of 83.6 was obtained. The chips were spun from a spinneret with 312 holes of 0.24 mφ at 298°C, and
After passing through a heating tube of 0.0 cm to cool it and applying a spinning oil,
Immediately, it is taken up by the first Nelson roller, and then guided to the second to fourth Nelson rollers, which rotate at higher circumferential speeds, and subjected to stretching heat setting in 3 stages for 1.8 minutes.
It was wound up at a speed of 00 m/min. If each godet roll set in 4 stages is t''Gt~G, then the temperature of each roll is Gl280℃lG:210℃G=230℃=Ga:23
0℃, peripheral speed ratio of each roll, Gy /Gl = 3
.. 50, Gm/Gt = 1.70.
G4 /Gm = 0.995 、巻取速度/G4=0
.890であった。得られた糸条は蟻酸相対粘度784
、強度10.!M/d、伸度2α6チ、乾熱収縮率z5
チ、タイ分子安定度係数0.12であった。G4 /Gm = 0.995, winding speed /G4 = 0
.. It was 890. The obtained yarn has a formic acid relative viscosity of 784
, strength 10. ! M/d, elongation 2α6chi, dry heat shrinkage rate z5
The molecular stability coefficient was 0.12.
該原糸全実施例1と同様に生コード、ディップコードと
なした後加硫し、加硫コードを取り出し、その強Iff
測定した所7.c+r/a(加硫コード強度保持率75
.2φ)であった。The raw yarn was made into a raw cord and a dip cord in the same manner as in Example 1, and then vulcanized, the vulcanized cord was taken out, and its strength If
Measured location7. c+r/a (vulcanized cord strength retention rate 75
.. 2φ).
実施例4
比較例2で得られたチップ(@酸相対粘度67.0)を
用い、実施例1と同様に同相重合を4時間30分行ない
、蟻酸相対粘度85.7のチップを得た。Example 4 Using the chip obtained in Comparative Example 2 (@acid relative viscosity 67.0), same phase polymerization was carried out in the same manner as in Example 1 for 4 hours and 30 minutes to obtain a chip having a formic acid relative viscosity of 85.7.
該チップを用いて実施例3と同様に紡糸、延伸熱セラト
ラ行った。得られた糸条は蟻酸相対粘度80.2、強度
10.51/d、伸度20.5チ、乾熱収縮率2.6%
、タイ分子安定度係数0.15であった。Using this chip, spinning and stretching were carried out in the same manner as in Example 3. The obtained yarn has a formic acid relative viscosity of 80.2, a strength of 10.51/d, an elongation of 20.5 inches, and a dry heat shrinkage rate of 2.6%.
, the tie molecular stability coefficient was 0.15.
該原糸を実施例1と同様に生コード、ディップコードと
なした後加硫し、加硫コード全敗り出し、その強度を測
定し九所7.6@f/d(加硫コード強度保持率72.
4%)てあった。The raw yarn was made into a raw cord and a dip cord in the same manner as in Example 1, and then vulcanized.The vulcanized cord was completely destroyed, and its strength was measured. Rate 72.
4%).
比較例3
実施例4で得られた固相重合チップ(@酸相対粘度85
.7)′IIc用いて298℃で0.27 amφの孔
312個を有する紡糸口金から紡出し、320℃に加熱
された200m+の加熱筒を通し、冷却し、紡糸油剤を
付与した後、直ちに第1ネルソンローラーに引き取シ、
ひき続き順次よシ大きな周速で回転する第2〜第4ネル
ソンローラーに導き、3段階に分けて延伸熱セラトラ行
ない、1,800 m7分の速度で巻き取った。4段の
各ゴデツトロール組tG、−G4 とすると各ロールの
温度はG。Comparative Example 3 Solid-phase polymerized chip obtained in Example 4 (@acid relative viscosity 85
.. 7) Spun from a spinneret with 312 holes of 0.27 amφ at 298°C using 'IIc, passed through a 200m+ heating cylinder heated to 320°C, cooled, applied spinning oil, and then immediately 1 Pick up at Nelson Roller,
Subsequently, the film was introduced into the second to fourth Nelson rollers rotating at higher circumferential speeds, subjected to stretching heat ceratra in three stages, and wound up at a speed of 1,800 m7. Assuming that each godet roll set in 4 stages is tG, -G4, the temperature of each roll is G.
:室温+Gt ニアo℃lGs:215℃、G4:2
15℃であシ、各ロールの周速比はG2/CI=1.0
5 、Gs /G4=3.43 、G4 /Ga =1
−65 。: Room temperature + Gt near o℃lGs: 215℃, G4:2
The temperature was 15℃, and the circumferential speed ratio of each roll was G2/CI=1.0.
5, Gs/G4=3.43, G4/Ga=1
-65.
巻取速度/G4=0.91であった。得られた糸条は蟻
酸相対粘度80.2、強度10.5f/d、伸度18.
9%、乾熱収縮率4,7%、タイ分子安定度係数0.2
1であった。Winding speed/G4=0.91. The obtained yarn had a formic acid relative viscosity of 80.2, a strength of 10.5 f/d, and an elongation of 18.
9%, dry heat shrinkage rate 4.7%, tie molecular stability coefficient 0.2
It was 1.
該原糸全実施例1と同様に生コード、ディップコードと
なした後加硫し、加硫コードを取り出し、その強度を測
定した所71r/d(加硫コード強度保持率67.6チ
)であった。The raw yarn was made into a raw cord and a dip cord in the same manner as in Example 1, and then vulcanized, and the vulcanized cord was taken out and its strength was measured: 71 r/d (vulcanized cord strength retention rate: 67.6 inches) Met.
以上、実施例、比較例で示した如く、蟻酸相対粘度70
以上、強度10 f/d以上の原糸は、特公昭48−3
2,616号公報に示された方法で直接紡糸延伸しては
タイ分子安定度係数の低い原糸七、得られない。そして
、高温熱セットによる原糸の収縮率の低下、同相重合を
用いる等による分解抑制型の重合度向上とあいまってタ
イ分子安定度係数の低い原糸が得られ、該原糸を用いて
始めて、撚糸工程、ディラグ処理工程、加硫工程といっ
た後加工工程vi−紅た後も強度利用率の高い、即ち加
硫後の強度の高いコードが得られる。本発明の原糸を用
いる事により、タイヤ、ベルトにおける積層枚数の削減
、打込本数の削減が図れる。As shown above in Examples and Comparative Examples, formic acid relative viscosity is 70
As mentioned above, raw yarn with a strength of 10 f/d or more is
Direct spinning and drawing by the method disclosed in Japanese Patent No. 2,616 does not yield a raw yarn with a low tie molecule stability coefficient. Combined with the reduction in the shrinkage rate of the yarn due to high-temperature heat setting and the improvement of the degree of decomposition-inhibiting polymerization through the use of in-phase polymerization, a yarn with a low tie molecular stability coefficient was obtained. , a cord with high strength utilization even after post-processing steps such as a twisting step, a dilag treatment step, and a vulcanization step, that is, a cord with high strength after vulcanization can be obtained. By using the raw yarn of the present invention, it is possible to reduce the number of layers laminated in tires and belts, and to reduce the number of tires and belts.
重合(曲線B)と固相重合(曲線A)における末43
第1図
50 60 70 80 90
100 110(COOH) (meqj/kg)
第2図
m−)温度(0C)Figure 1 50 60 70 80 90
100 110 (COOH) (meqj/kg) Figure 2 m-) Temperature (0C)
Claims (1)
ド繊維。 2 タイ分子安定度係数0.15以下なる要件を具備す
る特許請求の範囲第1項記載のポリヘキサメチレンアジ
パミド繊維。[Claims] 1. A high-strength polyhexamethylene adipamide fiber having the following requirements: 1) a formic acid relative viscosity of 70 or more, 2) a strength of 10 f/d or more, and 3) a tie molecular stability coefficient of 0.20 or less. . 2. The polyhexamethylene adipamide fiber according to claim 1, which has a tie molecular stability coefficient of 0.15 or less.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11778682A JPS599209A (en) | 1982-07-08 | 1982-07-08 | High-tenacity polyhexamethylene adipamide fiber |
IN812/CAL/83A IN160816B (en) | 1982-07-08 | 1983-06-30 | |
CA000431996A CA1198255A (en) | 1982-07-08 | 1983-07-07 | High tenacity polyhexamethylene adipamide fiber |
DE8383106725T DE3365447D1 (en) | 1982-07-08 | 1983-07-08 | High tenacity polyhexamethylene adipamide fiber |
EP83106725A EP0098616B1 (en) | 1982-07-08 | 1983-07-08 | High tenacity polyhexamethylene adipamide fiber |
US07/097,418 US4758472A (en) | 1982-07-08 | 1987-09-15 | High tenacity polyhexamethylene adipamide fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11778682A JPS599209A (en) | 1982-07-08 | 1982-07-08 | High-tenacity polyhexamethylene adipamide fiber |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4231970A Division JPH0830282B2 (en) | 1992-08-31 | 1992-08-31 | High strength polyhexamethylene adipamide for tire cord |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS599209A true JPS599209A (en) | 1984-01-18 |
JPH0357966B2 JPH0357966B2 (en) | 1991-09-04 |
Family
ID=14720272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11778682A Granted JPS599209A (en) | 1982-07-08 | 1982-07-08 | High-tenacity polyhexamethylene adipamide fiber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS599209A (en) |
IN (1) | IN160816B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59199812A (en) * | 1983-04-28 | 1984-11-13 | Asahi Chem Ind Co Ltd | Production of high-tenacity polyhexamethylene adipamide fiber |
JPS62263319A (en) * | 1986-05-06 | 1987-11-16 | Teijin Ltd | Melt spinning of polyamide |
US4859389A (en) * | 1985-02-20 | 1989-08-22 | Toyo Boseki Kabushiki Kaisha | Process for preparing polyamide fibers having improved properties |
JPH038804A (en) * | 1989-06-02 | 1991-01-16 | Asahi Chem Ind Co Ltd | Production of extremely high-strength polyamide multifilament |
JPH0314615A (en) * | 1989-06-09 | 1991-01-23 | Asahi Chem Ind Co Ltd | Production of polyamide multifilaments |
JPH03185110A (en) * | 1989-12-15 | 1991-08-13 | Asahi Chem Ind Co Ltd | Production of high-tenacity polyhexamethylene adipamide fiber having high fatigue resistance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493452A (en) * | 1972-04-25 | 1974-01-12 |
-
1982
- 1982-07-08 JP JP11778682A patent/JPS599209A/en active Granted
-
1983
- 1983-06-30 IN IN812/CAL/83A patent/IN160816B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493452A (en) * | 1972-04-25 | 1974-01-12 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59199812A (en) * | 1983-04-28 | 1984-11-13 | Asahi Chem Ind Co Ltd | Production of high-tenacity polyhexamethylene adipamide fiber |
JPH0258362B2 (en) * | 1983-04-28 | 1990-12-07 | Asahi Chemical Ind | |
US4859389A (en) * | 1985-02-20 | 1989-08-22 | Toyo Boseki Kabushiki Kaisha | Process for preparing polyamide fibers having improved properties |
JPS62263319A (en) * | 1986-05-06 | 1987-11-16 | Teijin Ltd | Melt spinning of polyamide |
JPH0453965B2 (en) * | 1986-05-06 | 1992-08-28 | Teijin Ltd | |
JPH038804A (en) * | 1989-06-02 | 1991-01-16 | Asahi Chem Ind Co Ltd | Production of extremely high-strength polyamide multifilament |
JPH0314615A (en) * | 1989-06-09 | 1991-01-23 | Asahi Chem Ind Co Ltd | Production of polyamide multifilaments |
JPH03185110A (en) * | 1989-12-15 | 1991-08-13 | Asahi Chem Ind Co Ltd | Production of high-tenacity polyhexamethylene adipamide fiber having high fatigue resistance |
Also Published As
Publication number | Publication date |
---|---|
IN160816B (en) | 1987-08-08 |
JPH0357966B2 (en) | 1991-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1314673C (en) | High-tenacity conjugated fiber and process for preparation thereof | |
JP6340375B2 (en) | Polyamide multifilament fiber and tire cord including the fiber | |
US4758472A (en) | High tenacity polyhexamethylene adipamide fiber | |
JPS599209A (en) | High-tenacity polyhexamethylene adipamide fiber | |
US4621021A (en) | Polyhexamethylene adipamide fiber having high dimensional stability and high fatigue resistance, and process for preparation thereof | |
KR101838492B1 (en) | A High Tenacity Tire Cord using Nylon 6,6 or Nylon 6 and Aramid, and Radial Tires Produced by the Same | |
JP5087949B2 (en) | Polyamide fiber | |
JPS6141320A (en) | Polyester fiber | |
JPS62156312A (en) | Polyester fiber | |
KR100630263B1 (en) | High-performance radial tires with hybrid cord on carcass layer | |
JP4253049B2 (en) | Heat-resistant polyamide fiber and method for producing the same | |
JPS59199812A (en) | Production of high-tenacity polyhexamethylene adipamide fiber | |
JPH05239713A (en) | Production of polyhexamethylene adipamide fiber | |
JPS6088116A (en) | Polyhexamethylene adipamide fiber having high dimensional stability and fatigue resistance | |
JP2839817B2 (en) | Manufacturing method of polyester fiber with excellent thermal dimensional stability | |
KR100630264B1 (en) | Hybrid deep code | |
JPH0274610A (en) | Conjugate fiber having high tenacity and excellent durability | |
JPH0258363B2 (en) | ||
KR101849196B1 (en) | Pneumatic tire | |
JPH041095B2 (en) | ||
JP2001279525A (en) | Polyhexamethylene adipamide yarn and method for producing the same | |
JPH06330405A (en) | Production of polyamide fiber | |
JPH01168914A (en) | Polytetramethylene adipamide base yarn | |
KR20210039082A (en) | Cap ply cord and manufacturing method of the same | |
JPH06346319A (en) | Polyhexamethylene adipamide yarn and its production |