[go: up one dir, main page]

JPS5990981A - Manufacture of optical integrated circuit - Google Patents

Manufacture of optical integrated circuit

Info

Publication number
JPS5990981A
JPS5990981A JP20057382A JP20057382A JPS5990981A JP S5990981 A JPS5990981 A JP S5990981A JP 20057382 A JP20057382 A JP 20057382A JP 20057382 A JP20057382 A JP 20057382A JP S5990981 A JPS5990981 A JP S5990981A
Authority
JP
Japan
Prior art keywords
waveguide
layer
active
passive
passive waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20057382A
Other languages
Japanese (ja)
Inventor
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP20057382A priority Critical patent/JPS5990981A/en
Publication of JPS5990981A publication Critical patent/JPS5990981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture the optical integrated circuit, which is manufactured easily, in which a coupling at high efficiency of both a passive waveguide and an active waveguide is enabled and which does not interfere in the operation of a device on the passive waveguide and the active waveguide, by removing upper sections at the stepped difference of a semiconductor substrate in each waveguide and an intermediate layer and forming end surfaces mutually corresponding to the active waveguide and the passive waveguide in approximately parallel. CONSTITUTION:A stepped difference 11 is formed previously on the InP substrate 1 through etching. When forming the stepped difference, various stepped-difference shapes can be selected by selecting etching liquids and substrate orientations, but the stepped difference close to verticality is preferable. An InP buffer layer 2, the InGaAsP active waveguide layer 3, the InP intermediate layer 4, the InGaAsP passive waveguide layer 5 and an InP clad layer 6 are grown continuously on the substrate to which the stepped difference is formed. The depth of the stepped difference and the thickness of the intermediate layer 4 are controlled previously so that the positions of the active waveguide layer 3 and the passive waveguide layer 5 coincide on both sides of the stepped difference at that time. The stepped difference section of the substrate is removed, and the end surfaces of the active waveguide and the passive waveguide are formed. Accordingly, beams 12 generated or amplified by the active waveguide 3 couple with the passive waveguide 5 while interposing a minute clearance removed through etching.

Description

【発明の詳細な説明】 本発明は半導体基板上に半導体レーザ、導波型光増幅器
活性層のような活性導波路と、そこで発生若しくは増幅
された光を伝搬させる低損失な受動導波路を一体に集積
した光集積回路の製作方法に関するものである。
Detailed Description of the Invention The present invention integrates a semiconductor laser, an active waveguide such as a waveguide optical amplifier active layer, and a low-loss passive waveguide for propagating light generated or amplified therein on a semiconductor substrate. The present invention relates to a method of manufacturing an optical integrated circuit integrated with a semiconductor device.

半導体レーザ(LD)を光源とする光通信システムは、
それを構成するデバイスの性能及び信頼性の向上によシ
既に実用の段階に入っている。この光通信システムは、
今後更にシステム形態の高度化が考えられ、それにつれ
て種々の新らたな光デバイスの導入及びその相互接続、
光デバイス自体の性能の一層の向−ヒが必要になる。こ
のような多くの個別な機能を有したデバイスを接続した
複雑かつ商性能な小システムを低接続損失、低製作コス
トで製作するためには各機能を1つの基板上に集積した
光集積回路、そのうちでも特に光源、受光器、変調器等
の能動、受り1光デバイスに加えてトランジスタ、I”
ET等の電気的なデバイスも一体に集積可能なモノリシ
ック光I Ir2回路が必較である。モノリシック光集
積回路の実現のためにはLD、増幅器等の活性導波路と
、そこで発生若しくは増幅された光を同一基板上の他の
機能を有する部分に導くための低損失受動導波路とを高
い効率で結合させることが重要である。しかしながら通
常のLDでは活性層の両端にへき開等によシ反射器を形
成し、そこからレーザ光を外部に取シ出す構造のだめ、
レーザ光を同一基板上の受動導波路へ取シ出すことが困
難である。この欠点を除去するだめ[j目動導波路と受
動導波路の結合方法として虻米次のような方法が考えら
れている。
An optical communication system that uses a semiconductor laser (LD) as a light source is
It has already entered the stage of practical use due to improved performance and reliability of the devices that constitute it. This optical communication system is
It is expected that system configurations will become more sophisticated in the future, and as a result, the introduction of various new optical devices and their interconnection,
Further improvements in the performance of optical devices themselves are required. In order to manufacture a complex and commercially viable small system that connects devices with many individual functions with low connection loss and low production costs, optical integrated circuits that integrate each function on one substrate, Among them, in addition to active and receiving optical devices such as light sources, photoreceivers, and modulators, transistors and I”
A monolithic optical Ir2 circuit that can also integrate electrical devices such as ET is essential. In order to realize a monolithic optical integrated circuit, active waveguides for LDs, amplifiers, etc., and low-loss passive waveguides for guiding the light generated or amplified there to parts with other functions on the same substrate are required. It is important to combine efficiently. However, in a normal LD, a reflector is formed by cleavage or the like at both ends of the active layer, and the laser beam is extracted from there to the outside.
It is difficult to extract laser light to a passive waveguide on the same substrate. In order to eliminate this drawback, the following method has been considered as a method for coupling a movable waveguide and a passive waveguide.

1)DBR結合 2)テーパ結合 3)方向性結合 l)は活性導波路上にD B R(Distribut
ed BraggReflector )を形成し活性
域と受動域を分離するものであるが、活性導波路と受動
導波路を同じ媒ダiで構成するため、受動導波路での損
失が太きいという欠点が有る。また微A11ljな周期
を有するI) B Rの形成も技術的に高度なものが要
求される。2)は活性導波路と受動導波路とを層方向に
接して形成し、光の伝搬方向に一方若しくは両方の導波
路にテーパ構造を導入し結合を計るものであるが、現状
ではテーパ形状の制御が難しく高い結合効率を得る事が
難しい。3)はITG (I ntegrated T
winGuide 、集積二重導波路)構造として知ら
れているもので、活性導波路と受動導波路を層方向に極
く薄い中間層を介して方向性結合した構造である。
1) DBR coupling 2) Taper coupling 3) Directional coupling 1) DBR (Distribution) on the active waveguide
However, since the active waveguide and the passive waveguide are constructed from the same medium die i, there is a drawback that the loss in the passive waveguide is large. Furthermore, the formation of I)BR having a period of minute A11lj also requires a technically advanced one. In 2), an active waveguide and a passive waveguide are formed in contact with each other in the layer direction, and a tapered structure is introduced into one or both waveguides in the light propagation direction to achieve coupling. It is difficult to control and obtain high coupling efficiency. 3) is ITG (integrated T
This is known as a winGuide (Integrated Dual Waveguide) structure, in which an active waveguide and a passive waveguide are directionally coupled in the layer direction via an extremely thin intermediate layer.

この構造では2つの導波路が完全に位相同期している必
要があシ、そのため制作時の制御が難しく充分な結合効
率が得られていない。このように従来考えられている方
法は特に結合効率の点で問題があるが、この問題を解決
するため次のような方法も考えられている。第1゛図は
従来既知な活性導波路と受動導波路の結合方法を説明す
るだめの図である。図を用いてこの構造の製作1機能に
ついて説明する。周ここでは材料としてI nGaAs
P/I nP系相料を用いた場合を例として説明する。
This structure requires the two waveguides to be completely phase-locked, which makes it difficult to control during production and does not provide sufficient coupling efficiency. Although the conventionally considered methods have problems particularly in terms of coupling efficiency, the following methods have also been considered to solve this problem. FIG. 1 is a diagram for explaining a conventionally known method of coupling an active waveguide and a passive waveguide. One function of manufacturing this structure will be explained using the drawings. In this case, InGaAs is used as the material.
An example in which a P/I nP phase material is used will be explained.

この構造の製作につき説明する。まず、InP基板1土
にInPバッファ層2を介して、InGaAsPによる
活性導波路層3(Q+)Inp中間層4を形成する。そ
の後にInP中間層4、活性導波路層3を選択的にメサ
エッチし、その上に再び結晶成長を行ない、低光吸収損
組成の第2のI nGaA sP (Qx )による受
動導波路層5とInPによる第2のクラッド層6をを形
成することにより第1図に示す構造が形成される。この
構造では活性導波路と受動導波路が直接結合した形にな
っておシ、非常に高効率な結合が期待出来るという利点
がある。しかしながら、この構造では製作に2回の結晶
成長を必要とし製作の手間がかかる。更にLDを製作す
るためには活性導波路と受動導波路を含んだ形で共振器
を形成する形になるため受動導波路部分に例えば外部変
調器のようなデバイスを集積する際にはDBR等を導入
し、分離を行なわないと変調器の動作によシLDの動作
状態が影響を受け、外部共振器の利点が生かされないと
いう問題もある。この点を改善するため、活性導波路層
3、受動導波路層5の接続部分をエツチングにより除去
し、両者に近接対向した略平行な端面を形成する構造も
考えられている。この構造によれば、活性導波路と受動
導波路が極く近接して対向し、完全に分離されているた
め、結合の効率が高く、かつ受動導波路上に形成したデ
バイスの動作によ、j7LDの動作が影響されることは
ない。しかしながら、この場合も製作に2回の結晶成長
を必要とし製作に手間がかかるのは同様である。
The fabrication of this structure will be explained. First, an active waveguide layer 3 (Q+) InP intermediate layer 4 made of InGaAsP is formed on an InP substrate 1 with an InP buffer layer 2 interposed therebetween. After that, the InP intermediate layer 4 and the active waveguide layer 3 are selectively mesa-etched, and crystal growth is performed again on them to form a passive waveguide layer 5 made of a second InGaA sP (Qx) having a low optical absorption loss composition. By forming the second cladding layer 6 of InP, the structure shown in FIG. 1 is formed. This structure has the advantage that the active waveguide and the passive waveguide are directly coupled, and very highly efficient coupling can be expected. However, this structure requires two crystal growths and is time consuming. Furthermore, in order to manufacture an LD, a resonator is formed that includes an active waveguide and a passive waveguide, so when integrating a device such as an external modulator in the passive waveguide part, a DBR etc. There is also the problem that unless the LD is introduced and separated, the operating state of the LD will be affected by the operation of the modulator, and the advantages of the external resonator will not be utilized. In order to improve this point, a structure has also been considered in which the connection portion between the active waveguide layer 3 and the passive waveguide layer 5 is removed by etching to form substantially parallel end faces that are close to and opposite to each other. According to this structure, the active waveguide and the passive waveguide face each other in close proximity and are completely separated, resulting in high coupling efficiency and the operation of the device formed on the passive waveguide. The operation of j7LD is not affected. However, in this case as well, the manufacturing process requires two crystal growths and is labor-intensive.

本発明は上記のような問題ケ考慮して為されたもので、
製作が容易で受動導波路と粘性導波路の高効率な結合が
可能、同かつ受動導波路上のデバイスと活性導波路の動
作に干渉の無い光集rA回路の製作方法を提供すること
を目的とする。
The present invention was made in consideration of the above-mentioned problems.
The purpose of the present invention is to provide a method for manufacturing an optical concentrating RA circuit that is easy to manufacture, allows highly efficient coupling of a passive waveguide and a viscous waveguide, and does not interfere with the operation of devices on the passive waveguide and the active waveguide. shall be.

本発明による光集積回路の製作方法は光の伝搬方向に垂
直な方向に延びる段差を形成した半導体基板上に活性導
波路と受動導波路を段差の両11IIIで前記活性導波
路及び前記受動導波路の光!1M+が一致するように中
間層を介して連続して形成し、前記各導波路及び中間層
のうち前記半導体基板の段差の上方の部分を除去し、削
記活性専波路及び受動導波路に互いに略平行に対応した
端面を形成することを特徴とするものである。
A method for manufacturing an optical integrated circuit according to the present invention includes forming an active waveguide and a passive waveguide on a semiconductor substrate having a step extending in a direction perpendicular to the propagation direction of light. Light of! 1M+ are formed continuously through the intermediate layer so that they match, and the portions of the respective waveguides and the intermediate layer above the step of the semiconductor substrate are removed, and the active waveguides and passive waveguides are mutually formed. It is characterized by forming substantially parallel end faces.

以下、本発明につき実施例にょシrff” 11111
c説明する。
The following is an example of the present invention.
cExplain.

第2図は不発IJIJKよる光集積回路の製作方法を説
明するための図である。第2図を用いて製作の方法につ
きI nG aA sP/I nP系材料を例にとシ説
明する。まず■一基板1上に予めエツチングによシ段差
11を形成する(第2図(a))。段差の形成の際には
エツチング液及び基板方位の選択によシ柚々の段差形状
を選択することが出来るが、この際には垂直に近い段差
の形成が望ましい。この段差を形成した基板上にInP
バッファ層2、I nGaAsP活性導波路層3、In
P中間層4、InGaAsP受動導波路層5、■−クラ
ッド層6を連続成長する(第2図(b))。この際段差
の両側で活性導波路層3と受動導波路層5の位置が一致
するように予め段差の深さ、中間層4の厚さを制御する
。その後基板の段差の部分をエツチングにより除去し、
活性導波路及び受動導波路の端面を形成する(第2図(
C))。
FIG. 2 is a diagram for explaining a method of manufacturing an optical integrated circuit using unexploded IJIJK. The manufacturing method will be explained using FIG. 2, taking InGaA sP/InP type materials as an example. First, (1) a step 11 is formed in advance on the substrate 1 by etching (FIG. 2(a)). When forming a step, various step shapes can be selected by selecting the etching solution and the orientation of the substrate, but in this case, it is desirable to form a nearly vertical step. InP is placed on the substrate on which this step is formed.
Buffer layer 2, InGaAsP active waveguide layer 3, In
A P intermediate layer 4, an InGaAsP passive waveguide layer 5, and a -cladding layer 6 are successively grown (FIG. 2(b)). At this time, the depth of the step and the thickness of the intermediate layer 4 are controlled in advance so that the positions of the active waveguide layer 3 and the passive waveguide layer 5 coincide on both sides of the step. After that, the step part of the board is removed by etching,
Form the end faces of the active waveguide and passive waveguide (see Figure 2 (
C)).

去された極く微小な間隔をへだてで受動導波路5に結合
する。近年の微細加工技術の進歩によりエツチングによ
る溝巾は数μm以下のものが得られることから結合効率
は充分に商く出来る。また、エツチングによる活性導波
路に反射鏡を形成していることになるので、活性賊をL
Dとして用いる場合には受動域と完全に分離されておシ
、受動導波路上に形成したデバイスの動作によfiLD
の動作が影響されることはない。また、受動導波路端面
からの反射の影響は無反射コートにより低減可能である
。従って、この構造により活性導波路と受動導波路とを
高効率で結合させ、かつ受動導波路上に集積されるデバ
イスと活性導波路の動作の干渉を無くす事が可能である
ため高度の集積化が可能になる。更に、この構造は一回
の成長で製作可能であることから製作の手間が犬r1J
に小さくなるという利点がある。
The extremely small gap thus removed is coupled to the passive waveguide 5 through the gap. Due to recent advances in microfabrication technology, groove widths of several μm or less can be obtained by etching, so that the coupling efficiency can be sufficiently increased. In addition, since a reflecting mirror is formed in the active waveguide by etching, the active waveguide is
When used as a waveguide, it is completely separated from the passive waveguide, and the fiLD is controlled by the operation of the device formed on the passive waveguide.
operation is not affected. Furthermore, the influence of reflection from the end face of the passive waveguide can be reduced by a non-reflection coating. Therefore, with this structure, it is possible to combine the active waveguide and the passive waveguide with high efficiency, and to eliminate interference between the operation of the active waveguide and the device integrated on the passive waveguide, resulting in a high degree of integration. becomes possible. Furthermore, since this structure can be produced in one growth, the production time is reduced to 1J.
It has the advantage of being smaller.

結晶成長の方法としては最も一般的な膜相成長法でも成
長可能であるが、気相成長法、分子線エピタキシャル法
等では下の段差の形状が保存される傾向が強いことから
有利となる。また最後の活性導波路と受動導波路の分離
に用いるエツチングはウェットエツチングでも可能であ
るが、反応性イオン・エツチング、イオン・ビーム・エ
ツチング等のドライ・エツチングの手法を採用する方が
加工の制御性、微細化の点で崩利である。こむでは説明
の便のためI nGaAsP/I nP系材料を例に説
明したが、本発明が他の半導体材料にも適用可能なのは
言う迄もない。また同様に説明の便のため平面導波路構
造のみについて説明したが、導波路の三次元化のために
はLDの横モード制御に採用された種々の方法が適用出
来る。
Although crystal growth can be achieved by the most common film phase growth method, vapor phase growth, molecular beam epitaxial methods, etc. are advantageous because they tend to preserve the shape of the lower step. In addition, although wet etching can be used for the etching used to separate the active and passive waveguides at the end, it is better to use dry etching methods such as reactive ion etching and ion beam etching to control the processing. This is a disadvantage in terms of performance and miniaturization. For convenience of explanation, the explanation has been given using InGaAsP/InP type materials as an example, but it goes without saying that the present invention is applicable to other semiconductor materials. Similarly, for convenience of explanation, only a planar waveguide structure has been described, but various methods employed for transverse mode control of an LD can be applied to create a three-dimensional waveguide.

以上詳細に説明したように、本発明によれば製作が容易
で活性導波路と受動導波路の結合効率が商く、向かつ活
性導波路と受動導波路上のデバイスとの間の動作の干渉
が無い光集積回路の製作方法が得られる。
As described in detail above, according to the present invention, it is easy to manufacture, the coupling efficiency between the active waveguide and the passive waveguide is improved, and the operation interference between the active waveguide and the device on the passive waveguide is improved. Thus, a method for manufacturing an optical integrated circuit is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来既知な光集積回路の例を示す図、第2図(
al 、 lb) 、 (c)は本発明による光集積回
路の実施例の製作方法を示す図である。図に於て1は半
導体基板、2,3,4,5.6は半導体層、11は段差
、12は光である。   11工ヤ内原第1図 1−と−
Figure 1 shows an example of a conventionally known optical integrated circuit, and Figure 2 (
al, lb), (c) are diagrams showing a method of manufacturing an embodiment of an optical integrated circuit according to the present invention. In the figure, 1 is a semiconductor substrate, 2, 3, 4, 5.6 are semiconductor layers, 11 is a step, and 12 is a light. 11th work year Uchihara Figure 1 1- and-

Claims (1)

【特許請求の範囲】[Claims] 光の伝搬方向に画直な方向に延びる段差を形成した半導
体基板上に、活性導波路と受動導波路を段差の両側で前
記活性導波路及び前記受動導波路の光軸が一致するよう
に中間層を介して連続して形成し、前記各導波路及び中
間層のうち、前記半導体基板の段差の上方の部分を除去
して前記活性導波路及び受動導波路に互いに略平行に対
向した端面を形成することを特徴とする光集積回路の製
作方法。
On a semiconductor substrate with a step extending perpendicular to the light propagation direction, an active waveguide and a passive waveguide are placed between the active waveguide and the passive waveguide on both sides of the step so that the optical axes of the active waveguide and the passive waveguide coincide. The active waveguide and the passive waveguide are formed in a continuous manner through layers, and the portions of the waveguides and the intermediate layer above the step of the semiconductor substrate are removed to form end faces facing the active waveguide and the passive waveguide substantially parallel to each other. 1. A method of manufacturing an optical integrated circuit, characterized by forming an optical integrated circuit.
JP20057382A 1982-11-16 1982-11-16 Manufacture of optical integrated circuit Pending JPS5990981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20057382A JPS5990981A (en) 1982-11-16 1982-11-16 Manufacture of optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20057382A JPS5990981A (en) 1982-11-16 1982-11-16 Manufacture of optical integrated circuit

Publications (1)

Publication Number Publication Date
JPS5990981A true JPS5990981A (en) 1984-05-25

Family

ID=16426574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20057382A Pending JPS5990981A (en) 1982-11-16 1982-11-16 Manufacture of optical integrated circuit

Country Status (1)

Country Link
JP (1) JPS5990981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004491A1 (en) * 1984-03-30 1985-10-10 Louis Menigaux Process for fabricating a monolithic integrated optical device comprising a semiconductor laser and device obtained by said process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004491A1 (en) * 1984-03-30 1985-10-10 Louis Menigaux Process for fabricating a monolithic integrated optical device comprising a semiconductor laser and device obtained by said process
US4720468A (en) * 1984-03-30 1988-01-19 Louis Menigaux Process for the production of a monolithic integrated optical device incorporating a semiconductor laser and device obtained by this process

Similar Documents

Publication Publication Date Title
JP3263949B2 (en) Manufacturing method of optical integrated circuit
JPH02195309A (en) Optical coupling element
JPH1114842A (en) Waveguide type optical integrated circuit element and its manufacture
JPS637626A (en) Surface position detector
JP3043796B2 (en) Integrated optical coupler
JP6393221B2 (en) Optical transmitter and optical transmitter
JP2656972B2 (en) Multi-wavelength glass waveguide laser array
JPH01307707A (en) Optical coupling circuit
JPS6320035B2 (en)
JP2752851B2 (en) Manufacturing method of optical waveguide
JPS5990981A (en) Manufacture of optical integrated circuit
JPS63229796A (en) optical semiconductor device
JPS63140589A (en) Light emitting device module and manufacture thereof
JPS5929483A (en) Optical integrated circuit
JP2000077771A (en) Semiconductor optical amplifier
JPH04283705A (en) Integrated optical coupler and production thereof
JPH0359619A (en) Optical amplifier
JPH07174931A (en) Semiconductor optical waveguide and its production
JPH1078521A (en) Semiconductor polarization rotating element
JP2004177882A (en) Optical waveguide device
JPH10142434A (en) Optical multiplexing element
JP2000183443A (en) Semiconductor laser device with spot size converter and its manufacture
JP3104801B2 (en) Integrated optical coupler
JP2641296B2 (en) Semiconductor laser with optical isolator
JP2000049102A (en) Semiconductor optical integrated element, optical communication module and optical communication system using the same, and manufacture of them