[go: up one dir, main page]

JPS5991671A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS5991671A
JPS5991671A JP57202527A JP20252782A JPS5991671A JP S5991671 A JPS5991671 A JP S5991671A JP 57202527 A JP57202527 A JP 57202527A JP 20252782 A JP20252782 A JP 20252782A JP S5991671 A JPS5991671 A JP S5991671A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
circumference
hydrophilic
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57202527A
Other languages
Japanese (ja)
Other versions
JPH0129308B2 (en
Inventor
Toshiaki Murahashi
村橋 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57202527A priority Critical patent/JPS5991671A/en
Publication of JPS5991671A publication Critical patent/JPS5991671A/en
Publication of JPH0129308B2 publication Critical patent/JPH0129308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To continue normal reaction of a fuel cell by making hydrophilic the circumference of an electrode, facing an electrolyte reservoir installed in the circumference of a gas separating plate and by setting a water repellent part compared with the hydrophilic part, between the central reaction part and the hydrophilic part to suppress transfer of electrolyte. CONSTITUTION:An electrolyte reservoir 8 is installed in the circumference of a gas separating plate 1 having a fuel flow path 2 and an oxidizing agent flow path 3 on its both sides. The circumference 4b of a fuel electrode 4, facing the reservoir 8 is made hydrophilic to make electrolyte penetration easy. A boundary layer 9 which is more water repellent than a central reaction part 4a is arranged between the circumference 4b and the central reaction part 4a carrying a catalyst. The boundary layer 9 suppresses transfer of the electrolyte contained in the circumference 4b to the reaction part 4a. Thereby, decrease of gas transmission to the reaction part 4a is prevented and the normal reaction of a fuel cell is continued.

Description

【発明の詳細な説明】 この発明は燃料電池、特にその電極部の構成に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell, and particularly to the structure of an electrode portion thereof.

従来この種の燃料電池として第1図に示すものがあった
。図において、(1)はガス分離板で燃料流路(2)と
酸化剤流路(勢が両面に設けられている。(4)は燃料
電極であり、仁れに接して電解質マトリクス(5)があ
り、その上に酸化剤電極(6)がある。(7)はシール
のためのバッキングであり、(8)はガス分離板(1)
の周辺部分に設けられ電解質を保持する電解質リザーバ
である。それぞれの番号の(a)がついた部分は電池反
応が生じる部分で、(6)の部分はシール部であり不透
気処理を施した部分である。
A conventional fuel cell of this type is shown in FIG. In the figure, (1) is a gas separation plate with a fuel flow path (2) and an oxidant flow path (2) provided on both sides. (4) is a fuel electrode, which is in contact with an electrolyte matrix (5). ), on which is the oxidizer electrode (6). (7) is the backing for sealing, and (8) is the gas separation plate (1).
This is an electrolyte reservoir that is provided around the periphery of the electrolyte and holds electrolyte. The part with each number (a) is the part where the battery reaction occurs, and the part (6) is the sealed part and is treated to be air-impermeable.

次に動作について説明する。燃料流路(2)から供給さ
れた燃料は燃料電極(4)で酸化され水素は陽イオンと
電子になり、陽イオンは電解質マトリクス(5)の反応
部分(5a)を移動して酸化−側電極(6)に到達し、
酸化剤流路(3)から供給される酸化剤と反応して水を
生成する。燃料電極(4)で生じた電子は外部負荷(図
示せず)を経て酸化剤電極(6)に達し、ここで還元反
応に寄与する中で外部負荷において電気エネルギーとな
る。反応において電解質マトリクス(5)は常に電解質
を保持している必要があり、そのために電解質溜めとし
ての電解質リザーバ(8)が設けられている。電解質リ
ザーバ(8)から電解質マトリクス(5)への電解質の
供給およびガスシールのため、電極(4)の周辺部分(
4b)は電解質を浸み込ませるために親水性となるよう
に処理がなされている1、 従来の燃料電池は以上のように構成されているので、電
極(4)の親水性周辺部分(4b)から電極(4)の中
央反応部分(4a)への電解質の浸み込みが生じる問題
点があった。電極(4)の中央反応部分(4a)はPT
FE(ポリテトラフルオロエチレン)を用いた接水処理
が施されているが、あまり強度に接水処理を行なうと電
極基材の気孔が埋まるためガス透気性が悪くなり、ガス
拡散[!iとしての機能が損われる。このように電極(
4)の周辺部分(4b)から中央反応部分(4a)へ電
解質が浸み込むと、ガス透気性が悪くなり、その結果ガ
ス拡散電極としての機能が損われる欠点があった。
Next, the operation will be explained. The fuel supplied from the fuel flow path (2) is oxidized at the fuel electrode (4), hydrogen becomes cations and electrons, and the cations move through the reaction part (5a) of the electrolyte matrix (5) to the oxidation side. reaching the electrode (6);
It reacts with the oxidizing agent supplied from the oxidizing agent channel (3) to generate water. Electrons generated at the fuel electrode (4) pass through an external load (not shown) and reach the oxidizer electrode (6), where they contribute to a reduction reaction and become electrical energy in the external load. During the reaction, the electrolyte matrix (5) must always hold an electrolyte, and for this purpose an electrolyte reservoir (8) is provided as an electrolyte reservoir. In order to supply electrolyte from the electrolyte reservoir (8) to the electrolyte matrix (5) and seal the gas, the surrounding area of the electrode (4) (
4b) is treated to be hydrophilic in order to allow the electrolyte to permeate1. Conventional fuel cells are constructed as described above, so the hydrophilic peripheral portion (4b) of the electrode (4) is ) and into the central reaction portion (4a) of the electrode (4). The central reaction part (4a) of the electrode (4) is PT
Water contact treatment using FE (polytetrafluoroethylene) is performed, but if water contact treatment is performed too strongly, the pores of the electrode base material will be filled, resulting in poor gas permeability and gas diffusion [! The function as i is impaired. In this way, the electrode (
4) When the electrolyte permeates from the peripheral portion (4b) into the central reaction portion (4a), gas permeability deteriorates, resulting in a disadvantage that the function as a gas diffusion electrode is impaired.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、電解質リザーバに対向する1W、
wSの周辺部分を親水性にすると共に、上記電極の親水
性周辺部分と中央反応部分との間に上記中央反応部分よ
りも接水性な部分を設けることにより、親水性の上記電
極周辺部分から中央反応部分への電解質の移動を抑制し
、燃料電池の正常な反応を持続することを目的としてい
る。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.
By making the peripheral part of wS hydrophilic and providing a part that is more water-contacting than the central reaction part between the hydrophilic peripheral part of the electrode and the central reaction part, the hydrophilic peripheral part of the electrode can be made hydrophilic. The purpose is to suppress the movement of electrolyte to the reaction part and maintain normal reactions in the fuel cell.

以下、この発明の一実施例を図をもとに説明する。第2
図はこの発明にかかわる燃料電池の断面図である。図に
おいて、(4)、(6)はそれぞれ燃料電極および酸化
剤電極であり、厚さ400〜500μmのカーボンペー
パーに触媒層を塗布したものである。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure is a sectional view of a fuel cell according to the present invention. In the figure, (4) and (6) are a fuel electrode and an oxidizer electrode, respectively, which are carbon paper with a thickness of 400 to 500 μm coated with a catalyst layer.

(4b)は燃料電極(4)の周辺部分で平均粒径1〜5
μm程度の微細な炭化珪素粒子を充填しである。(9]
はこの電極周辺部分(4b)と触媒を塗布した中央反応
部分(4a)との間に設けられた中央反応部分(4a)
よりも接水性な部分で、幅6〜151nnlの眉であり
、混合するPTFEの量を中央反応部分より多くするこ
とにより得られる。
(4b) has an average particle size of 1 to 5 in the peripheral part of the fuel electrode (4).
It is filled with silicon carbide particles as fine as micrometers. (9)
is a central reaction part (4a) provided between this electrode peripheral part (4b) and a catalyst-coated central reaction part (4a).
It is a part that is more water-contactable than the central reaction part, and has a width of 6 to 151 nnl, and is obtained by mixing a larger amount of PTFE than the central reaction part.

電極周辺部分(4b)はガスシールのため十分に電解質
が保持されていなければならないが、その電解質が隣接
する中央反応部分(4a)へ移動すると中央反応部分(
4a)のガス拡散性が悪くなり電極機能が低下する。従
ってガスシールの役割を果す電極周辺部分(4b)と中
央反応部分(4a)との間に強い接水性を有する境界層
(9)を設けることにより、電極周辺部分(4b)に含
有される電解質の中央反応部分(4a)への移動を抑制
することができる。一般に、電極反応部分(4a)の電
極基材であるカーボンペーパーは接水処理が適度に施さ
れているが、それは電解質マトリクス(5)からの電解
質がこれも若干の接水性を持つ触媒層を経て侵入するの
を軽減するためになされているのであり、あまり強度の
接水性処理を行なうことはガス透気性を損ない電極(4
a)の反応性を阻害するので行なわれない。その意味で
電極周辺部分(4b)からの中央反応部分(4a)への
電解質の侵入に対しては従来の構造では十分に対処し得
す、この発明による電極の中央反応部分(4a)よりも
強い接水性を有する境界層(9)が重要となる。
Electrolyte must be sufficiently retained in the electrode peripheral area (4b) for gas sealing, but when the electrolyte moves to the adjacent central reaction area (4a), the central reaction area (4a)
The gas diffusivity of 4a) deteriorates and the electrode function deteriorates. Therefore, by providing a boundary layer (9) with strong water contact between the electrode peripheral part (4b) and the central reaction part (4a), which acts as a gas seal, the electrolyte contained in the electrode peripheral part (4b) can be removed. can be suppressed from migrating to the central reaction portion (4a). In general, carbon paper, which is the electrode base material of the electrode reaction part (4a), has been appropriately water-wetted, but this is because the electrolyte from the electrolyte matrix (5) has a catalyst layer that also has some water-wettability. This is done in order to reduce the amount of water that enters the electrode (4).
It is not carried out because it inhibits the reactivity of a). In this sense, the conventional structure can sufficiently deal with the intrusion of electrolyte from the electrode peripheral part (4b) into the central reaction part (4a), compared to the central reaction part (4a) of the electrode according to the present invention. A boundary layer (9) with strong water contact is important.

なお、上記実施例では酸化剤電極(6)はガスシールと
してバッキング(7)を用いる方式について示したが、
燃料電極(4)と同じ様に電解質を充填したガスシール
を行なってもよく、その場合は酸化剤電極(6)につい
ても中央反応部分(6a)よりも接水性な部分(9)を
中央反応部分(6a)とガスシール部分との間に設けて
よい。またこの場合は燃料電極(4)はバッキングを用
いたガスシールを行なってもよい。
In addition, in the above embodiment, the oxidant electrode (6) uses a backing (7) as a gas seal, but
In the same way as the fuel electrode (4), a gas seal filled with an electrolyte may be used, and in that case, the part (9) that is more in contact with water than the central reaction part (6a) of the oxidizer electrode (6) is used as the central reaction part. It may be provided between the part (6a) and the gas seal part. Further, in this case, the fuel electrode (4) may be sealed with gas using a backing.

以上のように、この発明によれば電解質リザーバに対向
する電極の周辺部分を親水性にすると共に、上記電極の
親水性周辺部分と中央反応部分との間に上記中央反応部
分よりも接水性な部分を設けたので、親水性の上記電極
周辺部分から中央反応部分への電解質の移動を抑制し、
燃料電池の正常な反応を持続できる効果がある。
As described above, according to the present invention, the peripheral part of the electrode facing the electrolyte reservoir is made hydrophilic, and the area between the hydrophilic peripheral part of the electrode and the central reaction part is more water-contacted than the central reaction part. This section suppresses the movement of electrolyte from the hydrophilic peripheral area of the electrode to the central reaction area,
It has the effect of sustaining the normal reaction of the fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池の主要部を示す断面図、第2図
はこの発明にかかわる燃料電池の主要部を示す断面図で
ある。 図において、(1)はガス分離板、(4)は燃料電極、
(4a)は中央反応部分、(4b)は周辺部分、(5)
は電解質マトリクス、(6)は酸化剤電極、(8)は電
解質リザーバ、(9)は中央反応部分(4a)よりも接
水性な部分である。 なお、図中同一符号は同一または相当部分を示すものと
する。 第1図 σ    J 第2図
FIG. 1 is a cross-sectional view showing the main parts of a conventional fuel cell, and FIG. 2 is a cross-sectional view showing the main parts of a fuel cell according to the present invention. In the figure, (1) is a gas separation plate, (4) is a fuel electrode,
(4a) is the central reaction part, (4b) is the peripheral part, (5)
is an electrolyte matrix, (6) is an oxidizer electrode, (8) is an electrolyte reservoir, and (9) is a part that is more in contact with water than the central reaction part (4a). Note that the same reference numerals in the figures indicate the same or corresponding parts. Figure 1 σ J Figure 2

Claims (1)

【特許請求の範囲】[Claims] 周辺部分に電解質リザーバを備えたガス分離板、燃料電
極、電解質マトリクスおよび酸化剤電極を順次積層して
構成する燃料電池において、上記電解質リザーバに対向
する上記電極の周辺部分を親水性にすると共に、上記電
極の親水性周辺部分と中央反応部分との間に上記中央反
応部分よりも接水性な部分を設けたこと全特徴とする燃
料電池。
In a fuel cell configured by sequentially stacking a gas separation plate, a fuel electrode, an electrolyte matrix, and an oxidizer electrode with an electrolyte reservoir in the peripheral part, the peripheral part of the electrode facing the electrolyte reservoir is made hydrophilic, and A fuel cell characterized in that a portion more in contact with water than the central reaction portion is provided between the hydrophilic peripheral portion of the electrode and the central reaction portion.
JP57202527A 1982-11-16 1982-11-16 Fuel cell Granted JPS5991671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202527A JPS5991671A (en) 1982-11-16 1982-11-16 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202527A JPS5991671A (en) 1982-11-16 1982-11-16 Fuel cell

Publications (2)

Publication Number Publication Date
JPS5991671A true JPS5991671A (en) 1984-05-26
JPH0129308B2 JPH0129308B2 (en) 1989-06-09

Family

ID=16458965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202527A Granted JPS5991671A (en) 1982-11-16 1982-11-16 Fuel cell

Country Status (1)

Country Link
JP (1) JPS5991671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978591A (en) * 1989-09-11 1990-12-18 The United States Of America As Represented By The United States Department Of Energy Corrosion free phosphoric acid fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978591A (en) * 1989-09-11 1990-12-18 The United States Of America As Represented By The United States Department Of Energy Corrosion free phosphoric acid fuel cell

Also Published As

Publication number Publication date
JPH0129308B2 (en) 1989-06-09

Similar Documents

Publication Publication Date Title
JPH041469B2 (en)
EP1253655B1 (en) Fuel cell
JP2778767B2 (en) Porous electrode and method of using the same
JP3211378B2 (en) Polymer electrolyte fuel cell
JP3502508B2 (en) Direct methanol fuel cell
JPH0622144B2 (en) Fuel cell
JPS58155B2 (en) Nendoriyodenchikumitatetai
JPS5991671A (en) Fuel cell
JPS5975568A (en) Fuel cell
JPH0766812B2 (en) Gas diffusion electrode for fuel cells
JP2005222720A (en) Fuel cell
JPH05283084A (en) Formation of catalyzer layer for phosphoric acid type fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JP2003007311A (en) Current collector and solid electrolyte fuel cell
JP2006085932A (en) Fuel cell
JP3706624B2 (en) Fuel cell system
JP2633522B2 (en) Fuel cell
JPS59217953A (en) Fuel cell
JPS62232862A (en) Gas diffusion electrode
JPH0456429B2 (en)
JP2000251904A (en) Cell unit for fuel cell and fuel cell
JPS58166668A (en) Fuel cell
JP2021163663A (en) Gas flow path structure, support plate, and fuel cell
JPH03226972A (en) Fuel cell
JPS6139367A (en) Electrodes for matrix fuel cells