JPS599041B2 - thin film mirror - Google Patents
thin film mirrorInfo
- Publication number
- JPS599041B2 JPS599041B2 JP11995976A JP11995976A JPS599041B2 JP S599041 B2 JPS599041 B2 JP S599041B2 JP 11995976 A JP11995976 A JP 11995976A JP 11995976 A JP11995976 A JP 11995976A JP S599041 B2 JPS599041 B2 JP S599041B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- optical waveguide
- film mirror
- optical
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010409 thin film Substances 0.000 title claims description 17
- 230000003287 optical effect Effects 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 6
- 238000005452 bending Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
【発明の詳細な説明】 本発明は薄膜ミラーに関する。[Detailed description of the invention] The present invention relates to thin film mirrors.
光ICの基本的な構成要素として重要なものは、平面的
な基板上で光を任意に導波する導波路である。An important basic component of an optical IC is a waveguide that guides light arbitrarily on a flat substrate.
このような導波路のうち、LiNb03単結晶等表面か
ら金属を拡散させた金属拡散形光導波路は、伝搬損が小
さいことで知られている。Among such waveguides, a metal-diffused optical waveguide in which metal is diffused from the surface of a single crystal such as LiNb03 is known to have small propagation loss.
しかしながら、モノリシック化された光ICは同一基板
上に種々の光学素子を組込み、これらを光学的に接続さ
せることから、各導波路内を伝搬する光量を所定値に設
定する必要が生じてくる。However, since a monolithic optical IC incorporates various optical elements on the same substrate and optically connects them, it becomes necessary to set the amount of light propagating in each waveguide to a predetermined value.
それ故、本発明の目的は、光IC基板面の導波路部に所
定の光量を伝搬させる薄膜ミラーを提供するものである
。このような目的を達成するために本発明はLiNb0
3あるいはLiTaO3等の強誘電体結晶にTiあるい
はNb等の金属を拡散して形成される光導波路が光進行
方向に対して所定の角度で屈曲され、この屈曲された部
分に金属濃度の異なる分岐路が設けられたもので、以下
実施例に基づいて本発明を説明する。Therefore, an object of the present invention is to provide a thin film mirror that propagates a predetermined amount of light to a waveguide section on the surface of an optical IC substrate. In order to achieve this purpose, the present invention provides LiNb0
An optical waveguide formed by diffusing a metal such as Ti or Nb into a ferroelectric crystal such as 3 or LiTaO3 is bent at a predetermined angle with respect to the direction of light propagation, and branches with different metal concentrations are formed in the bent portion. The present invention will be described below based on examples.
第1図は本発明に係る薄膜ミラーの要部斜視構成図であ
る。FIG. 1 is a perspective view of a main part of a thin film mirror according to the present invention.
同図においてLiNb03あるいはLiTa03等の強
誘電体結晶1の上面にTiあるいはNb等の金属を選択
拡散することによつて形成される光導波路2が設けられ
、この光導波路2は、光が入射される方向に対して角度
αの屈曲部を有する光導波路3と、前記屈曲部に接続し
て設けられかつ前記光導波路3と異なる金属濃度を有す
る光導波路4とから構成されている。このように構成す
ることによつて屈折率がそれぞれ異なる光導波路3およ
び4の境界部に薄膜ミラー5が形成される。In the figure, an optical waveguide 2 formed by selectively diffusing a metal such as Ti or Nb is provided on the upper surface of a ferroelectric crystal 1 such as LiNb03 or LiTa03, and this optical waveguide 2 is provided with an optical waveguide 2 that is formed by selectively diffusing a metal such as Ti or Nb. The optical waveguide 3 includes an optical waveguide 3 having a bent portion at an angle α with respect to the direction of the optical waveguide 3, and an optical waveguide 4 connected to the bent portion and having a metal concentration different from that of the optical waveguide 3. With this configuration, the thin film mirror 5 is formed at the boundary between the optical waveguides 3 and 4 having different refractive indexes.
すなわち、光導波路3から入射される光は、その一部が
前記薄膜ミラー5で反射されそのまま光導波路3内を通
過し、また、他の一部は前記薄膜ミラー5を透過して光
導波路4内を通過する。したがつて、各光導波路3およ
び4の金属不純物濃度と、光導波路3の屈曲角αを任意
に設定することにより、また、このような薄膜ミラーを
所定の光導波路に複数個設けることによつて、各導波路
部に所定の光量を伝搬させることができる。例えば、L
iNb03の強誘電体結晶面にTiを蒸着して光導波路
3および4形成領域にそれぞれ膜厚470A、170λ
のTi膜を形成し、温度約970℃の熱処理を約7時間
行なつて拡散をした後に形成される光導波路3および4
に対して、光導波路3の屈曲角αの変化に伴い薄膜ミラ
ー5の反射率は第2図で示したグラフのようになる。That is, a part of the light incident from the optical waveguide 3 is reflected by the thin film mirror 5 and passes through the optical waveguide 3 as it is, and the other part is transmitted through the thin film mirror 5 and passes through the optical waveguide 4. pass through the inside. Therefore, by arbitrarily setting the metal impurity concentration of each optical waveguide 3 and 4 and the bending angle α of the optical waveguide 3, and by providing a plurality of such thin film mirrors in a given optical waveguide. Thus, a predetermined amount of light can be propagated through each waveguide section. For example, L
Ti was vapor-deposited on the ferroelectric crystal plane of iNb03 to form film thicknesses of 470A and 170λ in the optical waveguides 3 and 4 formation regions, respectively.
Optical waveguides 3 and 4 are formed after forming a Ti film and performing a heat treatment at a temperature of about 970° C. for about 7 hours to diffuse the Ti film.
On the other hand, as the bending angle α of the optical waveguide 3 changes, the reflectance of the thin film mirror 5 changes as shown in the graph shown in FIG.
ここで使用した光は波長0.87μmのダイオードレー
ザで、反射率とは反射光強度1R、透過光強度1Tとし
たときにIR/IR+ITであられされる値である。本
実施例では、反射率を変化させるのに各光導波路3,4
の金属濃度あるいは光導波路3の屈曲角度αによつて決
定しているものであるが、電気光学効果、つまり薄膜ミ
ラー5部に電界を発生させることによつて変化させるこ
ともできる。The light used here is a diode laser with a wavelength of 0.87 μm, and the reflectance is the value calculated by IR/IR+IT when the reflected light intensity is 1R and the transmitted light intensity is 1T. In this embodiment, each optical waveguide 3, 4 is used to change the reflectance.
This is determined by the metal concentration of the optical waveguide 3 or the bending angle α of the optical waveguide 3, but it can also be changed by the electro-optic effect, that is, by generating an electric field in the thin film mirror 5.
すなわち、第3図に示すように薄膜ミラー5上に線状か
らなるAl電極6,7を蒸着等により2個平行に設け、
このAl電極6,L間に適当な電位差を加えるようにし
てもよい。以上、述べたように本発明に係る薄膜ミラー
によれば、光1Cの光導波路部の所望個所に形成でき、
これにより所定の光量を光導波路内に伝搬させることが
できる。That is, as shown in FIG. 3, two linear Al electrodes 6 and 7 are provided in parallel on the thin film mirror 5 by vapor deposition or the like.
An appropriate potential difference may be applied between the Al electrodes 6 and L. As described above, according to the thin film mirror according to the present invention, it can be formed at a desired location of the optical waveguide portion of the light 1C,
Thereby, a predetermined amount of light can be propagated into the optical waveguide.
第1図は本発明に係る薄膜ミラーの一実施例を示す要部
斜視構成図、第2図は本発明に係る薄膜ミラーの角度変
化に対する反射率を示すグラフ、第3図は本発明に係る
薄膜ミラーの他の実施例を示す要部斜視構成図である。
1・・・・・・強誘電体結晶、2,3,4・・・・・・
光導波路、5・・・・・・薄膜ミラー、6,7・・・・
・・Al電極。FIG. 1 is a perspective configuration diagram of essential parts showing an embodiment of the thin film mirror according to the present invention, FIG. 2 is a graph showing the reflectance of the thin film mirror according to the present invention with respect to angular changes, and FIG. FIG. 7 is a perspective configuration diagram of main parts showing another example of a thin film mirror. 1... Ferroelectric crystal, 2, 3, 4...
Optical waveguide, 5... Thin film mirror, 6, 7...
...Al electrode.
Claims (1)
体結晶にTiあるいはNb等の金属を拡散して形成され
る光導波路が光進行方向に対して所定の角度で屈曲され
、この屈曲された部分に金属濃度の異なる分岐路が設け
られたことを特徴とする薄膜ミラー。1 An optical waveguide formed by diffusing a metal such as Ti or Nb into a ferroelectric crystal such as LiNbO_3 or LiTaO_3 is bent at a predetermined angle with respect to the direction of light propagation, and the bent portion has a different metal concentration. A thin film mirror characterized by being provided with a branch path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11995976A JPS599041B2 (en) | 1976-10-05 | 1976-10-05 | thin film mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11995976A JPS599041B2 (en) | 1976-10-05 | 1976-10-05 | thin film mirror |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5345254A JPS5345254A (en) | 1978-04-22 |
JPS599041B2 true JPS599041B2 (en) | 1984-02-29 |
Family
ID=14774429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11995976A Expired JPS599041B2 (en) | 1976-10-05 | 1976-10-05 | thin film mirror |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS599041B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59216107A (en) * | 1983-05-25 | 1984-12-06 | Fujitsu Ltd | Optical branch circuit |
FI77131C (en) * | 1987-01-22 | 1989-01-10 | Outokumpu Oy | Device for providing bi-directional communication in underground spaces |
JPH03209204A (en) * | 1990-01-12 | 1991-09-12 | Alps Electric Co Ltd | Optical waveguide type optical element and optical pickup using the same |
-
1976
- 1976-10-05 JP JP11995976A patent/JPS599041B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5345254A (en) | 1978-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4547262A (en) | Method for forming thin film passive light waveguide circuit | |
US4984861A (en) | Low-loss proton exchanged waveguides for active integrated optic devices and method of making same | |
JP2679570B2 (en) | Polarization separation element | |
JPH0452922B2 (en) | ||
JPH10254001A (en) | Optical wavelength conversion module | |
JPS599041B2 (en) | thin film mirror | |
US20220221770A1 (en) | Wavelength Conversion Element | |
JPS57158616A (en) | Optical coupler | |
JPS54156555A (en) | Photo circuit element | |
JPS5473062A (en) | Thin-film mirror type optical branch line | |
JPS5788410A (en) | Cross waveguide and optical switch | |
JPS5452562A (en) | Variable wavelength selection filter | |
JPH0588123A (en) | Variable wavelength filter | |
WO2024100865A1 (en) | Optical waveguide element and method for manufacturing same | |
JPH06100694B2 (en) | Method of forming optical waveguide | |
JP2010078639A (en) | Wavelength conversion element and manufacturing method thereof | |
JPS6038689B2 (en) | Method for manufacturing waveguide electro-optic light modulator | |
JPH01205106A (en) | Grating lens | |
JPH05323401A (en) | Wavelength conversion element | |
JPS60125809A (en) | Optical waveguide | |
JPH06160926A (en) | Wavelength conversion element | |
Rediker et al. | Performance and reproducibility of Mach-Zehnder interferometer arrays in Ti: LiNbO3 operating at wavelengths from 0.458 to 3.39 μm | |
JPH05249519A (en) | Optical waveguide type wavelength conversion element | |
JPH07281225A (en) | Optical waveguide type second harmonic generator | |
JPH0357448B2 (en) |