JPS5991671A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPS5991671A JPS5991671A JP57202527A JP20252782A JPS5991671A JP S5991671 A JPS5991671 A JP S5991671A JP 57202527 A JP57202527 A JP 57202527A JP 20252782 A JP20252782 A JP 20252782A JP S5991671 A JPS5991671 A JP S5991671A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrolyte
- circumference
- hydrophilic
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 37
- 239000003792 electrolyte Substances 0.000 claims abstract description 34
- 239000007800 oxidant agent Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 230000002093 peripheral effect Effects 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 abstract description 4
- 230000002940 repellent Effects 0.000 abstract 2
- 239000005871 repellent Substances 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000035515 penetration Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04276—Arrangements for managing the electrolyte stream, e.g. heat exchange
- H01M8/04283—Supply means of electrolyte to or in matrix-fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は燃料電池、特にその電極部の構成に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell, and particularly to the structure of an electrode portion thereof.
従来この種の燃料電池として第1図に示すものがあった
。図において、(1)はガス分離板で燃料流路(2)と
酸化剤流路(勢が両面に設けられている。(4)は燃料
電極であり、仁れに接して電解質マトリクス(5)があ
り、その上に酸化剤電極(6)がある。(7)はシール
のためのバッキングであり、(8)はガス分離板(1)
の周辺部分に設けられ電解質を保持する電解質リザーバ
である。それぞれの番号の(a)がついた部分は電池反
応が生じる部分で、(6)の部分はシール部であり不透
気処理を施した部分である。A conventional fuel cell of this type is shown in FIG. In the figure, (1) is a gas separation plate with a fuel flow path (2) and an oxidant flow path (2) provided on both sides. (4) is a fuel electrode, which is in contact with an electrolyte matrix (5). ), on which is the oxidizer electrode (6). (7) is the backing for sealing, and (8) is the gas separation plate (1).
This is an electrolyte reservoir that is provided around the periphery of the electrolyte and holds electrolyte. The part with each number (a) is the part where the battery reaction occurs, and the part (6) is the sealed part and is treated to be air-impermeable.
次に動作について説明する。燃料流路(2)から供給さ
れた燃料は燃料電極(4)で酸化され水素は陽イオンと
電子になり、陽イオンは電解質マトリクス(5)の反応
部分(5a)を移動して酸化−側電極(6)に到達し、
酸化剤流路(3)から供給される酸化剤と反応して水を
生成する。燃料電極(4)で生じた電子は外部負荷(図
示せず)を経て酸化剤電極(6)に達し、ここで還元反
応に寄与する中で外部負荷において電気エネルギーとな
る。反応において電解質マトリクス(5)は常に電解質
を保持している必要があり、そのために電解質溜めとし
ての電解質リザーバ(8)が設けられている。電解質リ
ザーバ(8)から電解質マトリクス(5)への電解質の
供給およびガスシールのため、電極(4)の周辺部分(
4b)は電解質を浸み込ませるために親水性となるよう
に処理がなされている1、
従来の燃料電池は以上のように構成されているので、電
極(4)の親水性周辺部分(4b)から電極(4)の中
央反応部分(4a)への電解質の浸み込みが生じる問題
点があった。電極(4)の中央反応部分(4a)はPT
FE(ポリテトラフルオロエチレン)を用いた接水処理
が施されているが、あまり強度に接水処理を行なうと電
極基材の気孔が埋まるためガス透気性が悪くなり、ガス
拡散[!iとしての機能が損われる。このように電極(
4)の周辺部分(4b)から中央反応部分(4a)へ電
解質が浸み込むと、ガス透気性が悪くなり、その結果ガ
ス拡散電極としての機能が損われる欠点があった。Next, the operation will be explained. The fuel supplied from the fuel flow path (2) is oxidized at the fuel electrode (4), hydrogen becomes cations and electrons, and the cations move through the reaction part (5a) of the electrolyte matrix (5) to the oxidation side. reaching the electrode (6);
It reacts with the oxidizing agent supplied from the oxidizing agent channel (3) to generate water. Electrons generated at the fuel electrode (4) pass through an external load (not shown) and reach the oxidizer electrode (6), where they contribute to a reduction reaction and become electrical energy in the external load. During the reaction, the electrolyte matrix (5) must always hold an electrolyte, and for this purpose an electrolyte reservoir (8) is provided as an electrolyte reservoir. In order to supply electrolyte from the electrolyte reservoir (8) to the electrolyte matrix (5) and seal the gas, the surrounding area of the electrode (4) (
4b) is treated to be hydrophilic in order to allow the electrolyte to permeate1. Conventional fuel cells are constructed as described above, so the hydrophilic peripheral portion (4b) of the electrode (4) is ) and into the central reaction portion (4a) of the electrode (4). The central reaction part (4a) of the electrode (4) is PT
Water contact treatment using FE (polytetrafluoroethylene) is performed, but if water contact treatment is performed too strongly, the pores of the electrode base material will be filled, resulting in poor gas permeability and gas diffusion [! The function as i is impaired. In this way, the electrode (
4) When the electrolyte permeates from the peripheral portion (4b) into the central reaction portion (4a), gas permeability deteriorates, resulting in a disadvantage that the function as a gas diffusion electrode is impaired.
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、電解質リザーバに対向する1W、
wSの周辺部分を親水性にすると共に、上記電極の親水
性周辺部分と中央反応部分との間に上記中央反応部分よ
りも接水性な部分を設けることにより、親水性の上記電
極周辺部分から中央反応部分への電解質の移動を抑制し
、燃料電池の正常な反応を持続することを目的としてい
る。This invention was made in order to eliminate the drawbacks of the conventional ones as described above.
By making the peripheral part of wS hydrophilic and providing a part that is more water-contacting than the central reaction part between the hydrophilic peripheral part of the electrode and the central reaction part, the hydrophilic peripheral part of the electrode can be made hydrophilic. The purpose is to suppress the movement of electrolyte to the reaction part and maintain normal reactions in the fuel cell.
以下、この発明の一実施例を図をもとに説明する。第2
図はこの発明にかかわる燃料電池の断面図である。図に
おいて、(4)、(6)はそれぞれ燃料電極および酸化
剤電極であり、厚さ400〜500μmのカーボンペー
パーに触媒層を塗布したものである。An embodiment of the present invention will be described below with reference to the drawings. Second
The figure is a sectional view of a fuel cell according to the present invention. In the figure, (4) and (6) are a fuel electrode and an oxidizer electrode, respectively, which are carbon paper with a thickness of 400 to 500 μm coated with a catalyst layer.
(4b)は燃料電極(4)の周辺部分で平均粒径1〜5
μm程度の微細な炭化珪素粒子を充填しである。(9]
はこの電極周辺部分(4b)と触媒を塗布した中央反応
部分(4a)との間に設けられた中央反応部分(4a)
よりも接水性な部分で、幅6〜151nnlの眉であり
、混合するPTFEの量を中央反応部分より多くするこ
とにより得られる。(4b) has an average particle size of 1 to 5 in the peripheral part of the fuel electrode (4).
It is filled with silicon carbide particles as fine as micrometers. (9)
is a central reaction part (4a) provided between this electrode peripheral part (4b) and a catalyst-coated central reaction part (4a).
It is a part that is more water-contactable than the central reaction part, and has a width of 6 to 151 nnl, and is obtained by mixing a larger amount of PTFE than the central reaction part.
電極周辺部分(4b)はガスシールのため十分に電解質
が保持されていなければならないが、その電解質が隣接
する中央反応部分(4a)へ移動すると中央反応部分(
4a)のガス拡散性が悪くなり電極機能が低下する。従
ってガスシールの役割を果す電極周辺部分(4b)と中
央反応部分(4a)との間に強い接水性を有する境界層
(9)を設けることにより、電極周辺部分(4b)に含
有される電解質の中央反応部分(4a)への移動を抑制
することができる。一般に、電極反応部分(4a)の電
極基材であるカーボンペーパーは接水処理が適度に施さ
れているが、それは電解質マトリクス(5)からの電解
質がこれも若干の接水性を持つ触媒層を経て侵入するの
を軽減するためになされているのであり、あまり強度の
接水性処理を行なうことはガス透気性を損ない電極(4
a)の反応性を阻害するので行なわれない。その意味で
電極周辺部分(4b)からの中央反応部分(4a)への
電解質の侵入に対しては従来の構造では十分に対処し得
す、この発明による電極の中央反応部分(4a)よりも
強い接水性を有する境界層(9)が重要となる。Electrolyte must be sufficiently retained in the electrode peripheral area (4b) for gas sealing, but when the electrolyte moves to the adjacent central reaction area (4a), the central reaction area (4a)
The gas diffusivity of 4a) deteriorates and the electrode function deteriorates. Therefore, by providing a boundary layer (9) with strong water contact between the electrode peripheral part (4b) and the central reaction part (4a), which acts as a gas seal, the electrolyte contained in the electrode peripheral part (4b) can be removed. can be suppressed from migrating to the central reaction portion (4a). In general, carbon paper, which is the electrode base material of the electrode reaction part (4a), has been appropriately water-wetted, but this is because the electrolyte from the electrolyte matrix (5) has a catalyst layer that also has some water-wettability. This is done in order to reduce the amount of water that enters the electrode (4).
It is not carried out because it inhibits the reactivity of a). In this sense, the conventional structure can sufficiently deal with the intrusion of electrolyte from the electrode peripheral part (4b) into the central reaction part (4a), compared to the central reaction part (4a) of the electrode according to the present invention. A boundary layer (9) with strong water contact is important.
なお、上記実施例では酸化剤電極(6)はガスシールと
してバッキング(7)を用いる方式について示したが、
燃料電極(4)と同じ様に電解質を充填したガスシール
を行なってもよく、その場合は酸化剤電極(6)につい
ても中央反応部分(6a)よりも接水性な部分(9)を
中央反応部分(6a)とガスシール部分との間に設けて
よい。またこの場合は燃料電極(4)はバッキングを用
いたガスシールを行なってもよい。In addition, in the above embodiment, the oxidant electrode (6) uses a backing (7) as a gas seal, but
In the same way as the fuel electrode (4), a gas seal filled with an electrolyte may be used, and in that case, the part (9) that is more in contact with water than the central reaction part (6a) of the oxidizer electrode (6) is used as the central reaction part. It may be provided between the part (6a) and the gas seal part. Further, in this case, the fuel electrode (4) may be sealed with gas using a backing.
以上のように、この発明によれば電解質リザーバに対向
する電極の周辺部分を親水性にすると共に、上記電極の
親水性周辺部分と中央反応部分との間に上記中央反応部
分よりも接水性な部分を設けたので、親水性の上記電極
周辺部分から中央反応部分への電解質の移動を抑制し、
燃料電池の正常な反応を持続できる効果がある。As described above, according to the present invention, the peripheral part of the electrode facing the electrolyte reservoir is made hydrophilic, and the area between the hydrophilic peripheral part of the electrode and the central reaction part is more water-contacted than the central reaction part. This section suppresses the movement of electrolyte from the hydrophilic peripheral area of the electrode to the central reaction area,
It has the effect of sustaining the normal reaction of the fuel cell.
第1図は従来の燃料電池の主要部を示す断面図、第2図
はこの発明にかかわる燃料電池の主要部を示す断面図で
ある。
図において、(1)はガス分離板、(4)は燃料電極、
(4a)は中央反応部分、(4b)は周辺部分、(5)
は電解質マトリクス、(6)は酸化剤電極、(8)は電
解質リザーバ、(9)は中央反応部分(4a)よりも接
水性な部分である。
なお、図中同一符号は同一または相当部分を示すものと
する。
第1図
σ J
第2図FIG. 1 is a cross-sectional view showing the main parts of a conventional fuel cell, and FIG. 2 is a cross-sectional view showing the main parts of a fuel cell according to the present invention. In the figure, (1) is a gas separation plate, (4) is a fuel electrode,
(4a) is the central reaction part, (4b) is the peripheral part, (5)
is an electrolyte matrix, (6) is an oxidizer electrode, (8) is an electrolyte reservoir, and (9) is a part that is more in contact with water than the central reaction part (4a). Note that the same reference numerals in the figures indicate the same or corresponding parts. Figure 1 σ J Figure 2
Claims (1)
極、電解質マトリクスおよび酸化剤電極を順次積層して
構成する燃料電池において、上記電解質リザーバに対向
する上記電極の周辺部分を親水性にすると共に、上記電
極の親水性周辺部分と中央反応部分との間に上記中央反
応部分よりも接水性な部分を設けたこと全特徴とする燃
料電池。In a fuel cell configured by sequentially stacking a gas separation plate, a fuel electrode, an electrolyte matrix, and an oxidizer electrode with an electrolyte reservoir in the peripheral part, the peripheral part of the electrode facing the electrolyte reservoir is made hydrophilic, and A fuel cell characterized in that a portion more in contact with water than the central reaction portion is provided between the hydrophilic peripheral portion of the electrode and the central reaction portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57202527A JPS5991671A (en) | 1982-11-16 | 1982-11-16 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57202527A JPS5991671A (en) | 1982-11-16 | 1982-11-16 | Fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5991671A true JPS5991671A (en) | 1984-05-26 |
JPH0129308B2 JPH0129308B2 (en) | 1989-06-09 |
Family
ID=16458965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57202527A Granted JPS5991671A (en) | 1982-11-16 | 1982-11-16 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991671A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4978591A (en) * | 1989-09-11 | 1990-12-18 | The United States Of America As Represented By The United States Department Of Energy | Corrosion free phosphoric acid fuel cell |
-
1982
- 1982-11-16 JP JP57202527A patent/JPS5991671A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4978591A (en) * | 1989-09-11 | 1990-12-18 | The United States Of America As Represented By The United States Department Of Energy | Corrosion free phosphoric acid fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JPH0129308B2 (en) | 1989-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH041469B2 (en) | ||
EP1253655B1 (en) | Fuel cell | |
JP2778767B2 (en) | Porous electrode and method of using the same | |
JP3211378B2 (en) | Polymer electrolyte fuel cell | |
JP3502508B2 (en) | Direct methanol fuel cell | |
JPH0622144B2 (en) | Fuel cell | |
JPS58155B2 (en) | Nendoriyodenchikumitatetai | |
JPS5991671A (en) | Fuel cell | |
JPS5975568A (en) | Fuel cell | |
JPH0766812B2 (en) | Gas diffusion electrode for fuel cells | |
JP2005222720A (en) | Fuel cell | |
JPH05283084A (en) | Formation of catalyzer layer for phosphoric acid type fuel cell | |
JPH06267562A (en) | Solid high polymer electrolyte fuel cell | |
JP2003007311A (en) | Current collector and solid electrolyte fuel cell | |
JP2006085932A (en) | Fuel cell | |
JP3706624B2 (en) | Fuel cell system | |
JP2633522B2 (en) | Fuel cell | |
JPS59217953A (en) | Fuel cell | |
JPS62232862A (en) | Gas diffusion electrode | |
JPH0456429B2 (en) | ||
JP2000251904A (en) | Cell unit for fuel cell and fuel cell | |
JPS58166668A (en) | Fuel cell | |
JP2021163663A (en) | Gas flow path structure, support plate, and fuel cell | |
JPH03226972A (en) | Fuel cell | |
JPS6139367A (en) | Electrodes for matrix fuel cells |